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     In this paper, we argue that Pohjola’s one-dimensional, discrete-time version of Goodwin’s
growth cycle model is based on assumptions that conflict with the  “symbiotic-conflictual’’
spirit of the model. It is shown that when the assumption about the dynamical real wage is
modified, in contrast with Pohjola’s opinion, the likelihood of chaotic solutions does not
increase. In particular, when a discrete-time Phillips curve is considered, the model becomes
two-dimensional, but admits chaotic solutions only for parameter values which are not within
economically reasonable values.
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1. Introduction

An important source of advance in economic dynamic modelling has often been
the interaction with other fields of scientific research. This is clearly testified to by
numerous and well-known examples, such as the use of the van der Pol oscillator to
explain the persistence of economic fluctuations (Goodwin [11]), the use of Lotka–
Volterra equations to formalize the growth cycles resulting from the symbiotic contra-
dictions of capitalism (Goodwin [12]) and, more recently, the use of chaos theory to
represent the irregularity of economic fluctuations.

In particular, in the latter case, the time lag between the first applications in
other disciplines (e.g. May [18,19]) and the first applications in economics (e.g.
Benhabib and Day [4,5], Stutzer [23]) has been unusually short. The resulting economic
contributions are very heterogeneous in that some of them are based on equilibrium
assumptions and maximization principles, whereas others adopt a disequilibrium and
behavioural view of the economy. However, they can be seen as a whole because they
all use the new concepts of dynamical systems theory to show that the complexity and
irregularities of the dynamics of actual capitalist economies can be explained by the
nonlinearities that are endogenous in their functioning, rather than by means of linear
equations with unexplained exogenous shocks (as in the mainstream approach to
business cycle modelling).
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f (x , y) = (a − x2 + by, x), (1)

Although it may be too early to establish the impact that all this will have on
the way economists think about dynamical problems, we can certainly say that the
immediate effect of it was to increase the number of low dimension economic
dynamical models formulated in discrete time. This, however, appears to be in contrast
with what has happened and is happening in other scientific disciplines, where it is
safe to say that the most important use of maps is that of assisting in the study of
continuous time, higher dimensional models (see Alliwood et al. [1, p. 273]).

A typical example is that of the two-dimensional (2D) map known as the Hénon
map (see, for example, Hilborn [14, pp. 240–241]):

which was introduced by Hénon as a simplified model of the Poincaré map for the
Lorenz (3D) differential equations model.

In other words, the procedure is the following: first, the model is formulated in
terms of all required variables (dimensions); second, in order to make progress in the
study of its dynamics, attention is restricted to a lower-dimensional version of the
model (for example to its Poincaré map) that still contains the “essential” information
(Hilborn [14, p. 181]).

In the economic applications, on the other hand, the model is often first mani-
pulated in such a way that its final equation is a 1D difference equation. The commonly
used justification for such a revision of a given model is to view it only as a kind of
“first step” in the right direction, to be followed by the relaxation of some of the
simplifying assumptions. The reason for this – it is often added – is that, once the
possibility of chaotic solutions has been shown for a simplified (1D) version of a
given model, then we can expect the model to produce chaotic solutions for a larger
range of parameter values (i) if we introduce in it a further nonlinearity, and or (ii) if
we increase its dimensionality.

In this paper, we develop a simple exercise with the purpose of disproving such
a justification.

First, in section 2, we introduce a specific example, namely the article published
in 1981 by Pohjola [21], where the author analyses a 1D, discrete-time version of
Goodwin’s growth cycle (LVG) model [12], originally framed in terms of Lotka–
Volterra 2D differential equations. In doing this, our purpose is to show that, in con-
trast with Pohjola’s view, the consideration of a nonlinear bargaining equation (rather
than a linear one as in the simplified case considered by the author) does not increase
the likelihood of chaotic solutions at all. Second, in section 3 – after having argued
that Pohjola’s analysis of Goodwin’s model as a 1D map is based on assumptions that
conflict with the “symbiotic-conflictual” spirit of the original model – it is shown,
again in contrast with Pohjola’s view, that once his simplifying assumptions are
relaxed, the resulting 2D, discrete-time dynamical system admits chaotic solutions
only for parameter values which are not within economically reasonable ranges.

