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Abstract

The endogenous adaptation of agents, that may adjust their local contact
network in response to the risk of being infected, can have the perverse effect
of increasing the overall systemic infectiveness of a disease. We study a
dynamical model over two geographically distinct but interacting locations,
to better understand theoretically the mechanism at play. Moreover, we
provide empirical motivation from the Italian National Bovine Database, for
the period 2006-2013.
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1 Introduction

Connections between individuals are beneficial because they enable the exchange
of goods and resources. However, they are also the means through which diseases
and shocks may spread in a society, making it vulnerable to hazards and menaces.
Due to the advances in virtual and physical communications, understanding this
tradeoff has become increasingly more necessary as well as complicated.

We study how the spread of an infection evolves in a population adopting
self-protecting behavioral responses which, in turn, affect the evolution of the epi-
demics. We focus on two interplaying mechanisms: First, how does the contact
network influence the evolution of the disease by only allowing contagion via ex-
isting contacts? Second, how is the network itself endogenously modified by the
behavioral response triggered by the risk perception?

In the context of a simple two-location model, we obtain analytical results
from a system of ordinary differential equations. This very stylized cross-location
interaction may generate complex dynamics in terms of the co-evolution of the
coupled mechanism constituted by the contact network and the infection spread.

∗We acknowledge funding from the Italian Ministry of Education Progetti di Rilevante In-
teresse Nazionale (PRIN) grant 2015592CTH. We are grateful to the Italian Ministry of Health,
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to Luigi Possenti and Diana Palma for their help with the data. For their helpful comments
we would like to thank Alberto Alesina (and the participants to his reading group at Bocconi
University), Leonardo Boncinelli, Simone D’Alessandro, Jakob Grazzini, Kenan Huremović and
Roberto Patuelli.
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The main question concerns how this stylized globalization affects the 2-location
systemic resistance with respect to shocks in the infection rates. Is the coupled
system more resistant to shocks than 2 separated and autarkic single locations?
What happen when shocks simultaneously hit both locations?

We assume that each location has a limited recovery ability from the disease
(e.g. limited hospitalization capacity for quarantine) and that sudden outbreaks
in the infection rate (also called infection shocks hereafter) occur exogenously
and abruptly. After being hit by such an initial infection shock, the evolution
of the disease (and the effectiveness of the recovery measures) is observed over
time. Small shocks are better controlled when the two locations are connected
together than when they are isolated and autarkic: in fact, infected individuals
who (out)flow from the most infected location to the least one, are treated in both
locations and this contributes to diluting and reducing the epidemic overall. On
the contrary, a large shock, even if initially concentrated in only one location,
may end up infecting completely both locations, thus putting at risk the entire
systemic resistance to contagion.

In terms of policy implications, given the characteristics of the disease un-
der study (e.g. contagiousness, type of infection shocks) and given the ease of
connection between the locations (e.g. autarky or globalization), the resistance
of the whole system to infections depends on the resources allocated for recov-
ery measures. As the system becomes more and more globalized by facilitating
connections between distant locations, it becomes also more resistant to small
infection shocks but, conversely, it also becomes more exposed to large shocks.
Moreover, the relative advantage (in terms of systemic resistance) of a globalized
world with respect to a system of autarkic or isolated locations becomes higher
as the amount of resources dedicated to recovery measures increases, because of
complementarities established between the two locations.

Related literature

Epidemiological models have been studied for decades, starting from the seminal
Kermack-McKendrick compartmental models that go back to the 1920s and 1930s
(Allen et al., 2008). In recent years, more attention has been devoted to incor-
porating agents’ behavioral response and awareness to the concurrent evolution
of the disease in the population (Funk et al., 2010; Fenichel et al., 2011; Poletti
et al., 2012). Moreover, because of the facility through which interconnections
and interdependencies are established in a globalized world, better models need
also to account for different individuals’ mobility patterns (Brauer and van den
Driessche, 2001; Wang and Zhao, 2004; Manfredi and D’Onofrio, 2013).

In a literature closer to economics and to the social sciences, some theoretical
works deal with strategic vaccination or with the adoption of different defensive
mechanisms which may depend on the connections of the individuals (Galeotti and
Rogers, 2013, 2015; Goyal and Vigier, 2015). However, with respect to this paper,
other works share the same motivation dealing with diseases spreading through
trade connections (Horan et al., 2015) or approach a somehow similar problem
with different methodologies (Reluga, 2009).

Roadmap

The paper continues as follows. Firstly, we provide novel and fundamental empir-
ical motivations for our analysis (Section 2). We then move to our model, with
the introductory case of a single location (Section 3), the description and the re-
sults of the main model (Section 4) and its comparative statics with respect to
exogenous shocks (Section 5). Section 6 concludes the main part. Additionally,
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the appendix includes an extension of the empirical exercise done in the motiva-
tion section (Appendix A), the proofs omitted in Sections 3, 4 and 5 (Appendix
B) and the mathematical analysis of the linear case (Appendix C) which ends
with the approximation of the basins of attraction of the equilibria used for the
comparative statics analysis (Appendix D).

2 Motivation for our exercise

Before going on to the description of the model and of its contribution to the
existing literature, we provide two strong motivations for our work. The first one
comes from a novel dataset, while the other is a relevant application.

Livestock trading: infections and long-range connections

We perform an empirical analysis of trade flows of bovines in the Italian territory
using the Italian National Bovine Database (Anagrafe Nazionale Bovina). This
dataset has been created by the Italian Ministry of Health after the outbreak of
the Bovine Spongiform Encephalopathy (BSE) in accordance with the European
Economic Community Council Directive 92/102/EEC of 1992. The Directive im-
posed to all member states to identify each bovine using ear tags and to follow
all its movements, from birth until death, through all holdings (farms, assembly
centers, slaughterhouses, markets, staging points, pastures, foreign countries of
origin) in the national territory.

For each movement of bovines, we have information on the location (e.g. mu-
nicipality) of approximately 220,000 origin and destination premises, 90% of which
are farms. The dataset records the exact date of all these movements between
2006-2013 and contains information on the stock of animals in each holding.1 In-
formation on trade flows have been merged with the SIMAN database (Sistema
Informatico Malattie Animali) which registers the diseases occurred in each hold-
ing (Iannetti et al., 2014; Calistri et al., 2013). We refer also to Muscillo et al.
(2018) for more detailed information.

In our analysis, we will focus on outflows from farms in each quarter, from
2007Q1 to 2013Q4.2 We are mainly interested in determining whether the oc-
currence of a disease in farm i at time t − 1 affects the distances of trade flows
originated from farm i at time t.

Figure 1 shows the histogram of distances for all the flows under analysis.
The median value is about 17 kilometers whereas the average value and the 75th
percentile are respectively 43 and 41 kilometers. About 10% of the movements
occur between farms in the same municipality, thus producing a point mass at
zero in the distribution of distance.

Since some staging points or assembly centers can be misclassified as farms,
we retain in the sample only the holdings with a value of the stock smaller than
the 99th percentile, which is equal to 954.3 Our final sample consists of 117,758
farms originating 1,541,370 trade flows towards other farms.

We thus estimate different regressions with trade flow distance as the depen-
dent variable using the following specification:

Distanceit = β0 + β1 Positivei,t−1 + β2 Stockit + Regiong + θt + αi + εit (1)

1Information on the stock is recorded on the same date of the movement, before any inflows
or outflows have occurred. With the latter information and the data on movements we compute
the stock of animals at the beginning of each quarter.

2Since 2006 was the first year of introduction of the tracking system we start using the data
from the first quarter of 2007, when the running-in phase was over.

3The 99th percentile is twice the size of the 95th percentile, the triple of the 90th percentile
and about 14 times the size of the median. The empirical estimates from the unrestricted sample
are qualitatively and quantitatively similar.
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Figure 1: Distances of trade flows
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The figure displays the histogram of distances (in kilometers) shorter than 100km of the trade
flows occurred in the period 2007-2013. Descriptive statistics of distances are shown in Table 1.

t = 2007Q1, . . . , 2013Q4; g = 1, . . . , 20

where the dummy Positivei,t−1 is equal to one if in the previous quarter farm
i has registered at least one disease; Stockit measures the number of bovines in
farm i at the beginning of quarter t. The variables Regiong are regional dummies
and θt are quarter dummies, while αi are farm-specific time invariant effects used
only in fixed effect regressions.

Table 1 reports descriptive statistics of the dependent variable and the main
regressors. In the 2007-2013 period we observe 265 diseases which represent 0.02%
of the observations (i.e. all movements) used in the empirical analysis.

Table 1: Descriptive statistics

Mean St. Dev. Median Min Max

Distance 42.80 92.18 17.08 0 1,291
Positive 0.0002 0.0131 0 0 1
Stock 119.36 142.87 66 1 954

Observations 1,541,370
N. farms 117,758

The sample excludes farms with a value of the stock of bovines greater than 954.

The empirical results are shown in Table 2. Column 1 reports estimates from a
Probit model where the dependent variable is set equal to one when the distance is
larger than 41 kilometers (i.e the 75th percentile.) The estimated coefficient of the
dummy Positive is statistically significant at 5% level. The marginal effect is 0.05
which means that presence at t−1 of a sick animal increases by 20% the probability
of sending bovines in quarter t to farms distant more than 41 kilometers.

