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You should be able to:

• Understand model building using multiple regression
analysis

• Apply multiple regression analysis to business
decision-making situations

• Analyze and interpret the computer output for a multiple
regression model

• Test the signi�cance of the independent variables in a
multiple regression model

• Incorporate qualitative variables into the regression model
by using dummy variables

2 / 33



Multiple
Regression
Model

Prof. L. Neri

Model,
Hypothesis
and
Estimation

Inference

Dummy
Variables

References

The systematic part

• One may need a mathematical model to quantify the
existing relationship between a response variable Y and k
explicative variables X1, . . . ,Xk

y = f (X1, . . .Xk)

The multiple linear regression model speci�es the functional
relationship as

f (X1, . . .Xk) = β1X1 +β2X2 + . . .βkXk (1)

Geometrically this corresponds to a hyper-plan in k dimensions.
The model is extremely useful because:

1 It has an intuitive geometrical interpretation

2 It has a simple estimation of the model's parameters
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The stochastic part

The model always includes a random component, that identi�es
the stochastic component. This can be expressed as follows:

Y = f (X1, . . .Xk)︸ ︷︷ ︸
systematic

+ ε︸︷︷︸
stochastic

(2)
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The Model speci�cation

Standard notation: for each statistiocal unit i=1...n

Yi = β1Xi1 +β2Xi2 + . . .βkXik + εi (3)

Matrix notation

Y = Xβ + ε (4)

Y : (n×1) vector of n dependent variable observations
X : (n× k) matrix of k regressors with each n observations
β : (k×1) vector of k parameters
ε : (n×1) vector of n
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The Matrices

X =


X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xn1 Xn2 · · · Xnk

 ; β =


β1
β2
...

βk



y =


Y1
Y2
...

Yn

 ; ε =


ε1
ε2
...

εn


The matrix X will have a unitary �rst column if the model is
with intercept. In this case the intercept would be β1 in the
multidimensional notation
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Standard Assumptions

Assumptions

• The functional relationship must be linear

• Covariates must have a deterministic nature

• The X matrix has full rank

• The error term has a null expected value E [εi] = 0
• The error term is homosckedastic: Var [εi] = σ2

• The error terms are not correlated: Cov [εiεj]∀i 6=j = 0
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OLS estimator

The OLS estimator in multiple linear regression is the vector β̂

that minimize the following function of β̃ , where Xi is the i-th
row of the X matrix.

min
n

∑
i=1

e2
i = min∑

(
Yi−Xiβ̃

)2
(5)

e =
(

Y−Xβ̃

)
(6)

So

β̃ =
(

X
′
X
)−1

X
′
Y ≡ β̂ (7)

Notice that the matrix X
′
X (cross product matrix) must be of

full rank in order to be invertible.
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OLS estimator properties

β̂ is BLUE (Best Linear Unbiased Estimator)

One can notice that

((
X
′
X
)−1

X
′
)

is a matrix of constant

elements, therefore β̂ is a linear transformation of Y.
One can prove that β̂ is a correct estimator as follows

β̂ =
(

X
′
X
)−1

X
′
Y =

(
X
′
X
)−1

X
′
(Xβ + ε) = β +

(
X
′
X
)−1

X
′
ε

(8)

E
[
β̂

]
= β +

(
X
′
X
)−1

X
′
E [ε] = β (9)

We could also prove that in the class of the linear and unbiased
estimator is the one presenting the minimum variance.
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Variance of the OLS estimator

The variance of the OLS estimator is calculated as follows:

Var
(

β̂

)
= E

[(
β̂ −β

)(
β̂ −β

)′]
(10)

Var
(

β̂

)
= E

[(
X
′
X
)−1

X
′
εε
′
X
(

X
′
X
)−1
]

(11)

Var
(

β̂

)
=
(

X
′
X
)−1

X
′
E
[
εε
′
]

X
(

X
′
X
)−1

=σ
2
(

X
′
X
)−1

X
′
X
(

X
′
X
)−1

(12)

Var
(

β̂

)
= σ

2
(

X
′
X
)−1

(13)

so for each parameter estimator

Var
(

β̂j

)
= σ

2
⌊(

X
′
X
)−1
⌋

jj
(14)
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Empirical example

A distributor of frozen desert pies wants to evaluate factors that
in�uence demand

• Dependent variable: y= Pie sales (units per week)