Some concluding and summarising remarks are then given in section 4.



2. The LVG model as a 1D map

2.1. Pohjola’s original elaboration

A low-dimensional nonlinear dynamical system capable of generating chaotic
behaviour – such as an equation of the logistic type1) or such as (1) of the previous
section – can be easily obtained by suitably revising a given dynamical model of the
economy (Sordi [22]).

In his (1981) article, Pohjola [21] follows this “modelling strategy”, taking as
his starting point Goodwin’s 1967 celebrated growth cycle model [12] (originally
framed in the Lotka–Volterra 2D system of differential equations).

In the Pohjola elaboration of the model, apart from the change in the time concept
(from continuous to discrete), all but one assumption are the same as in the original
version of the model (Goodwin [12, p. 54], Pohjola [21, p. 28]).

In both versions of the model, it is assumed that (see also Sordi [22, p. 12]): (i)
technical progress is labour-augmenting at a constant rate,(ii) the labour supply grows
at a constant rate, (iii) there are only two factors of production (labour and capital),
both homogeneous and non-specific, (iv) all quantities are real and net, (v) all wages
are consumed, all profits saved and invested, and (vi) the capital–output ratio is
constant. Writing all the relations in discrete-time terms, we thus have

qt +1

lt +1
= (1 + α ) qt

lt
∀t, α ≥ 0,

nt +1 = (1 + β)nt , ∀t, β ≥ 0,

kt + 1 − kt = (1 − ut )qt ,

σ = kt

qt
, ∀t, σ > 0,

where q is output, l employment, n labour supply, k capacity (capital), w real wage,
and where u = wl q denotes the workers’ share of total product.

Writing υ(= l n) for the employment rate, from (2)–(5) one obtains

υ t +1

υt
= 1 + 1 − σg − ut

σ (1 + g)
, (6)

where g = α + β + αβ ≥ 0.
The only modification introduced by Pohjola consists in replacing Goodwin’s

real wage equation (which is a Phillips curve in real terms) by an equation which
makes the level  (as opposed to the relative change) of the workers’ share of total
product (as opposed to the real wage) depend positively on the employment rate.

1) By this, we mean an equation such as xt +1 = f (xt, a) = ax t(1 – xt), with a ∈[0, 4] and xt ∈[0, 1], for all
t, or, more generally, xt +1 = F(xt , a), where F is a unimodal map function, with the unique maximum
that increases in the control parameter a. See Brock and Dechert [7, pp. 2211–2212].

(2)

(3)

(4)

(5)
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Thus, the two versions of the model can be characterized and distinguished in
the following way:

(I) Goodwin’s original version (in discrete time): equation (6) together with

wt +1 − wt

wt
= f (υ t), − 1 < f (0) < 0, ′ f (υ) > 0, ′ ′ f (υ) > 0, ∀t , (7)

where Goodwin chooses to work with a linear approximation of the function f (υ)
such as (see figure 1(a))

  f (υ )… − γ + ρυ, 0 < γ < 1, ρ > 0. (8)

Figure 1. The bargaining equation (a) in Goodwin’s model and
(b) in Pohjola’s version of the model.