The estimates from standard OLS regressions are shown in column 2. The
coefficient of the dummy Positive indicates that a disease in the past increases the
distance of trade by about 19 kilometers. In column 3 we report the estimated
effect from a Tobit to take into account the censored nature of distance which has
a point mass at zero. The estimated effect in this case is equal to 19 kilometers.
Finally, in column 4, we show the estimates from a panel regression to control
for farm-specific fixed effects. The estimated coefficient of the dummy Positive
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indicates that a registered disease at t − 1 increases the distance by about 10
kilometers. All estimation techniques provide evidence of a positive and significant
effect of past diseases on the current value of distance.

The above-mentioned results are, however, conducted on the sample of farms
that exhibit non-zero movements of bovines. We have performed a robustness
check to take into account possible selection effects. We have estimated a bivariate
Tobit model with sample selection by maximum likelihood estimation. The results
show evidence of a weak negative selection: farms that are more likely to be active
tend to send bovines to closer location. Moreover, farms that have experienced
a disease in t − 1 are less likely to be active in quarter t. Nevertheless, the
estimated effect of the dummy Positive on distance is again equal to 19 kilometers.
Estimation results and the identification strategy adopted are shown in Appendix
A.

Table 2: Empirical Results

(1) (2) (3) (4)
Probit OLS Tobit Panel FE

Positivei,t−1 0.1628** 18.7323*** 19.1025*** 10.9276**
(0.081) (5.420) (5.587) (4.735)

Stocki,t 0.0010*** 0.0821*** 0.0846*** 0.0490***
(0.000) (0.001) (0.001) (0.002)

Constant -1.2508*** 9.3844*** 7.4312*** 31.9721***
(0.010) (0.553) (0.570) (0.406)

σ 90.528***
( 0.0528)

∂ Pr(Yi = 1)/∂ Positive 0.0524**
(0.0271)

Observations 1,541,370 1,541,370 1,541,370 1,541,370
Log likelihood -838,742.52 -8,819,135.6
Adj. R-squared 0.0845 0.3927

All regressions control for time dummies. Estimations in columns 1,2 and 3 control for regional
fixed effects. Panel fixed effect estimation in column 4 controls for farm-specific effects. Standard
errors clustered at the farm level are shown in parenthesis. Asterisks mean: *** significant at
1%, ** significant at 5%,* significant at 10%.

The 2014 Ebola outbreak

The theoretical study of infection dynamics when the (endogenous) behavior of
patients increases infections has potentially enormous applications. Such a mech-
anism has been at play (and possibly at the origin of) some disastrous epidemic
events, like the complex case of the Zaire ebolavirus epidemic that affected West
Africa since approximately December 2013 (see Figure 2).4 A particularly dan-
gerous situation can occur when contagious individuals are expelled from their
villages and are able to reach big towns, or even other countries; or if they vol-
untary travel to other countries when they are sick, to avoid social stigma or to

4See Chowell and Nishiura (2014) for a detailed review; see also Thomas et al. (2015) and
the website of the World Bank for some estimates of the damages done to the economies
of some African countries: http://www.worldbank.org/en/region/afr/publication/

ebola-economic-analysis-ebola-long-term-economic-impact-could-be-devastating

and also http://www.worldbank.org/en/region/afr/publication/

the-economic-impact-of-the-2014-ebola-epidemic-short-and-medium-term-estimates-for-west-africa.
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obtain a better treatment.
The World Health Organization (WHO) reports that in 2014, during the Ebola

outbreak in West Africa:5

“. . . as the situation in one country began to improve, it attracted
patients from neighboring countries seeking unoccupied treatment beds,
thus reigniting transmission chains. In other words, as long as one
country experienced intense transmission other countries remained at
risk, no matter how strong their own response measures had been.”

Directly quoted from the web site of the WHO:6

“Countries in equatorial Africa have experienced Ebola outbreaks for
nearly four decades. [...] In those outbreaks, geography aided con-
tainment. [...] In West Africa [which had never experienced an Ebola
outbreak], entire villages have been abandoned after community-wide
spread killed or infected many residents and fear caused others to flee.
[...] West Africa is characterized by a high degree of population move-
ment across exceptionally porous borders. Recent studies estimate
that population mobility in these countries is seven times higher than
elsewhere in the world. [...] Population mobility created two significant
impediments to control. [...] [C]ross-border contact tracing is difficult.
Populations readily cross porous borders but outbreak responders do
not.

The importation of Ebola into Lagos, Nigeria on 20 July and Dallas,
Texas on 30 September [2014] marked the first times that the virus en-
tered a new country via air travelers. These events theoretically placed
every city with an international airport at risk of an imported case.
The imported cases, which provoked intense media coverage and public
anxiety, brought home the reality that all countries are at some degree
of risk as long as intense virus transmission is occurring anywhere in
the world - especially given the radically increased interdependence
and interconnectedness that characterize this century.”

Figure 2: Air traffic connections from West African countries to the rest of the world.
Source Gomes et al. (2014). See also Halloran et al. (2014).

5http://www.who.int/csr/disease/ebola/one-year-report/factors/en/
6Ibidem.
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3 The single-location model: the building block

As a warm-up exercise, in this section we develop the building block of the model.
We define a system constituted by a single location and describe how the infection
evolves in it, as time passes. The dynamics is kept explicitly abstract and simple
on purpose, and this has one main reason: the so-defined 1-location system is able
to recover from small shocks, but unable to do so in case of large shocks (to be
defined shortly). This, in turn, will allow us in the next Section 4 to consider
two such systems interacting with each other and, then, evaluate what will be the
effects on this whole 2-location system, in terms of resistance to shocks.

Consider a population of agents living in one location and susceptible to the
infection from a transmittable disease, which can spread through personal contacts
with other agents. Following the motivations from Section 2, the intuitive idea is
that agents trade with each other and meet in pair. These meetings, however, are
also the mean through which the disease may spread.

Let x(t) denote the fraction of infected individuals at time t. The evolution
of this fraction is ruled by the following differential equation, used for example in
ecological economics as a development from the classic Bass model (Bass, 1969;
D’Alessandro, 2007):

d

dt
x(t) = νx(t)(1− x(t))(x(t)− q), (2)

where ν ∈ (0, 1) is a parameter representing the contagiousness of the disease and
q ∈ (0, 1) is a parameter which measures the capacity of the system to control
the disease, which we may call quarantine. More specifically, we think of q as
the quantity of resources allocated to hospitalize infected individuals as well as to
other disease-control measures. We consider these resources fixed and exogenous,
meaning that they can change over a longer time-scale with respect to that of the
evolution of the disease.

Remark. Equation (2) can be seen as modified susceptible-infected model: we
take the probability that an infected individual meets a susceptible one, i.e. x(1−
x), and that this meeting results in a new infection with probability ν. We then
multiply this by a factor (x − q) which modifies the sign of the flow of infected
depending on whether the fraction of infectives exceeds or not the quarantine
threshold q.

PROPOSITION 3.1. The dynamical system (2) has 3 critical points:

• the asymptotically stable, disease-free equilibrium x = 0;

• an unstable equilibrium x = q;

• the asymptotically stable, endemic equilibrium x = 1.

Consequently, the interval [0, q) ⊂ R is the basin of attraction of x = 0, while (q, 1]
is the basin of attraction of x = 1.

Proof. See Appendix B.

Remark. In ecology, this dynamics sometimes describes the evolution of a species
over time (D’Alessandro, 2007). In this context, the analogy is that the species
we are considering is a bacterium causing the infective disease. The threshold q
represents the critical mass of infections that the species has to reach and exceed
in order to survive: when there are not enough infected individuals, the species
cannot proliferate and propagate any more and, eventually, the epidemic dies
out. Lastly, it is worth noticing that underlying assumption in the susceptible-
infected model is the so-called homogeneous mixing : meetings among individuals
are random, according to their relative proportion in the whole population. This
is an assumption that we maintain here.
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Resistance to shocks & policy We define a shock as follows: suppose that
at time t = 0 there is a sudden and exogenous variation in the infection rate such
that x(0) = x0 ∈ [0, 1]. This initial fraction x0 of infected is what we will call
shock.

If the shock is x0 < q, i.e. below the threshold, then the system will (asymptot-
ically) return to the disease-free equilibrium, whereas if the shock is larger than q,
then the dynamic will converge toward 0, where the whole population is infected.
If the shocks are assumed uniformly distributed over [0, 1], then q quantifies the
ability of the system to recover from a shock.

The policy implication here is then straightforward: the more resources can
be allocated to control the disease (i.e. the larger q is), the more the system will
able to recover from larger shocks in the infection rate (i.e. the larger will be the
basin of attraction of 0).

Figure 3: Single-location dynamics
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x

0.02
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dt

Dynamics defined by equation (2), where the parameters are set at q = 0.2 and ν = 0.8.
The curve represents the right-hand side of equation (2) and the dots are the critical
points 0, q and 1. The unstable equilibrium x = q acts as a threshold separating the
basins of attraction of the two asymptotically stable equilibria x = 0 (in green) and x = 1
(in red). Small exogenous shocks, i.e. below q, are absorbed, whereas shocks larger than
q lead to a fully infected system.

