SAS
STATISTICAL ANALYSIS SYSTEM

Uso di SAS per le analisi statistiche

A cura di
Laura Neri
Dip. di Economia Politica

Universita degli Studi di Siena

Taken from
http://www.ats.ucla.edu/stat/SAS/library/SASTranMan os.html

DO Blocks and DO Loops

A DO block begins with the reserved word DO and
ends with the reserved word END. The statements
enclosed inside DO..END are called a block. The
DO..END construct 1s an important device to group
statements inside a DATA step.

data two; set prova;
if age ne . then do;
age2 = age*age;
age3 = age2*age;
end;
run;

If the condition in the IF statement is true, SAS
executes the statements in the DO..END block.
Otherwise the statements are ignored. Without the
DO..END block, the DATA statement would require
three IF statements. The DO statement also 1s part of
looping constructs (iterative DO). These can be written
in various ways. Here are examples:

do i =1 to 4; /* A index loop, runs from 1 to 4 in increments of 1 */
< SAS statements>
end;

do i =1 to 10 by 2; /* index loop, runs from 1 to 10 in increments of 2 */
<SAS statements>
end;

/* index loop over x=10, 20, 30, 50, 55, 60, 65, ... , 100 */
do x = 10, 20, 30, 50 to 100 by 5;

<SAS statements>
end;

http://www.ats.ucla.edu/stat/SAS/library/SASTranMan_os.html

do month = 'FEB', 'MAR', 'APR';
<SAS statements>
end;

/* the statements inside the loop are executed only while the */
/* expression in parentheses is true */
do k =1 to 12 while (month='APR"');

<SAS statements>
end;

The next example generates 100 observations from a
Gaussian distribution with mean 12 and variance 3. For
cach observation, it calculates its right-tail probability:

data Gauss;
do i =1 to 100;
z = rannor (8923);
p = 1 - Probnorm(z);
x = z*Sqrt(3) + 12;
output;
end;
run;

Notice that the DO I=1 to 100; .. END; construct 1s
executed for each observation in the data set. Since no
observations are input or transferred from another SAS
data set, you need the OUTPUT statement inside the
DO loop to instruct SAS to write to the data set when
the loop 1S completed.
The OUTPUT statement should be the last statement
inside the loop.

Other forms of DO loops are the DO..WHILE() and
DO..UNTIL() constructs. A logical expression inside
the parentheses 1s evaluated for each repetition of the
loop.

The loop continues as long as the statement is true for
the DO..WHILE() loop or until the statement becomes
true (DO..UNTIL()).

DO..WHILE and DO..UNTIL loops are dangerous. For
example, if the logical statement in the WHILE()
expression 1s not true, the loop will never executes. If it
1s not true, there must be a mechanism inside the loop
that eventually makes the statement false, otherwise the
loop will continue infinitely. It 1is important to
remember that the loop 1s executed for each
observation in the data set. Care must be exercised not
to write infinite loops with DO..WHILE. For example,
the following loop

n=0;

do while(n <= 5);
<Statements>
n+1;

end;

works, since n is changed inside the loop and the
WHILE() condition eventually will become false.
If you forget to increment n inside the loop, the
statements will be processed indefinitely. In this
case, a DO n = .. END; loop 1s much safer:

do n=1 to 5;
<statements>
end;

IF .. THEN .. ELSE statements

Also known as conditional statements, these are very
important when subsetting data or processing
observations conditionally. The ELSE part i1s not
necessary.

data age nomiss; set prova;
if age eq . then delete;

run;

In the form

IF <condition> THEN <statementl> ELSE
<statement2>

SAS evaluates for each observation the logical
condition. If the condition 1s true, 1t executes
statement]1, if it 1s false statement2. Important to note is
that only a single statement follows the THEN and
ELSE clause. For example,

data two; set one;
if (x < 0) then
y = .7
z = sgrt(-x);
else z = sqgrt(x);
run;

will cause an error, since SAS expects the ELSE clause
after the y=.; statement. If more than one statement is
to be executed in the THEN or ELSE clause, group
them into DO blocks:

data two; set one;
if (x < 0) then do;
vy = .7
z = sgrt(-x);

http://www.ats.ucla.edu/stat/SAS/library/#DOBlocksandDOLoops

end; else z = sqgrt(x);
run;

IF .. THEN .. ELSE statements can be nested:

data three; set prova;
if age <= 25 then agegr = 1;
else if age <= 40 then agegr = 2;
else agegr = 3;
run;

GENERAZIONE DI NUMERI CASUALI

- Un numero casuale ¢ un numero scelto da un insieme di
valori egualmente probabili, cio¢ un numero estratto da una
distribuzione uniforme;

- 1n una sequenza di numeri casuali ogni numero estratto
deve essere statisticamente indipendente dagli altri.