(II) Pohjola’s version: equation (6) together with

wt = h(υt )
qt

lt
, h(0) = 0, ′ h (υ) > 0, ′ ′ h (υ) > 0, ∀υ, (9)

where Pohjola chooses to work with a linear approximation of the function h(υ) such
as (see figure 1(b))

  h(υ) … − γ 0 + ρ0υ, γ 0 > 0, ρ0 > 0. (10)

He also suggests that the nature of the results would not change by using a nonlinear
approximation such as

  h(υ) … γ 1υ ρ1 , γ 1 > 0, ρ1 > 1. (11)

As is easily seen, linear approximation plays a crucial role in both cases: in (I) it
allows Goodwin to obtain the Lotka–Volterra prey–predator case, in (II) it allows
Pohjola to obtain a logistic equation.
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Concentrating for the time being on the second case, we notice that due to the
modification of the model introduced by Pohjola, inserting (9)–(10) into (6), one
easily obtains2)

2) See Pohjola [21, pp. 29–30] for calculations.
3) In his concluding remarks [21, p. 36], Pohjola also adds that the linear approximation (10) is in no way

necessary for the qualitative results obtained in his paper.

x t +1 = (1 + r)xt (1 − xt ), (12)

where xt = rυ t [(1 + r)υ 2] , r = (1 − σ g + γ 0 ) [σ (1 + g)]  and where υ 2  = (1 – σg +
γ0)yρ0 is the only non-trivial fixed point of the difference equation (expressed in terms
of the original variable). As is easy to see, (12) is a logistic equation to which all
available mathematical results are readily applicable (Pohjola [21, pp. 30–35], Sordi
[22, pp. 14–15]).

The spirit of Pohjola’s exercise is self-evident and stated explicitly by the author
when he says [21, p. 30] that, choosing the linear approximation (10), his purpose is
“. . . to gain analytical simplicity at the expense of empirical realism since (the) aim
is not to construct an empirically realistic model but to show that even the simplest
nonlinear models can have complicated solutions.” Moreover, he clearly considers
his analysis only as a “first step”, as is testified to by two passages of his article: first,
when he says [21, p. 30] that the choice of the nonlinear approximation (11) rather
than the linear approximation (10) would avoid some unrealistic features of the model,
but would make the analysis more difficult without, however, changing the nature of
the results 3); second, when he says [21, p. 36] that we should expect the model to
produce chaotic solutions for a larger range of parameter values if we replaced the
bargaining equation (9) with a Phillips curve. As stressed by Pohjola himself, the
reason for this is that, in the latter case, we should need two variables, rather than only
one, to describe growth paths.

It is now our intention to show that, whereas for mathematical reasons this is
surely true in general, it is not so for the specific model we are considering, once one
remembers that it is not an abstract mathematical model, but rather is taken to repre-
sent a well-defined economic situation. In doing this, we first analyse the case in which
the nonlinear bargaining equation (11) is introduced into the model, whereas we post-
pone to the following section the case in which the Phillips curve (7) is considered.
In both cases, the crucial element of our analysis will be the consideration of all
restrictions that for economic reasons must be imposed on the values of the parameters
and variables of the model.

2.2. A “more nonlinear” elaboration

We first notice that, in (11), the restrictions we have given for the values of the
two parameters are stricter than those considered by Pohjola [21, p. 30], who simply
requires that the two parameters be positive. The reason for this is that, to satisfy the
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spirit of Goodwin’s model – according to which labour never becomes the limiting
factor in production – the function h(υ) must be a positive, increasing, convex function
of υ for 0 < υ < 1, growing fast enough when full employment is approached so as to
have 4)

4) In particular, condition (13c) implies that at full employment, workers’ real income claim would be
higher than the obtainable maximum (which is current output plus the existing capital stock).

5) In our simulations, we have chosen ρ1 =2, so that A+ … 2.598.

h(1) = γ 1 > 1 + σ .