4 The 2-location model

Starting from the conclusion of the previous section, we now extend our analysis:
trades and meetings will take place both within and across two geographically
distinct locations (also called islands or countries hereafter) and, consequently,
the same will happen to the spread of the disease. To express the incentives
of economic agents, who can choose whether to interact with other agents within
their own location or in the other location, we stick to the interpretation of trading
and, therefore, speak also of prices. We think that the economic intuition remains
the same also in other situations where prices are less explicit (as for the Ebola
example of Section 2), since things could still be modeled in terms of higher and
heterogeneous costs for interaction with distant locations.

Specifically, we consider 2 locations both populated by interacting agents, e.g.
farmers who are trading cattle. Agents benefit from interacting with each other
but, since there may be a (latent) disease spreading, this potential benefit de-
creases as the infection prevalence increases. This accounts for the risk of becom-
ing infected and the reduction in performance that diseased cattle experience (e.g.
slower growth, death). In the attempt to avoid contagion and risks, the agents of
one location may be willing to interact with other agents in the other location,
even if to do so they have to pay a higher cost related to this long-range interaction
(e.g. export costs, trade barriers).

We restrict our attention to two identical and symmetric locations, where
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agents are homogeneous and identical in all aspects but in the export cost. In
particular, different agents of the same location are assigned different costs to
export to the other location and, intuitively, this may be reflecting different ge-
ographical proximity, facility in the contacts with a foreign country, etc. One
key aspect is that using identical locations and identical agents is a normalization
that can help guarantee that any variation in the fragility of the coupled system is
due to the cross-country connection structure rather than to differences in other
characteristics.

4.1 Specification

Let A and B denote two populations of agents living for an infinite time horizon
and let a and b denote one of their generic agent, respectively.

Benefits from interaction and costs Agents benefit from trading/interacting
with other agents and, in particular, any agent a ∈ A receives a gross utility of
pA, when trading in her home country A, and a possibly higher gross utility pB,
when instead exporting to the other country B. Benefits are assumed to be equal
across agents and to be decreasing functions of the current infection prevalence
rates xA(t), xB(t) ∈ [0, 1].7 This last assumption reflects the fact that trading
becomes riskier as contagion spreads. Formally:

pA = pA(xA(t), xB(t)), pB = pB(xA(t), xB(t)),

for any time t ∈ R.
Any generic agent a ∈ A chooses between two (mutually exclusive) actions,

respectively labeled as A and B, which are either “trading in her home country” or
“exporting to the other country”.8 However, to export to the other country each
agent a ∈ A has to pay an exporting cost ca > 0, which is assumed to be randomly
distributed across agents according to a cumulative distribution function FA. The
cost of trading in the home country, instead, is normalized to 0. Depending on
the chosen action A or B, agent a’s utility at time t is then given by:

ua(t) =

{
pA(t), if trading in A,
pB(t)− ca, if exporting to B,

so that agent a ∈ A decides to export to B at time t if and only if

pA < pB − ca.

Symmetrically, analogous definitions and notations hold for all agents b ∈ B. The
same happens in the rest of this section.

Remark. Notice that in our formulation agents make decisions only based on the
prices pA and pB that they are able to observe in the two markets. In particular,
they are not able to observe neither their status (as susceptible or infected) nor
the status of the others. In the case of the cattle trade mentioned in the motiva-
tion section, this assumption is economically justified as follows. Movements are
stressful for bovines, which can result in the development of diseases and reduced
growth (or even death) of the animals. This also implies that latent diseases can
be masked as stress and go undetected. For these reasons, farmers are compelled
to report to local health institutions any situation that may be related to a disease
– they would otherwise incur in high fines.

7These can be interpreted as prices at which trade happens.
8According to our notation, then, agents a ∈ A can export to B and, conversely, agents b ∈ B

to A.
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Since ca ∼ FA, the above expression implies that the fraction of A’s agents
willing to export to B at time t is given by

P {a ∈ A : pA(t) < pB(t)− ca} = P {a ∈ A : ca < pB(t)− pA(t)}
= FA {pB(t)− pA(t)} ,

(3)

or, equivalently, that the fraction of A’s agents trading in A and not exporting is
1− FA {pB(t)− pA(t)}.

Cross-country meetings and flows of infected individuals Let us proceed
with the analysis: of the fraction of agents that are exporting from A to B,
a subfraction of them given by xA · FA {pB − pA} is of currently infected agents.
Consequently, when these exporting and infected agents meet the fraction of those
susceptible in B that remain in B for trade, which is (1− xB)(1−FB{pA − pB}),
this will give rise to an additional source of infected individuals for country B:9

xA · FA︸ ︷︷ ︸
A’s infected exporting to B

· (1− xB) · (1− FB)︸ ︷︷ ︸
B’s susceptible remaining in B

.

Still another source of infection for B comes from the meetings between B’s in-
fected individuals remaining in B with A’s susceptible exporting to B:

xB · (1− FB)︸ ︷︷ ︸
B’s infected remaining

· (1− xA) · FA︸ ︷︷ ︸
A’s susceptible exporting to B

.

However, this additional infective activity due to cross-country interactions is
somehow compensated with a reduction in the home country. In particular, now
B’s within-country spreading cannot follow the single-location equation (2) given
in Section 3: not only because the meetings only happen between B’s susceptible
and infected agents that are not exporting, but also because we have to subtract
the fraction of B’s infected agents that are exporting, as an outflow.

νBxB(1− FB)(1− xB)(1− FB)(xB − q)︸ ︷︷ ︸
meetings among B’s remaining agents resulting in infections

− xBFB︸ ︷︷ ︸
outflow of infected

,

where νB ∈ (0, 1) is the contagiousness parameter for B. Analogous reasonings
hold symmetrically for A.

By putting all these elements together, we can build a system of coupled dif-
ferential equations ruling the evolution over time of the infection rates in the two
countries. The first line of each equation accounts for the possibly reduced within-
country epidemic spreading, whereas the second line accounts for the additional
inflow of infection due to cross-country interactions just described above:10

d

dt
xA = νA

[
xA(1− FA)(1− xA)(1− FA)(xA − qA) +

+ xA(1− FA)(1− xB)FB + (1− xA)(1− FA)xBFB

]
− xAFA

d

dt
xB = νB

[
xB(1− FB)(1− xB)(1− FB)(xB − qB) +

+ xB(1− FB)(1− xA)FA + (1− xB)(1− FB)xAFA

]
− xBFB,

(4)

where νA, νB ∈ (0, 1) and qA, qB ∈ (0, 1) are the contagiousness and quarantine
parameters respectively of location A and B. The system can be algebraically

9For ease of notation, throughout we will write FA{pB − pA} = FA and FB{pA − pB} = FB .
10For ease of notation, we omit the time t. However, it is worth remembering that FA and FB

depend on pA and pB which, in turn, depend on xA(t) and xB(t).
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rearranged as follows:

d

dt
xA = νA(1− FA)

[
xA(1− xA)(xA − qA)(1− FA) + (xA + xB − 2xAxB)FB

]
− xAFA

d

dt
xB = νB(1− FB)

[
xB(1− xB)(xB − qB)(1− FB) + (xA + xB − 2xAxB)FA

]
− xBFB.

(5)

Remark. If cross-country export is not allowed, i.e. when FA = FB = 0, then
system (4) is reduced to two uncoupled equations, corresponding to two single-
location models of the form of equation (2), both evolving separately.

Remark. In this model, export at any instant only occurs in one direction at
time, either from A to B or vice versa. Indeed, suppose that pA(t) < pB(t) at
a certain time t ∈ R. Since FA and FB are cumulative distributions which are
positive only for positive costs, then in such a case FB(pA(t) − pB(t)) = 0 while
FA(pA(t) − pB(t)) > 0. So, there is an outflow of infection in the first equation
for xA and an inflow in the second for xB. However, as the following analysis
will show, the infection rates xA(t) and xB(t) (as well as pA(t), pB(t)) are not
necessarily monotone functions of time.

In the following, we will make the assumption that FA = 1 when xA = 1. This
is intuitive: whenever in A the rate of infection is the maximum, i.e. xA = 1, then
all A’s agents would be facing the minimum home benefit pA and thus be willing
to export, so FA = 1.

PROPOSITION 4.1. System (3) is well defined in the unit square describing
any (xA, xB) ∈ [0, 1]2.

Proof. See Appendix B.

4.2 Identical locations, linear utility & uniform cost

To keep the analysis tractable, we restrict our model to a linear specification of
system (4):

• the two locations A and B are assumed to be identical, from the point of
view of the epidemic parameters, so νA = νB = ν ∈ (0, 1) and qA = qB =
q ∈ (0, 1);

• the agents’ exporting costs ca > 0, for a ∈ A, are uniformly distributed over
the interval [0, 1] (analogously for b ∈ B), so that the cumulative distribu-
tions are identical and of the form FA = FB = U(0, 1):

FA(c) = FB(c) =


0, for c ≤ 0

c, for c ∈ [0, 1]

1, for c ≥ 1.

In particular, the maximum and minimum cost are respectively 1 and 0.

• The gross utilities from trading, pA and pB, are assumed to depend linearly
on the infection rate of the own location:

pA(xA(t), xB(t)) := 1− xA(t), pA(xA(t), xB(t)) := 1− xB(t).