[numeri casuali sono utili in vari cast:

- Generazione di dati cifrati e password

- Simulazione e modellazione di fenomeni complessi
- Selezione di campioni casuali

COME GENERARE NUMERI CASUALI?

E possibile generare numeri casuali con un computer?

- Si, c1 sono 2 approcci:

o Generatori di numer1 pseudo-casuali

o Generatori di numeri casuali veri (da fenomeni fisici, p.e.
gli istanti temporali in cul accade qualcosa di totalmente
imprevedibile).

GENERAZIONE DI NUMERI PSEUDO-CASUALI

Gli algoritmi per la generazione di numeri pseudo-casuali
utilizzano formule matematiche o tabelle pre-calcolate per
produrre sequenze di numeri che sembrano casuali.

Gli algoritmi oggi disponibili sono buoni € 1 numeri
generati sono come quelli realmente casuali.

GENERAZIONE DI NUMERI PSEUDO-CASUALI IN
SAS

Le funzioni e le routine di SAS per la generazione di
numeri casuali producono sequenze di numeri partendo da
un valore iniziale seed.

Il seed deve essere un intero non negativo minore di 2°!-1.
E sempre possibile riottenere la successione di numeri
casuali utilizzando lo stesso DATA step.

Se s1 usa 1l valore zero come seed ¢ 1’orologio di sistema
che inizializza la sequenza, in tal caso la sequenza di
numeri casuali non ¢ replicabile.

Il seed puo essere una costante intera o una variabile che
contiene la costante intera. La variabile seed deve essere

inizializzata prima della prima esecuzione della funzione o
della CALL routine.

FUNZIONI SAS PER LA GENERAZIONE DI
NUMERI PSEUDO-CASUALI

NORMAL normale standard

RANNOR normale standard

RANBIN binomiale

RANCAU Cauchy

RANEXP esponenziale standard

RANGAM gamma standard
RANPOI Poisson

RANTBL distribuzione discreta
RANTRI distribuzione triangolare
RANUNI uniforme (0,1)
UNIFORM uniforme (0,1)

Consideriamo la Distribuzione Uniforme in (0,1).
RANUNI FUNCTION
RANUNI(seed)

RANUNI ROUTINE
CALL RANUNI(seed,x),

The RANUNI routine gives greater control of the seed and
random number streams than does the RANUNI function

data prova;
Seed 1 =45; Seed 2= 45; Seed 3= 45;

/*Seed 1 =44; Seed 2= 4; Seed 3= 4;%*/

do 1=1 to 10;
call ranuni (Seed 1,X1);
call ranuni (Seed 2,X2);
X3=ranuni (Seed 3);
output;
end;
run;

proc print;

id 1;
var Seed 1-Seed 3 X1-X3;
run;

R R I I I I I I I S b I I S I e I I I I I 2 b b I I b I I b b I b b b 2 b b b Ih b b b b b b Sh b b 2 Y
’

*** generazione di numeri casuali da uniforme (a,b) ***;

KAK generatore moltiplicativo modulo primo KAK
Hx K (Fishman e Moore, 1982, JASA, 77, 129-1306) xRk,
KAK modulo=2**31-1, moltiplicatore=397204094 KAK

*generalb.sas;

*assegna un valore ali parametri della
distribuzione;

slet a=10;

slet b=20;

title "Generazione di numeri casuali da
uniforme (a=&a,b=&b)";
data dati;
a=&a; b=&b;
eu=(a+tb) /2 ;
varu=((b-a) **2) /12;
label eu='valore atteso di u' wvaru='varianza
di u';
do i=1 to 10000;
x=a+ (b—-a) *ranuni (0) ;

output;
end;
run;
proc print data=dati (obs=10);
id 1i;
var X eu varu;
run;

pProc means n mean var min max maxdec=2;

var Xy
run,

title2 "distribuzione percentuale";
proc gchart;

vbar x/type=percent;

run;