As we see, (13a) and (13b) require that γ1 > 0 and ρ1 > 1.
Then, inserting (9) into (6) and choosing (11) rather than (10), we obtain the

following nonlinear 1D difference equation:

υt + 1 = Aυt (1 − Bυt
ρ1 ) = G(υt ), (14)

where A = (1 + σ ) [σ (1 + g)] > 0 and B = γ1 (1 + σ) > 1.
Given the economic definition of the variables, we must ensure that υt < 1 for

all t. To this end, we notice that G(υ) attains a maximum at υ = υmax such that

υ max = 1
(1 + ρ1)B

 

 
 

 

 
 

1 ρ1

= 1 + σ
(1 + ρ1)γ 1

 

 
 

 

 
 

1 ρ1

< 1, always true.

a condition that is satisfied if

A < (1 + ρ1)1+ 1 ρ1 B1 ρ1

ρ1
. (15)

Moreover, to ensure that υt > 0 for all t, given that G(υ) intersects the υ-axis at υ1 = 0
and at υ2 = (1 B)1 ρ1, we must have

G(υmax ) < 1
B

 
 

 
 

1 ρ1

,

from which 5)

A < (1 + ρ1)
ρ1

(1 + ρ1)1 ρ1 = A+. (16)

As is easy to check, condition (16) ensures that condition (15) is also satisfied.

(13a)

(13b)

(13c)

For this value of the variable, we must also have

G(υmax ) = A
1

(1 + ρ1)B

 

 
 

 

 
 

1 ρ1 ρ1

1 + ρ1
< 1,

′ h (υ ) = ρ1γ 1υ ρ1 −1 > 0, ∀υ ∈( 0 , 1 ) ,

′ ′ h (υ ) = (ρ1 − 1)ρ1γ 1υ ρ1 − 2 > 0 , ∀υ ∈( 0 , 1 ) ,
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The fixed points of (14) are

υ 1 = 0,

υ 2 = A − 1
AB

 
  

 
  

1 ρ1

= 1 − σ g
γ 1

 
  

 
  

1 ρ1

,

so that the following condition must also be satisfied:

B > A − 1
A

, always true,

A > 1.

Given condition (17b), we have

′ G (0) > 1.

′ G (υ 2) = 1 − ρ1( A − 1).
Moreover,

Thus, the trivial fixed point is always unstable, whereas the non-trivial fixed point is
stable if

  j1 − ρ1( A − 1)j < 1,

1 < A < 1 + 2
ρ1

. (18)
i.e., if

(17a)

(17b)

6) Or, in other words, for the majority of admissible parameter values, the solution is periodic!

2.3. Bifurcation analysis

Considering only values of A greater than one, i.e., taking account of condition
(17b), it is now not difficult to show that, as was the case for Pohjola’s original version
of the model, there exists a period-doubling route to chaos, as the parameter A is
increased. The problem, however, is that, taking account of all restrictions we have
found on the values of the parameters, the solution to this “more nonlinear” version of
the model is chaotic only for a rather small range of parameter values.6)

To show this, let us notice that, given condition (18), with ρ1 = 2 and B = 1.2,
the non-trivial fixed point is stable for 1 < A < 2. For values of A in this range, the
convergence to the non-trivial equilibrium point is monotonic when 1 < A < 1.5 and
cyclical when 1.5 < A <2. This is shown in figure 2(a) and figure 2(b), respectively.
Then, as A is increased, we have the period-doubling sequence summarised in table 1.
Three examples – a 4-period cycle, an 8-period cycle and a chaotic solution – are
shown in figures 3(a), 3(b) and 4, respectively.

From table 1, it follows that the economically relevant “chaotic region” is re-
stricted to the interval 2.3 < A < A+ = 2.598. The reason for this is that although the
model shows chaotic solutions also for values of A greater than the critical values A+

(for example for A = 2.6 as shown in figure 5), the latter are economically irrelevant
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Figure 2. (a) A monotonic and (b) a cyclical convergence to
the non-trivial equilibrium point.

Table 1

Period-doubling sequence for parameter A.

Dynamic behavior Values of A

2-period cycle 2.000–2.236

4-period cycle 2.237–2.287

8-period cycle 2.288–2.298

16-, 32-, 64…-period cycle 2.299–2.300

Chaotic behaviour 2.301–2.598

Figure 3. (a) A 4-period cycle and (b) an 8-period cycle.

because – for about half of the simulation period – they imply negative values for
both the employment rate and the workers’ share of total product.