Then, maximum and minimum gross utility attainable are thus normalized
to 1 and 0, respectively.
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With these assumptions in place, equation (3) becomes:11

FA{pB − pA} = FA{xA − xB} =


0, if xA − xB < 0

xA − xB, if 0 ≤ xA − xB ≤ 1

1, if 1 < xA − xB
= max{0, xA − xB},

and, analogously, FB = max{0, xB − xA}. We can then rewrite system (4) as
follows:

d

dt
xA = ν(1−max{0, xA − xB})

[
xA(1− xA)(xA − q)(1−max{0, xA − xB})

+ (xA + xB − 2xAxB) max{0, xB − xA}
]
− xA max{0, xA − xB}

d

dt
xB = ν(1−max{0, xB − xA})

[
xB(1− xB)(xB − q)(1−max{0, xB − xA})

+ (xA + xB − 2xAxB) max{0, xA − xB}
]
− xB max{0, xB − xA}.

(6)
In Appendix C we derive the properties of this system, which can be summa-

rized as follows. The system is well defined in the unit square [0, 1]2 ⊂ R2, which
is invariant under its dynamics, and it is symmetric with respect to the diagonal
in R2 (Propositions C.3 and C.4). This system has three equilibria (Proposition
C.6):

• (xA, xB) = (0, 0) and (1, 1), which are asymptotically stable states;

• (xA, xB) = (q, q), which is an unstable saddle point.

What becomes interesting is to study the basins of attractions of the two stable
equilibria, and to characterize the basins’ border, which we call separatrix C.
As shown in Figure 4, depending on the parameters ν and q, as time t passes,
the solution enters the unit square either crossing its border along the segment
[q, 1]×{0} or along {1}× [0, q] and, eventually, converges toward {q, q} as t→∞
(Proposition C.9).

In Appendix D we show that, although the separatrix C cannot be described
analytically, it can be very well approximated linearly. In Appendix D we also
show the good accuracy of this approximation, done by mean of an extensive grid
of numerical simulations. This will allow us to make a comparative statics analysis
that will be then used in the following Section 5. More precisely, in Proposition
D.1 and Lemma D.2 we give an explicit approximation C̃ of C and of its point of
intersection with the boundaries of the unit square [0, 1]2.

Figure 5 shows similarities and differences between C and C̃. Depending on the
parameters ν and q, the area under the curve C̃ is either a trapezoid or a triangle
and is easily computed analytically. By considering this area as an approximation
of the area under the curve C, which is instead impossible to compute analyti-
cally. This area obtained with this linear approximation will also be used for a
comparative statics analysis in Section 5. The results are also shown in Figure 6.

11Remember that xA, xB ∈ [0, 1].
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Figure 4: Basins of attraction of the disease-free and fully-endemic equi-
libria, (0, 0) and (1, 1), for changing epidemic parameters ν, q.
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Simulations in Mathematica® to plot the vector field defining system (6) and the basins
of attraction of the two asymptotically stable states (xA, xB) = (0, 0) and (1, 1) (respec-
tively colored in white and shaded gray). The arrows depict the vector field defining
system (6) in each point (xA, xB) ∈ [0, 1]2 and confirm that the unit square is invariant
and that the same is true for the diagonal and for the super-diagonal and sub-diagonal
“triangles”. Moreover, from the saddle point (q, q) one can identify the separatrix curves,
the unstable separatrix coinciding with the diagonal, while the stable one, i.e. C, consti-
tutes part of the border of the basins of attraction, thus separating them. Lastly, notice
that as quarantine q increases, the system exhibits a larger and larger basin of attraction
of the disease-free equilibrium (0, 0), which is intuitively due to the fact that it is easier to
recover from infection. The squared dots are (η, 0) and (0, η), i.e. the intersection points
of the separatrix C with the horizontal and vertical axis mentioned in Proposition C.9.
Analogously, the triangular dots are (1, ζ) and (ζ, 1).
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Figure 5: Separatrix C and comparison with its linear approximation C̃
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Plot of the linearized separatrix C̃ (dashed straight line) and comparison with the ac-

tual separatrix C (continuous black curve). C̃ is a first-order approximation of C in a
neighborhood of the saddle (q, q).

Figure 6: Approximated area of the triangle/trapezoid

Parameters ν = 0.4, q = 0.2. Parameters ν = 0.4, q = 0.4.

Approximated areas of the triangles/trapezoids (grid-shaded areas), defined by the linear

approximation C̃ (dashed lines), in the rectangles of interest.
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5 Comparative statics with respect to exogenous shocks

We now focus our attention on the conclusions that can be drawn from the analysis
of system (6) performed in Section 4.2, Appendix C and Appendix D. We will
compare the two following situations:

• first, no cross-country trade between the two locations is allowed, i.e. they
are considered separated and autarkic;

• second, cross-country trading is instead allowed, as described in the previous
section.

By comparing these two situations we are thus able to analyze the effects of a very
“stylized globalization” (the second case) on the systemic resistance to potential
shocks in the infection rates. Depending on the “intensity” and “dimensionality”
of the shock, being “autarkic” or “globalized” may or may not be advantageous.

In particular, small shocks are better absorbed by an interconnected system,
independently of their dimensionality: intuitively, the shock is more easily diluted
in a larger system. On the contrary, somehow surprisingly, large shocks may or may
not have worse consequences when the locations are interconnected, depending on
the amount of resources dedicated to recovering (formalized by the parameter q).

5.1 The case of autarky

Let us consider two autarkic locations, where no trade is possible between them
and where each location is subjected to a disease-spread dynamic described by the
single-location model of Section 3. The evolution over time of the two infection
rates xA(t) and xB(t) of these two locations A and B can be written as a system
of two (uncoupled) differential equations:12

d

dt
xA = νxA(1− xA)(xA − q)

d

dt
xB = νxB(1− xB)(xB − q).

(7)

The dynamics and results are shown in Figure 7 (left) and summarized in the
following proposition.

PROPOSITION 5.1. Given two autarkic locations A and B, system (7) has
the following properties:

• it is symmetric with respect to the diagonal, which is then an invariant set.
The super-diagonal and sub-diagonal sets in R2, {(xA, xB) ∈ R2 : xA < xB}
and {(xA, xB) ∈ R2 : xA > xB}, are also invariant;

• the unit square [0, 1]2 is invariant;

• the critical points where dxA
dt = dxB

dt = 0 are:

– (0, q), (1, q), (q, 0), (q, 1), which all are (unstable) saddle points;

– (q, q), which is an unstable point (source);

– (0, 0), (0, 1), (1, 0), (1, 1), which all are asymptotically stable equilibria.

Moreover, the separatrix curves of the saddle points are the lines xA = 0, xB = 0,
xA = q, xB = q, xA = 1 and xB = 1, and this also makes possible characterizing
the basins of attraction of the stable points in [0, 1]2:13

12For a reasonable comparison with an analogous globalized 2-location model, here we assume
the same symmetric epidemic parameters νA = νB = ν and qA = qB = q.

13Of course, we only consider their intersection with the unit square, which is the sets in which
the fraction of infected xA and xB make sense.
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Figure 7: Comparison between autarkic and interconnected locations
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Autarky, parameters ν = 0.7, q = 0.4.
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Dynamics of disease spreading, in case of two autarkic locations (left) and of two globalized
locations (right), with same epidemic parameters. In both, the basin of attraction of (1, 1)
is colored in dark gray, while the basin of (0, 0) is left in white. Only the autarkic case
(left) exhibits two partially-endemic asymptotically stable states, (0, 1) and (1, 0), whose
basins of attraction are colored in light gray.

• [0, q)2 is the basin of attraction of (0, 0);

• [0, q)× (q, 1] is the basin of attraction of (0, 1);

• (q, 1]× [0, q) is the basin of attraction of (1, 0);

• (q, 1]2 is the basin of attraction of (1, 1).

Proof. See Appendix B.

As shown in Figure 7 (left), the points (1, 0) and (0, 1) play a peculiar role:
they represent a situation in which only one of the two locations is fully infected,
while the other is disease free. In case of autarky, this may happen when the
initial point of infection at time t = 0 belongs to [0, q) × (q, 1] or (q, 1] × [0, q),
which will cause the dynamics to convergence toward (0, 1) or (1, 0), respectively.
Figure 7 (right) also shows that this cannot be the case when the two locations
are connected and globalized. This feature will be a key ingredient in the next
section about shock analysis.

5.2 Shock analysis

In line with what done in Section 3, shocks are assumed to be uniform at random
over the unit square [0, 1]2 and are represented by a vector of initial conditions:

s = (sA, sB) := (xA(0), xB(0)) .

Figures 7 and 8 show the comparison of the basin of attraction of the point (1, 1),
when the locations are considered autarkic or connected. Due to the shape of
these basins of attraction, we obtain the following results.14

14We assume a uniform distribution of shocks just to simplify the exposition. What is important
for our analysis, is just that the support of our random shocks is the unit square [0, 1]2, so that
we can compare regions of this support in the two regimes of atarky and globalization. With
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Figure 8: Systemic resistance to small vs. large shocks

Comparison by juxtaposition of the areas ob-
tained in Figure 7, with same parameters
ν = 0.7, q = 0.4. The white area, [0, q)2,
and the grid-shaded area, (q, 1]2, depict where
a hitting shock would produce the same out-
come, independently of locations being autar-
kic or globalized. Light-gray areas measure
where shocks result in a partial endemic state,
in case of autarkic locations, or where they are
instead totally recovered, in case of globalized
locations. On the contrary, dark-gray areas
are those where shocks result fully infected
system, if globalized, whereas only partial in-
fection, if autarkic.