USO DI FUNZIONI SAS PER LA GENERAZIONE DI
CAMPIONI CASUALI

Samplel.sas

*legge tutti 1 dati e calcola media di voto;
data dati;

infile
'G:\documentildidattica\CorsoSAS\2010-
l1\dati\voto.txt"';

input voto;

run;

proc means;

run;

title 'seleziona etichette osservazioni
campionate';
data num;

a=1;

b=897; *num elementi popolazione;
n=100; *numerosita campionaria;
seme=1;

do 1=1 to n;
call ranuni (seme, xX) ;

num=int (a+ (b-a) *x) ;
output;

end;

run;

proc sort; by num;run;

proc print data=num (obs=10);

var num;

run;

/*1i1l campione dei voti non e' selezionato,
conosco solo 11 numero

dell'oss da selezionare, quindil per
selezionare 1l campione di voti...*/

............ esercizio da fare ricordando che

num= n ;*attribuisce un identificativo
ordinato alle osservazioni;

title' seleziona direttamente 11 campione';
data sample;

infile
'G:\documentildidattica\CorsoSAS\2010-
11\dati\voto.txt"';

input voto;

a=1;

0=897; *num elementi popolazione;
label= n ; *n. ordine (etichetta) lista
popolazione;

n=100; *numerosita campionaria;
seme=1;

do i=1 to n;
call ranuni (seme, X) ;
num=int (a+ (b-a) *x) ;
1f label eq int (num) then output;
end;
run;

proc print data=sample (obs=10) ;
var label voto num ;
run;

Macro Variables
Taken from a seminar

http://www.ats.ucla.edu/stat/SAS/seminars/sas macros introduction/default.htm

The SAS macro language 1s a very versatile and useful tool.
It 1s often used to reduce the amount of regular SAS code
and 1t facilitates passing information from one procedure to
another procedure. Furthermore, we can use it to write SAS
programs that are "dynamic" and flexible. Generally, we
can consider macro language to be composed of macro
variables and macro programs. In this session we will
demonstrate how to create macro variables and how to
write basic macro programes.

Macro Variables

A macro variable in SAS i1s a string variable that allows you
to dynamically modify the text in a SAS program through
symbolic substitution. The following example demonstrates
how to create and use a macro variable. First we set up
some system options to have a more concise output style.

options nodate nonumber nocenter formdlim="-";
data hsb2;

input 1d female race ses prog

read write math scinece socst;

datalines;

70 0 4
121

86
141
172
113
50

11

84
48
75

57 52 41 47 57
68 59 53 63 61
44 33 54 58 31
63 44 47 53 56
47 52 57 53 61
44 52 51 63 61
50 59 42 53 61
34 46 45 39 36
63 57 54 51 63
57 55 52 50 51
60 46 51 53 6l

PR OOOR OO O
DWW DD DD

NNV WWN
WN R NRFRNNWRE WE

http://www.ats.ucla.edu/stat/SAS/seminars/sas_macros_introduction/default.htm

60
95
104
38
115
76
195

57 65 51 63 61
73 60 71 61 71
54 63 57 55 46
45 57 50 31 56
42 49 43 50 56
47 52 51 50 56
57 57 60 56 52

OO O OO o
BB WD DD
N WE P WwWwwN
R NEDNDDNDDNDN

4
run;

Suppose that we want to look at the means of some variables and
then do a regression analysis on the same variables.

proc means data = hsb2;
var write math female socst;
run;

proc reg data = hsb2;
model read = write math female socst;
run;

quit;

We can simplify the program by creating a macro variable
containing all the names of the independent variables. A macro
variable can be created by using the %let statement. All the key
words in statements that are related to macro variables or macro
programs are preceded by percent sign %; and when we reference
a macro variable it is preceded by an ampersand sign &. When we
submit our program, SAS will process the macro variables first,
substituting them with the text string they were defined to be and
then process the program as a standard SAS program.

%$let indvars = write math female socst;
proc means data = hsb2;

var &indvars;
run;

proc reg data = hsb2;
model read = &indvars;
run;
quit;
We can display macro variable value as text in the log window by
using % put statement.

$put my first macro variable indvars is &indvars;