A look at the bifurcation diagrams of the two models (see figure 6 for the version
of the model with the nonlinear approximation (11) and figure 7 for the version with
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Figure 4. An example of an “economically relevant” chaotic solution to
Pohjola’s model with the nonlinear bargaining equation (11).

Figure 5. An example of an “economically irrelevant” chaotic solution to
Pohjola’s model with the nonlinear bargaining equation (11).

the linear approximation (10)) shows clearly that the “chaotic region” is larger in the
first case. However, only half of it or so is economically relevant.

Thus, although the likelihood of chaotic solutions in the two versions of the
model is not directly comparable,7) there are certainly no reasons to conclude that it is
higher in the “ more nonlinear” version of the model!

This ends the first part of our exercise. As we will see, however, a more important
aspect is to comment in detail on the assumptions which allow Pohjola to reduce
Goodwin’s original 2D dynamical system to a 1D equation of the logistic type.8)

7) This is due to the fact that, as we have seen, Pohjola’s results are expressed in terms of the parameter
r = (1 – σg + γ0) [σ (1 + g)], ours in terms of the parameter A = (1 + σ ) [σ (1 + g)].

8) On this problem, see also Sordi [22].
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Figure 6. The bifurcation diagram of Pohjola’s model
with the nonlinear bargaining equation (11).

Figure 7. The bifurcation diagram of Pohjola’s model
with the linear bargaining equation (10).
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3. The LVG model as a 2D map

As we have already stressed in the introduction, one of the two justifications
given by Pohjola [21, p. 36] for the consideration of a revised, 1D discrete-time version
of Goodwin’s model is that, once the model has been shown to possess chaotic solu-
tions for the simplest case, we should expect it to possess chaotic solutions for a larger
range of parameter values in the case in which we replace (9) with the original Phillips
curve (7). Our purpose is now to show that this is not true once one remembers the
economic meaning of the variables.

First of all, we first notice that – as is well known and testified to by its analogy
with Lotka–Volterra’s theory of the cyclical growth of two competing species of fish
(partly complementary, partly hostile) – the most economically relevant characteristic
of Goodwin’s model is its ability to represent in a complete and very simple model
the symbiotic contradictions of capitalism, leading to perpetual class-conflict cycles
through the expansion and contraction of the size of the reserve army of labour.9) This
result – given the simplifications introduced by Goodwin in order to meet the Lotka–
Volterra case10) – appears to have been obtained with the simplest possible structure.
It is hard, then, to imagine a further simplification (such as the reduction of the dimen-
sion of the dynamical system) which is able to preserve the original (symbiotic–
conflictual) spirit of the model.

Keeping this in mind, it is not difficult to understand that with the formulation
chosen by Pohjola, the main economic characteristic of Goodwin’s model appears to
be lost. To this end, it is useful to carry on the analogy with biological situations 11)

and to remember, first, that the logistic equation is used in biology to represent single
species situations; second, that the mathematical description in terms of difference
equations is in biology taken to be appropriate only in the case in which the single
population under consideration grows at discrete intervals of time and in which
generations are completely non-overlapping. As a consequence, it is hard to imagine
how any kind of interaction between workers and capitalists could be represented in
terms of such a framework.

The problem, however, is that the consideration of the original Phillips curve (7)
instead of equation (9) certainly increases the dimensionality of the resulting dynami-
cal system but not the likelihood of chaos. This can be shown by using both analytical
arguments and numerical simulations.

9) See Goodwin [12, pp. 57–58], where we find a (more or less Marxian) description of the dynamics of
the economic system in terms of the variations and interaction of the capitalists’ share of total product
and the employment rate. For a further investigation of the problem, see also the contributions in
Goodwin et al. [13, Part I, pp. 1–72].