Given a shock s = (sA, sB), if it is large enough in both components or small
enough in both components, then the resulting outcome is the same for an autarkic
system and for a globalized system. In particular:15

• if sA < q and sB < q, then both the autarkic system and the globalized
system will be able to fully recover (white areas in Figure 8);

• if sA > q and sB > q, then both systems will converge to a fully infected
endemic state (grid-shaded areas in Figure 8).

On the contrary, the outcome resulting from a shock hitting mainly one lo-
cation is completely different when the two locations are autarkic or connected.
Indeed, consider an “almost” 1-dimensional shock s targeting mainly location A,
that is16

s = (sA, ε), with ε < q < sA.

In the autarkic case, the dynamics will converge to a partial epidemic equilibrium:
Proposition 5.1 and Figure 7 (left) show that A would converge to fully infection
while, independently, B would recover.

Instead, what happens when A and B are connected while facing the same
shock s = (sA, ε) as before? Two different situations may arise:

• if sA is large enough and such that s = (sA, ε) belongs (1, 1)’s basin of
attraction (dark-gray area in Figure 8) and then the globalized system will
end up being fully infected;

• if, instead, sA is still greater than q but not large enough, then (sA, ε) belongs
to (0, 0)’s basin (light-gray in Figure 8) and so the globalized system will
manage to recover from this shock.

This analysis shows that the 2-location autarkic system and the 2-location
globalized system react very differently in response to large 1-dimensional shocks.

The dark-gray areas in Figure 8 are constituted by all those possible shocks
that cause the infection to spread to both locations, when they are connected, or
to just one location, when autarkic. Assuming a uniform shock distribution, this

uniform shocks areas in the support region are proportional to probabilities, but all following
results could be adapted also to any other distribution of shocks, remembering that in the more
general case areas should be translated into probabilities.

15Notice that assuming that the shock distribution is uniform or continuous, thus atom-less,
guarantees that the probability that one component hits 0, q or 1 is zero.

16Symmetrically, the argument is the same for shocks mainly concentrated in B.
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Figure 9: Comparative statics
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Regions of interest when contagiousness ν = 0.7 is kept fixed, while quarantine q, the
policy parameter, increases in (0, 1).

area, then, exactly measures the weakness of the system with respect to this kind
of mainly 1-dimensional shocks and, in addition, it also captures the advantage of
an autarkic system over a globalized one.

Analogously, but in an opposite way, the light-gray areas in Figure 8 capture
the advantage of a globalized system over an autarkic one: shocks belonging to
these regions are recovered by a connected system, whereas they result in a partial
epidemic equilibrium in the autarkic case.17

5.3 Systemic resistance & policy

Understanding the relationship between the dark-gray areas and the light-gray
areas in Figure 8 becomes necessary, because it gives an indication of the relative
(dis)advantage of an autarkic system over a globalized system for systemic resis-
tance. Figure 9 also shows that this advantage changes as the recovery parameter
q varies: this turns out to be crucial for policy making.

One way to address this issue is by analyzing the separatrix curve C of the
saddle (q, q), because it separates the basins of attraction of the regions of interest.
Unfortunately, apart from Proposition C.9, which relies on the “local” information
provided by the eigenvector of the linearized system in the neighborhood of the
saddle point (q, q) and on the monotonicity of the components of the vector field

17These results resemble those obtained in the context of financial networks, where agents (e.g.
banks) are exposed via financial dependence to others’ default and the goal is to understand
how shocks spread in a financial network. As argued in Acemoglu et al. (2015): “as long as the
magnitude of negative shocks affecting financial institutions are sufficiently small, a more densely
connected financial network [...] enhances financial stability. However, beyond a certain point,
dense interconnections serve as a mechanism for the propagation of shocks, leading to a more
fragile financial system.” The same kind of results are achieved in Cabrales et al. (2017).
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defining system (6) in specific areas, we have to rely on approximated results, due
to the impossibility of explicitly describing C analytically.

Specifically, we first numerically approximate the intersection points between
the separatrix C and the boundaries of the unit square [0, 1]2 and, then, numeri-
cally measure the gray areas and determine their relative ratio, which, as already
observed, is key to understanding whether a globalized system is shock-resistance
superior to an autarkic system, given the same parameters q and ν.

(Numerical) comparative statics Let us first deal with the (numerical) com-
putation of the intersection point between the separatrix C and the border of the
unit square below the diagonal, i.e. the segments [0, 1] × {0} and {1} × [0, 1]. 18

Depending on whether C intersects the former or latter segment, we follow the
notation used in Proposition C.9 and Figure 4 respectively denote this point with
(xA, xB) = (η(q, ν), 0) or (1, ζ(q, ν)).

This analysis is shown in Figure 10:

• holding fixed ν ∈ (0, 1), whenever C crosses the segment [q, 1] × {0} in the
point (η(q, ν), 0), then q 7→ η(q, ν) is increasing in q and spans from 0 to 1.
Moreover, η(q, ν) > q;

• analogously, when q exceeds a certain threshold19, then C crosses the segment
{1}× [0, q] in the point (1, ζ(q, ν)); moreover, q 7→ ζ(q, ν) is increasing, going
from 0 to 1 and always satisfying ζ(q, ν) < q.

Let us now turn to the relative advantage/disadvantage of an autarkic sys-
tem over a globalized system, especially when subjected to mainly 1-dimensional
shocks.20 We have already observed that the areas in light gray and dark gray of
Figures 8 and 9 measure the extent to which an autarkic system or a globalized
system is relatively more or less able to recover from shocks of this kind.

Holding fixed the contagiousness ν, as the recovery parameter q increases,
the light-gray areas expand while the dark-gray areas shrink.21 According to
our previous interpretation, this means that it becomes more likely that a 1-
dimensional shock lead the autarkic system to a partial endemic equilibrium, while
a corresponding reduction of the dark-gray areas means that a globalized system
becomes more able to recover from shocks.22 This, in turn, means that the larger
it is the available level of quarantine q, the more convenient it becomes to be in a
globalized system relative to an autarkic one. In this respect, Figure 9 shows how
the light-gray and dark-gray areas change, as the quarantine q changes.23 This
analysis is also shown in Figure 11, where we plot the percentage of the rectangle
[q, 1]× [0, q] which is occupied by the dark-gray area. By using the shock analysis
done above, as q increases, we observe that having a connected 2-location system
becomes more and more advantageous and resistant overall than an autarkic 2-
location system.

This conclusion directly translates in terms of policy: if the available quaran-
tine level q can be taken large enough, then allowing cross-country import-export
is beneficial and preferable for systemic resistance to infection shocks. On the con-
trary, two autarkic countries constitute a more resistant system against infection
shocks when only a small level of quarantine q is available.

18By symmetry with respect to the diagonal, the same analysis holds also for the border of the
unit square above the diagonal.

19Threshold that corresponds to q = 0.39 in Figure 10.
20Shocks that mainly start from a single location, of the form s = (ε, sB) or (sA, ε), with ε ≈ 0.
21We think of contagiousness as a parameter strictly related to the type of disease considered,

so not of interest for policy making.
22Since it corresponds to an expansion of the white recovery area, for a globalized system.
23While contagiousness ν is kept fixed, because we think of it as a disease-related parameter,

not subject to policy making.
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Figure 10: Intersection between separatrix C and boundaries of [0, 1]2
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On the left, intersection points q 7→ η(q, 0.7) (squares) and q 7→ ζ(q, 0.7) (triangles),
with fixed ν = 0.7. As q increases, the separatrix C first crosses the horizontal segment
[q, 1] × {0} in (η(q, ν), 0), then as q exceeds a certain threshold (q = 0.39 in this case,
signaled by the dotted vertical line), C starts crossing the boundary in the vertical segment
{1} × [0, q] in the point (1, ζ(q, ν)). The diagonal (dashed) shows that η > q while ζ < q.
On the right, intersection η(q, ν) as a function of both parameters (q, ν) ∈ (0, 1)2. All
sections η(·, ν) and η(q, ·) are increasing.

6 Conclusions

Starting from a very simple model of epidemic diffusion among homogeneous
agents, we consider the case in which two identical countries are inhabited by
such agents. These agents interact and trade with each other in (random) pairs
to obtain benefits and, by doing so, they also spread a contagious disease among
them, which lowers the attainable gain from trade. As a response to the infection
risk, agents can choose to bear (heterogeneous) costs to interact with the agents
present in the other country, establishing then a stylized form of cross-country
import-export trade. By assuming that both countries have (limited and fixed)
resources to intervene against the infection, we are also able to introduce the
possibility of recovery, that is, of reducing the infection rate.