10) The most important of such simplifications, as stressed in Fitoussi and Velupillai [9] and Velupillai
[25, pp. 80–86], is the assumption of equilibrium in the goods market.

11) On this aspect, see Beddington et al. [3], Holton and May [15], Marotto [17, p. 200], May [18,19].
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3.1. Qualitative analysis of the model

We first notice that, inserting (7) into (6), one obtains the following dynamical
system:

υt +1 = [A1 − B1ut ]υt = F(υt , ut ),

ut +1 = A2[1 + f (υt )]ut = G(υt, ut ),
(19)

where A1 = (σ + 1) [σ (1 + g)] > 0, B1 = 1 [σ(1 + g)] > 0 and A2 = 1 (1 + α) > 0.
The fixed points of (19) are (υ 1, u 1) = (0, 0)  and (υ 2 ,u 2) , where the coordinates

of the non-trivial fixed point are such that

f (υ 2 ) = 1 − A2

A2
= α ,

u 2 = A1 − 1
B1

= 1 − σ g.

(20)

Thus, given the economic meaning of the variables, we must have12)

12) As is easy to check, (21b) requires that A1 > 1.

An evaluation of the Jacobian matrix of the system, at the fixed points in question,
allows one to study the local stability of the two fixed points, even without specifying
a functional form for f (υ).

We have

0 < f − 1(α) < 1,

0 < 1 − σ g < 1.

(21a)

(21b)

J =
A1 − B1u − B1υ 

A2 ′ f (υ )u A2[1 + f (υ )]

 

 
 
 

 

 
 
 

. (22)

Thus, at (υ 1, u 1),
Tr J1 = A1 + A2[1 + f (0)] > 0,

Det J1 = A1A2[1 + f (0)] > 0,

whereas at (υ 2 ,u 2),
Tr J2 = 2 > 0,

Det J2 = 1 + B1A2 ′ f (υ 2)υ 2u 2 > 0.

Moreover, writing P(λ) for the characteristic polynomial,

P(λ) = λ2 − (Tr J)λ + (Det J),

the three necessary and sufficient conditions for (local) stability of system (19) can be
expressed as (see Azariadis [2, pp. 58–67], Gandolfo [10, pp. 58–59])
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For the case of the trivial equilibrium point, it can immediately be seen that13)

P(1) = 1 − Tr J + Det J > 0,

P(− 1) = 1 + Tr J + Det J > 0,

1 − Det J > 0.

(23a)

(23b)

(23c)

13) This follows from (21b) and the fact that the function f (υ), for υ = 0, is negative.

P(1) = (1 − A1)[1 − A2 − A2 f (0)] = − 1 − σ g
σ (1 + g)

α − f (0)
1 + α

 
  

 
  < 0,

so that condition (23a) is always violated.
We also have

∆1 = (Tr J1)2 − 4Det J1 = {A1 − A2[1 + f (0)]}2 > 0, always,

so that the two characteristic roots are real. Moreover, they are both positive and such
that

Thus, as in Goodwin’s original formulation of the model (see Medio [20, pp. 36–37]),
the origin of the coordinate axes is a saddle point.

Considering next the case of the non-trivial fixed point, it is easy to check that

1 − Det J2 = − B1A2 ′ f (υ 2)υ 2u 2 < 0,

so that condition (23c) is always violated.
We also have

∆2 = (Tr J2 )2 − 4Det J2 < 0, (24)

so that we can conclude that the non-trivial fixed point is an unstable focus.

3.2. Numerical simulation

Specifying a functional form for f (υ), we can then employ – together with these
analytical arguments concerning the nature of the fixed points – some numerical simu-
lations to show that the likelihood of chaotic solutions in this model is really very
low!

For the sake of simplicity, let us choose the linear approximation (8). In this
case, the dynamical system of the model becomes

υ t +1 = A1υt − B1υtut ,

ut +1 = A3ut + B3υtut ,

where A3 = A2(1 – γ ) > 0 and B3 = ρA2 > 0.