Given the epidemic parameters, we compare the resistance to exogenous shocks
in infection rates of the “autarkic” system, in which the two countries are assumed
not to trade with each other, with the resistance of the “globalized” system where,
instead, cross-country trade is allowed. Overall, globalized systems result more
“extreme” in their reaction to shocks with respect to autarkic systems. This
is a consequence of the two countries being connected: on the one hand, the
globalized system has a larger “recovery capacity” when facing relatively small
shocks but, on the other hand, it has a larger area where both countries end up
being completely infected. In particular, the main possibility which is precluded
to globalized systems with respect to autarkic ones is a situation in which only
one country is infected while the other is not. On the contrary, “autarkic” systems
offer a wider spectrum of possible outcomes resulting from infection shocks and,
in particular, they exhibit partial endemic equilibria in which only one location is
fully infected while the other is disease free.

By comparing how an autarkic system and a globalized system behave in re-
sponse to shocks, we are able to understand their similarities and differences. The
main result of this shock-resistance analysis is that the behavior of the two sys-
tems is substantially different especially when they are subjected to “1-dimensional
large shocks”: when infection shocks hit mainly one location (and only slightly the
other), a globalized system either fully recovers or becomes fully infected, while an
autarkic system could exhibit partial endemic equilibria, if exposed to the same
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Figure 11: Ratio between the gray areas
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On the left, ratio between the dark-gray area and the sum of the dark-gray plus light-gray
areas (i.e. [q, 1] × [0, q] ∪ [0, q] × [q, 1]) numerically obtained as a function of q ∈ (0, 1),
holding fix ν = 0.7. On the right, the ratio as a function of both parameters (q, ν) ∈ (0, 1)2.
As the quarantine q increases, a globalized system becomes more and more convenient
relative to an autarkic one.

shock. Depending on the amount of resources allocated to recovery, as measured
by the quarantine level q in our framework, a globalized system may be preferable
when large resources for quarantine are available, whereas an autarkic system is
preferable in case of low resources.
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Appendix A More on the econometric analysis

In this section we investigate whether the significant effect of the dummy Positive,
observed in Table 2, could be a result of a selection process. To this aim, we have
estimated a bivariate selection model by maximum likelihood estimation where
the main equation is a Tobit model with distance as the dependent variable. The
participation equation is a Probit, and estimates the probability of being active
(i.e. sending at least one bovine) in quarter t.

Although the dependent variable in the main equation is – when not censored
– continuous, the identification of the model could depend only on distributional
assumptions. For this reason, we have added an exclusion restriction in the partic-
ipation equation, using data on rainfalls provided by the Italian Air Force (Centro
Operativo Dati per la Meteorologia). For each municipality, we have imputed the
level of rainfalls and its deviation from its quarterly mean by averaging the three
closest meteorological stations.24 We have thus included as a regressor in the
participation equation the lagged value of the deviation of rainfalls from quarterly
mean. Since reduced rainfalls at t−1 – through a negative effect on the production
of crops used for animal feed (hay, corn, etc.) – lower the inflow of bovines in that
municipality, this, in turn, is expected to decrease outflows at time t.

The bivariate model has been estimated using the Stata® command cmp
developed by David Roodman.25

The coefficient of the dummy Positivei,t−1 indicates that farms with a sick
bovine at t− 1 are less likely to be active at time t− 1. The deviation of rainfalls
from quarterly mean has the expected positive and statistically significant effect
on the probability of sending cattle at time t. The ρ coefficient, which estimates
the correlation between error terms is negative and significant at 10% , thus sug-
gesting the presence of a weak negative selection effect. The estimated effect of
Positivei,t−1 in the Tobit main equation is, however, very close to the result shown
in column 3 of Table 2.

24The meteo stations are around 115 with daily data covering the entire Italian territory.
25See Roodman (2011) for details.
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Table 3: Bivariate selection model

Tobit Probit
Distance Pr. active at time t

Positivei,t−1 19.462*** -0.881***
-5.591 (0.047)

Stockit 0.0845*** 0.0004***
(0.001) (0.000)

Rain Dev. from Meani,t−1 0.002***
(0.001)

Constant 13.444*** 1.753***
-1.104 (0.012)

σ 90.523***
(0.0528)

ρ12 -0.0077*
(0.0047)

Observations 2,267,463 2,267,463
Log likelihood -10,207,407

The bivariate Tobit/Probit model has been estimated using the Stata® command cmp. The
regression includes time and regional effects. Standard errors clustered at the farm level are
shown in parenthesis. Asterisks mean: *** significant at 1%, ** significant at 5%,* significant at
10%.

Appendix B Proofs for Sections 3, 4 and 5

Proof of Proposition 3.1. The derivative dx
dt , which is a cubic function of x, has

only three roots x = 0, x = q and x = 1, where it becomes equal to 0. Moreover,
it is strictly negative when x ∈ (0, q) and strictly positive when x ∈ (q, 1).

Proof of Proposition 4.1. We want to show that the unit square [0, 1]2 is an in-
variant set under the dynamics defined by system (3). In order to do that, we
need to the vector field defining the system of equation, i.e. the right-hand side of
(3) as 2-dimensional function of (xA, xB) is “pointing toward the interior” of the
square, while restricted on the borders of it. More formally:

• suppose that xA = 0. Then ẋA = νA(1− FA)xBFB ≥ 0, for any xB ∈ [0, 1],
as wanted.

• Suppose, instead, that xA = 1. By assumption, we have that FA = 1 when
xA = 1, then

ẋA = νA(1− FA)(1− xB)FB − xAFA = −1 < 0,

as we wanted.

An analogous and symmetric reasoning shows that ẋB ≥ 0, when xB = 0, and
that ẋB ≤ 0, when xB = 1.

Proof of Proposition 5.1. The vector field defining system (7) is of the form F(xA, xB) =
(FA(xA), FB(xB)), where FA(x) = FB(x) = f(x) := νx(1 − x)(x − q). Then,
clearly the system is symmetric with respect to the diagonal, that is F(xB, xA) =
(FB(xA, xB), FA(xA, xB)).

Since f(x) = 0 if and only if x = 0 or x = q or x = 1, then the equilibria
of system (7) are: (0, 0), (0, 1), (1, 0), (1, 1), (q, q), (0, q), (1, q), (q, 0) and (q, 1).
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Moreover, since ẋA = 0 when xA = 0, this means that the line xA = 0 in R2 cannot
be crossed by the trajectories of the system. Analogously, the lines xA = q, xA = 1,
xB = 0, xB = q, xB = 1 cannot be crossed, which implies that they are invariant
and that the unit square [0, 1]2 is also invariant under the dynamics defined by
system (7).

In order to evaluate the stability of such equilibria, it suffices to study the
Jacobian of the system. Now, since the Jacobian is of the form(

f ′(xA) 0
0 f ′(xB)

)
,

where f ′(x) = ν[(2 − 3x)x + q(2x − 1)], and that f ′(0) = −νq < 0, f ′(q) =
νq(1 − q) > 0 and f ′(1) = −ν(1 − q) when ν, q ∈ (0, 1), then the study of its
eigenvalues simply says that: (0, 0), (0, 1), (1, 0) and (1, 1) are asymptotically
stable, because the eigenvalues are both negative. The points (0, q), (q, 0), (1, q),
(q, 1) are saddle point because they have eigenvalues of different sign. Lastly, (q, q)
is an unstable source point because both its eigenvalues are positive.

Appendix C Analysis of the linear case

We here study system (6), which comes from the assumptions of agents’ linear
utility and uniform cost distributions. In principle, the system is well defined
in R2, but we will restrict our analysis to the unit square (xA, xB) ∈ [0, 1]2, in
which the fractions of infected agents make sense. It is continuously differentiable
everywhere but the diagonal of R2, i.e. over R2 \ {(xA, xB) ∈ R2 : xA = xB}.
However, thanks to the symmetry of the system guaranteed by the assumptions
made, we can separate the analysis focusing on three different parts: the diagonal,
the super-diagonal set and the sub-diagonal. This allows us to use an ad hoc
strategy to obtain some explicit results. There are two asymptotically stable
equilibria, (xA, xB) = (1, 1) and (0, 0), the first corresponding to both countries
being fully infected, while the second to both being disease free. There is a third
equilibrium, (q, q) which is an unstable saddle point. Its separatrix curves separate
the basins of attraction of the asymptotically stable states, as depicted in Figure
4. It is worth noting, though, that they are not explicitly characterizable.26

For ease of exposition, let us re-write system (6) in vector notation as follows:

d

dt
(xA, xB) = V(xA, xB), (8)

where V(xA, xB) := (VA(xA, xB), VB(xA, xB)) for all (xA, xB) ∈ R2 and VA, VB
are the 2-variable, real-valued functions defined respectively by the first and second
row of (6). Let us also denote the diagonal by D := {(xA, xB) ∈ R2 : xA = xB},
and the sets above and below the diagonal respectively by ∆+ := {(xA, xB) ∈ R2 :
xA < xB} and ∆− := {(xA, xB) ∈ R2 : xA > xB}.

LEMMA C.1. The vector field V is symmetric with respect to the diagonal D,
that is, for all (xA, xB) ∈ R2:

V(xB, xA) ≡ (VB(xA, xB), VA(xA, xB)) .

Proof. The proof follows directly from the definition of V.

26There is no known way to analytically determine these curves, even in simple dynamical
systems. Progresses have been made with their numerical approximations (Cavoretto et al.,
2011).
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The vector field V can be seen as constituted by three basic pieces, all of
which are defined over the entire R2 but such that they coincide with V itself
when appropriately restricted on the sets D, ∆+ and ∆−. The following lemma
formalizes this idea.

LEMMA C.2.

1. The vector field V when restricted on the diagonal D coincides with

VD(xA, xB) :=

(
νxA(1− xA)(xA − q)
νxB(1− xB)(xB − q)

)
,

which, in turn, is well defined over R2.

2. The vector field V when restricted on ∆− coincides with

V−(xA, xB) :=

ν(1− xA + xB)
[
xA(1− xA)(xA − q)(1− xA + xB)

]
− xA(xA − xB)

ν
[
xB(1− xB)(xB − q) + (xA + xB − 2xAxB)(xA − xB)

]  .

3. The vector field V when restricted on ∆+ coincides with

V+(xA, xB) :=

 ν
[
xA(1− xA)(xA − q) + (xA + xB − 2xAxB)(xB − xA)

]
ν(1− xB + xA)

[
xB(1− xB)(xB − q)(1− xB + xA)

]
− xB(xB − xA)

 .

Proof. When (xA, xB) ∈ D, then max{0, xA−xB} = max{0, xB −xA} = 0. From
this, the first point follows from the computation of V as defined by (6).

The second point follows because when (xA, XB) ∈ ∆−, then max{0, xA −
xB} = xA − xB while max{0, xB − xA} = 0. Analogously for the third point.

PROPOSITION C.3. System (6) is symmetric with respect to the diagonal and
it is well defined in R2. The diagonal D, the sets ∆+ and ∆− are all invariant
with respect to the dynamics defined by system (6).

Proof. The symmetry of system (6) in R2 follows from that of V. This implies
that the diagonal D has to be invariant and, consequently, also ∆+, ∆− have to
be invariant.

Because of the invariance, it suffices to show that the system is well defined
when restricted on each of D, ∆+ and ∆−. From the previous Lemma C.2, it
follows that the system is well defined because VD, V− and V+ are smooth on
R2 and, in particular, on D, ∆− and ∆+ respectively.

PROPOSITION C.4. The unit square [0, 1]2 is invariant with respect to the
dynamics defined by system (6).

Proof. The following Lemma C.5 implies that, on the borders of the unit square,
the vector field V points towards the interior.

LEMMA C.5. VB(·, ·) > 0 on the segment (0, 1)×{0} and VA < 0 on the segment
{1} × (0, 1). Consequently, by symmetry, VB < 0 on (0, 1) × {1} and VA > 0 on
{0} × (0, 1).

Proof. From the definition, it follows that for all xA ∈ (0, 1), it holds that VB(xA, 0) =
νx2

A > 0. Analogously, for all xB ∈ (0, 1), it holds that VA(1, xB) = −(1− xB) <
0.

Now we can show that system (6) has 3 critical points, specifically with (q, q)
being a saddle point, whose separatrix curves naturally form the boundaries of
the basins of attraction of the asymptotically stable points (0, 0) and (1, 1).
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PROPOSITION C.6. System (6) has (only) three equilibria:

• (xA, xB) = (0, 0) and (1, 1), which are asymptotically stable states;

• (xA, xB) = (q, q), which is an unstable saddle point.

Moreover, the two separatrix curves of the saddle (q, q) are such that the unstable
one coincide with the diagonal of the square {(xA, xB) ∈ [0, 1]2 : xA = xB}, while
the stable separatrix are part of the boundary of the basins of attraction of the
stable equilibria.

Proof. The proof follows directly by using Lemma C.2 and then applying Lemma
C.8.

LEMMA C.7. Consider V−, as defined in Lemma C.2. Then its Jacobian

Jac−(xA, xB) :=
(
∂V−(xA,xB)

∂xA
|∂V

−(xA,xB)
∂xB

)
when evaluated:

• in (0, 0), it has both eigenvalues equal to −qν < 0, for all q, ν ∈ (0, 1);

• in (1, 1), it has eigenvalues equal to −(1− q)ν and −1− (1− q)ν, which are
both negative for all q, ν ∈ (0, 1);

• in (q, q), it has eigenvalues equal to qν(1− q) > 0, −q(1 + ν(1− q)) < 0 and

corresponding eigenvectors equal to (1, 1) and
(

1
−2(1−q)ν , 1

)
.

Consider V+. Analogously, its Jacobian has negative eigenvalues when evaluated
in the points (0, 0) and (1, 1). Whereas, when evaluated in (q, q), the eigenval-
ues are the same as above, qν(1 − q) > 0 and −q(1 + ν(1 − q)) < 0, but their
corresponding eigenvectors are (1, 1) and (−2(1− q)ν, 1).

Proof. By definition of V− in Lemma C.2, the computation of the derivatives in
the point (q, q) yields:

Jac−(q, q) =

(
−q(1− ν(1− q)) q

2(1− q)qν −(1− q)qν

)
.

The eigenvalues and eigenvectors of this matrix are easily computed.
Analogously, the computation in the point (0, 0) and (1, 1) gives:

Jac−(0, 0) =

(
−qν 0

0 −qν

)
, Jac−(1, 1) =

(
−1− (1− q)ν 1

0 −(1− q)ν

)
,

from which one obtains the eigenvalues and eigenvectors as claimed above.
The last part follows from the same computations done symmetrically for

V+.

LEMMA C.8. Consider the two vector fields V− and V+ defined in Lemma C.2.
Then:

1. The points (0, 0), (1, 1) and (q, q) are the equilibria of both V− and V+

respectively in the region D ∪∆− and D ∪∆+.

2. (0, 0) and (1, 1) are asymptotically stable for both V− and V+.

3. (q, q) is a saddle for both V− and V+.

Proof. For the first point, consider V−. It suffices to verify that, in the region
D∪∆−, V−(xA, xB) = 0 if and only if (xA, xB) is one of the points considered in
the claim. Analogously, for V+.

The second and third points follow directly from Lemma C.7.
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Lastly, we focus on the crucial role played by the stable separatrix curve of the
saddle (q, q), hereafter denoted by C. From the theory of dynamical systems, it
follows that C is partitioned as the image of three distinct trajectories/solutions
of system (6):

C = C− ∪ {q, q} ∪ C+.

In our case, C− is the piece obtained as the separatrix of the saddle (q, q) with
respect to the vector field V−, while C+ is the piece obtained as the separatrix of
(q, q) with respect to V+.

The following result formalizes what is shown in Figure 4: depending on the
parameters ν and q, as time t increases, the solution C− enters the unit square
either crossing its border along the segment [q, 1]× {0} or along {1} × [0, q] and,
eventually, converges toward {q, q} as t→∞. Symmetrically, the same occurs for
C+.

PROPOSITION C.9. Let C denote the (unique) stable separatrix of the saddle
point (q, q) of system (6). The curve C can be naturally partitioned according to
the following three distinct trajectories that compose it:

C = C− ∪ {q, q} ∪ C+.

Then C−∩ [0, 1]2 is included in [q, 1]× [0, q] and, depending on the parameters q, ν,
it either crosses the segment [q, 1]×{0} in a point (η, 0) or the segment {1}× [0, q]
in a point (1, ζ). A symmetric result holds for C+.

Proof. The result is based on the following lemmas.

LEMMA C.10. Let C− denote the part of the (stable) separatrix curve of (q, q)
with respect to V− that belongs to ∆−. Symmetrically, let C+ denote the (stable)
separatrix of (q, q) for V+ belonging to ∆+. Then: C− ⊂ [q, 1] × [0, q] and C+ ⊂
[0, q]× [q, 1] for times t large enough.

Proof. Consider the case of C− (the other case of C+ is symmetrical). The point
(q, q) is a saddle so its stable separatrix converges to (q, q) as t→∞ and, addition-

ally, it is locally linearly approximated by the vector
(

1
−2(1−q)ν , 1

)
, which is the

eigenvector corresponding of the negative eigenvalue of Jac−(q, q), from Lemma
C.7.

LEMMA C.11. The signs of the components of the vector field defining system
(6), when computed in (xA, xB) ∈ (q, 1)× (0, q), are such that VA(xA, xB) ≤ 0 and
VB(xA, xB) ≥ 0.

Symmetrically, VA ≥ 0 and VB ≤ 0 in (0, q)× (q, 1).

Proof. Consider V −A (xA, xB), the first component of V− (the other cases are anal-
ogous), and let us show that V −A (xA, xB) < 0 when 0 < xB < q < xA < 1. By
definition in Lemma C.2:

V −A (xA, xB) = ν(1− xA + xB)2[xA(1− xA)(xA − q)]− xA(xA − xB).

It has to be shown that for 0 < xB < q < xA < 1 and q, ν ∈ (0, 1)

ν(1− xA + xB)2xA(1− xA)(xA − q)
?
< xA(xA − xB),

that is

ν(1− xA + xB)2(1− xA)(xA − q)
?
< xA − xB.

The right-hand side is always greater than xA− q, so that the inequality becomes:

ν(1− xA + xB)2(1− xA)(xA − q)
?
< xA − q,
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and then

ν(1− xA + xB)2(1− xA)
?
< 1.

Taking the supremum of the left-hand side for xB ∈ (0, q), which is attained at
xB = q gives

ν(1− xA + q)2(1− xA)
?
< 1.