λ1 = A2 [1 + f ( 0 ) ]=
1 + f ( 0 )

1 + α
< 1, λ2 = A1 = σ + 1

σ (1 + g)
> 1.
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For system (25), the non-trivial equilibrium is equal to

(υ 2 , u 2 ) = 1 − A3

B3
,

A1 − 1
B1

 
  

 
  ,

so that the conditions in (21) now read

(26)
1 − B3 < A3 < 1,

1 < A1 < 1 + B1.

Using only economically meaningful parameter values, i.e., values that satisfy condi-
tions (26),14) the simulations show very clearly the nature of the two fixed points we
established on the basis of the qualitative analysis of the dynamical system. As is
shown in figures 8 and 9, starting from a (υ, u)-combination near the unstable focus,

14) One possibility, and one which we have followed, is to use for the various parameters the values given
in Blatt [6, pp. 208].

Figure 8. Phase diagram of the discrete-time, 2D version of the model.

Figure 9. Trajectory of the discrete-time, 2D version of the model.

the system shows (anticlockwise) fluctuations of increasing amplitude, which eventu-
ally enter the basin of attraction of the saddle point. When this happens, either (by
chance!) the trajectory follows one of the two asymptotic curves forming the inset  of
the saddle (see Thompson and Stewart [24, pp. 204–206] or (more likely!) it moves
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away from it, for example along the u = 0-axis (the onset of the saddle). Clearly, both
cases are completely uninteresting from the point of view of economic theory.15)

It is not difficult, however, to understand why Pohjola’s expectations about the
likelihood of chaotic solutions are not fulfilled.

The problem is that, as is well known and as is also testified to by some recent
economic applications of chaos theory (see, for example, Delli Gatti et al. [8]), the
reason for the greater likelihood of chaotic solutions in higher dimensional dynamical
systems is the fact that, for 2D, the dynamics may become chaotic also via an infinite
sequence of Hopf bifurcations, a phenomenon which has no counterpart in 1D maps
(Holton and May [15], Lauwerier [16]). Without going into details, for which we refer
to the above quoted contributions, it is, however, easy to understand why this cannot
happen in the present case.

Roughly, the occurrence of a Hopf bifurcation requires:

(i) the existence of a pair of (conjugate) complex eigenvalues;

(ii) the existence of values of the parameters for which the moduli of the complex
pair of eigenvalues are equal to one.

At the non-trivial equilibrium point, given (26), (i) certainly holds. However,
from the characteristic equation, we find that

15) We can also add that, using a wide range of values of the parameters, we have not been able to find a
chaotic attractor.

λ1,2 = 1 ± i (A1 − 1) (1 − A3) ,

where i = − 1 . Thus, the modulus of both eigenvalues is always greater than one so
that condition (ii) never holds.

The only case in which we have been able to find seemingly chaotic solutions –
which are shown in figures 10 and 11 – is for A1 and A3 both equal to one. This is a
degenerate case in which, among other things, the variable also assumes negative
values and both equilibria are trivial.

4. Conclusions

In this paper, we have developed an exercise that, notwithstanding its simplicity,
allows us to draw a twofold conclusion.

On the one hand, it seems to strongly suggest the necessity of discussing in more
detail than is usually the case – and eventually relaxing! – those assumptions which
merely serve the purpose of keeping the order of the dynamical system “low” and
which may be unsatisfactory from the point of view of economic theory. On the other
hand, it shows that the “discretization” of existing continuous-time, highly aggregate
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models is not only theoretically unsatisfactory, but can also be useless from a more
practical point of view. Indeed, when one considers a 2D version of the model
that more closely resembles the original framework of Goodwin’s work, the result is
that the dynamics appear to be chaotic only for parameter values that are not within
economically reasonable bounds.
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