Then the supremum for xA ∈ (q, 1), obtained for xA = q gives

ν(1− q + q)2(1− q) ≡ ν(1− q) < 1,

which implies that all the inequalities above have to hold, as wanted.

Appendix D Linearization of the separatrix curve C
and approximation of the basins of at-
traction

Since that we have already observed that the separatrix C cannot be described
analytically, we first compute a linear approximation of it and, then, confirm the
results by numerical analysis. This allows us to approximate the area of the basins
of attraction which is key for the comparative statics analysis done in Section 5.

We linearize system (6) in a neighborhood of the saddle (q, q) using Lemma C.7.
Figure 5 shows similarities and differences between C and its linear approximation
C̃.

PROPOSITION D.1. The separatrix C is linearly approximated in (q, q) by the
two-piece line C̃, which we respectively call C̃+ and C̃−, defined by

C̃ =


C̃+ : xB =

1

−2(1− q)ν
(xA − q) + q, defined for xA ≤ q,

C̃− : xB = −2(1− q)ν(xA − q) + q, defined for xA ≥ q.

Proof. Let us consider C̃− (the case of C̃+ is analogous). From Lemma C.7 it
follows that the approximation of the (stable) separatrix of (q, q) with respect
to V− is the line for (q, q) with tangent given by the eigenvector corresponding

to the negative eigenvalue, that is the vector
(

1
−2(1−q)ν , 1

)
. Such line in R2 is

parametrically described by(
xA
xB

)
= t

( 1
−2(1−q)ν

1

)
+

(
q
q

)
, for t ≥ 0

which is implicitly written as xB = −2(1− q)ν(xA − q) + q, for xA ≥ q.

LEMMA D.2. The intersection between C̃− and the sub-diagonal boundaries of
the unit square [0, 1]2, that is, the segments {1}× [0, q] and [0, q]×{0}, is the point
P− = (P−A , P

−
B ) given by

P− =

{ (
1,−2ν(1− q)2 + q

)
, if ν < q

2(1−q)2 ,(
q

2ν(1−q) + q, 0
)
, if ν ≥ q

2(1−q)2 ,

Symmetrically, a point P+ can be found as the intersection of C̃+ and the segments
{0} × [q, 1] and [0, q]× {1}.
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Remark. Notice that, provided q ∈ (0, 1) and ν ∈ (0, 1), the two following con-
ditions are equivalent:

ν <
q

2(1− q)2
⇐⇒ 1 + 4ν −

√
8ν + 1

4ν
< q.

Moreover, when q > 1/2 then ν < q
2(1−q)2 for all ν ∈ (0, 1). Figure 12 shows the

subregion of the square (q, ν) ∈ (0, 1)2 where this condition is satisfied.

Figure 12: Condition on the parameters q and ν
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Subregions of the square (q, ν) ∈ (0, 1)2

separated by the curve ν = q
2(1−q)2 . The

white area is where ν < q
2(1−q)2 , whereas

the gray area is where the opposite in-
equality holds. In particular, in the white
area (respectively, gray) P− belongs to the
vertical segment {1} × [0, q] (resp. hori-
zontal segment [q, 1] × {0}) and the area

under the curve C̃− is the trapezoid Q−

(resp. triangle T−). Lastly, the dashed
line is at q = 1/2.

Depending on the parameters ν and q, the area under the curve C̃ is either a
trapezoid or a triangle and is easily computed in the following result. By consid-
ering this area as an approximation of the area under the curve C, this will also
allow us to make a comparative statics analysis. The results are also shown in
Figure 6.

LEMMA D.3. If ν ≥ q
2(1−q)2 , consider the triangle T− ⊂ {(xA, xB) ∈ [0, 1]2 :

xA ≥ xB} defined as the convex hull in R2 of the following set of vertexes

T− = Conv
(
{(q, q), (q, 0), P−}

)
.

If, instead, ν < q
2(1−q)2 , consider the trapezoid Q− ⊂ {(xA, xB) ∈ [0, 1]2 : xA ≥

xB} defined by
Q− = Conv

(
{(q, q), (q, 0), (1, 0), P−}

)
.

The measure of their area is:

A(T−) =
q × (P−A − q)

2
=

q2

4ν(1− q)
, defined whenever ν ≥ q

2(1− q)2
,

A(Q−) =
(1− q)× (q + P−B )

2
= (1− q)

(
q − ν(1− q)2

)
, when ν <

q

2(1− q)2
.

Whenever defined, q 7→ [A(T−)] (q, ν) is always increasing for all ν. Moreover, its
derivative with respect to q is:

∂A(T−)

∂q
=

q(2− q)
4ν(1− q)2

> 0, ∀ q, ν ∈ (0, 1) : ν ≥ q

2(1− q)2
.

The derivative of A(Q−) is

∂A(Q−)

∂q
= 1− 2q + 3ν(1− q)2, defined whenever ν <

q

2(1− q)2
,
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and it is positive if and only if the following condition holds27

{
2

7
< q ∧ 1− 2q

3(1− q)2
< ν <

q

2(1− q)2

}
∨{

q <
2

7
∧

[
ν <

q

2(1− q)2
∨ ν >

1− 2q

3(1− q)2

]}
.

Analogously, for P+ and correspondingly T+, Q+ and their areas and derivatives.

Proof. The measure of the areas of the triangle T− or trapezoid Q− are easily
computed by using the coordinates of P− obtained in Lemma D.2. Computing
the derivatives is then straightforward.

Now let us compute the ratio between the area under the curve C̃− and the
entire rectangle [q, 1− q]× [0, q], as in Figure 6.

LEMMA D.4. Let R̃−(q, ν) be the ratio between the area under the curve C̃−
and the rectangle [q, 1]× [0, q] ⊂ [0, 1]2. Then R̃−(q, ν) is given by

R̃−(q, ν) :=



[A(T−)] (q, ν)

q(1− q)
=

q

4ν(1− q)2
, if ν ≥ q

2(1− q)2

[A(T−)] (q, ν)

q(1− q)
≡ [A(Q−)] (q, ν)

q(1− q)
= 1

2 , if ν =
q

2(1− q)2

[A(Q−)] (q, ν)

q(1− q)
=
q − ν(1− q)2

q
, if ν ≤ q

2(1− q)2
.

In an analogous fashion, the ratio above the line C̃+ is denoted by R̃+(q, ν) and is
equal to R̃−(q, ν) by symmetry.

Proof. The numerator of R̃− is given by the area of the triangle or trapezoid
given by the previous Lemma D.3, that is, respectively A(T−) or A(Q−). The
denominator, instead, is simply the area of the rectangle [q, 1]× [0, q] in R2.

The behavior of R̃(q, ν), as a function of the parameters q and ν, is described
by the following result.

LEMMA D.5 (Comparative statics on the approximated ratio R̃(q, ν)).
Consider R̃−(q, ν) defined above. It is bounded in [0, 1] and its sections q 7→
R̃−(q, ν) are increasing for all ν ∈ (0, 1), whereas ν 7→ R̃−(q, ν) are decreasing for
all q ∈ (0, 1). Furthermore, whenever defined, its derivatives are:

∂

∂q
R̃−(q, ν) =


1 + q

4ν(1− q)3
> 0, if ν >

q

2(1− q)2(
1

q2
− 1

)
ν > 0, if ν <

q

2(1− q)2

∂

∂ν
R̃−(q, ν) =


− q

4(1− q)2ν2
< 0, if ν >

q

2(1− q)2

−(1− q)2

q
< 0, if ν <

q

2(1− q)2
.

Proof. The computation of the derivatives follows directly from the formulas defin-
ing R̃− in the previous Lemma. Moreover, it is straightforward to check that
the denominator is always greater than the numerator, thus guaranteeing that
R̃−(q, ν) ≤ 1.

27The complicated condition derives from the fact that 1−2q
3(1−q)2

is decreasing while q
2(1−q)2

is

increasing, when q ∈ (0, 1), and they cross in q = 2/7.
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Figure 13: Area of basin of attraction and its approximation

The plot shows: the area of the basin of attraction of (0, 0) as a function of q and ν

computed numerically (in blue), the area computed using the approximation C̃ (in yellow,
almost indistinguishable from that in blue) and, finally, their differences (the almost-plain
surface, in red).

Remark. Given q and ν, R−(q, ν) just represents the part of the basin of attrac-
tion of (0, 0) within the rectangle [q, 1]× [0, q]. So, the exact total area of the basin
of attraction of (0, 0) is readily computed as: 2 ·R−(q, ν) + q2. Analogously for its
approximation obtained with R̃−. These areas (and their differences) are shown
in Figure 13.

32


	1 Introduction
	2 Motivation for our exercise
	3 The single-location model: the building block
	4 The 2-location model
	4.1 Specification
	4.2 Identical locations, linear utility & uniform cost

	5 Comparative statics with respect to exogenous shocks
	5.1 The case of autarky
	5.2 Shock analysis
	5.3 Systemic resistance & policy

	6 Conclusions
	Appendix A More on the econometric analysis
	Appendix B Proofs for Sections 3, 4 and 5
	Appendix C Analysis of the linear case
	Appendix D Linearization of the separatrix curve C and approximation of the basins of attraction