• Independent variables: x1=Price ($) and x2=Advertising
($100's)

• Data is collected for 15 weeks

The OLS estimates gives the following estimated model:

ŷ = 306−24x1 +74x2 (15)
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Interpretation of the estimated coe�cient

• each β̂j estimates the average value of Y changes by β̂j

units for each 1 unit increase in Xj, holding all other
independent variables constant

• example: β̂1 =−24 then sales (y) are expected to decrease,
on average, by 24 pies per week for each $1 increase in
selling price (x1), net of the e�ects due to advertising (x2)

• example: β̂2 = 74 then sales (y) is expected to increase, on
average, by 74 pies per week for each $100 increase in
advertising (x2), net of the e�ects due to price (x1)

• Intercept

• the estimated average value of y when all X variables are
zero.
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Using the model to make predictions

We can calculate the predicted sales per week given the selling
price ($5) and advertising expenses ($350):

ŷ = 306−24(5)+74(3.5) = 445 (16)

We predict to sell 445 pies per week.
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The σ2estimator

e = Y−Xβ̂ = Xβ + ε−X
[(

X
′
X
)−1

X
′
(Xβ + ε)

]
(17)

e = Xβ + ε−Xβ −X
(

X
′
X
)−1

X
′
ε (18)

e =
(

1−X
(

X
′
X
)−1

X
′
)

ε = Mxε (19)

Mx is a idempotent symmetric matrix. This implies that:

Mx = M
′
x = Mk

x ; ∀k > 0 (20)
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Theσ2estimator

Q = e
′
e = ε

′
M
′
xMxε = ε

′
Mxε (21)

we can prove that

E [Q] = σ
2 (n− k) (22)

so the unbiased estimator of the parameter σ2is

E
[

Q
n− k

]
= σ

2⇒ σ̂
2 =

Q
n− k

=
e
′
e

n− k
(23)
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ANOVA

Adding to the standard assumptions the following
• The error term has a normal distribution so:εi ∼ N(0,σ2)

Reminding that

β̂ =


β̂1

β̂2
...

β̂k

=
(

X
′
X
)−1

X
′
Y (24)

follows

Yi = N
(
Xβ ,σ2) (25)

β̂i = N
(

βi,σ
2
⌊(

X
′
X
)−1
⌋

ii

)
(26)

β̂ = N
(

β ,σ2
(

X
′
X
)−1
)

(27)16 / 33
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ANOVA

In order to test the meaning of the whole model, we need to
test the hypothesis system

H0 : β1 = β2 == ....βk = 0
H1 : almeno un βj 6= 0

the test is
F =

ESS/(k−1)
RSS/(n−k)

=
R2/(k−1)

(1−R2)/n−k
∼ F(k−1,n−k)
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ANOVA

SS d.f. Mean Square (MS)

Model ESS = β̂
′
X
′
y = y

′
yR2 k-1 β̂

′
X
′
y/(k−1)

Residual RSS = e
′
e = y

′
y
(
1−R2

)
n-k e

′
e/(n−k)

Total TSS = y
′
y = ∑y2

i n-1

Table 1:

• Construct the F statistic F =
ESS/(k−1)
RSS/(n−k)

• Find the 95th or the 99th quantile of the distribution
F(k−1),(n−k)

• If F > F(1−α);(k−1),(n−k) one rejects
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R2

R2 =
ESS
TSS
≥ 0 (28)

R2 =
TSS−RSS

TSS
= 1− ∑e2

i

∑Y2
i
≤ 1 (29)

0≤ R2 ≤ 1 (30)
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Adjusted R2

• R2 never decreases when a new X variable is added to the
model

• this can be a disadvantage when comparing di�erent
models

• What is the net e�ect of adding a new variable?

• we lose a degree of freedom when a new X variable is
added

• did the new X variable add enough explanatory power to
o�set the loss of one degree of freedom?

• The adjusted R2 adjusts for the number of variables (k).

R2
adj = 1−

∑e2
i/(n−k)

∑Y2
i/(n−1)

= 1− (n−1)
(n− k)

(
1+R2) (31)

20 / 33



Multiple
Regression
Model

Prof. L. Neri

Model,
Hypothesis
and
Estimation

Inference

Dummy
Variables

References

Empirical example: ANOVA

SS d.f. MS

Model 29460 2 14730

Residual 27033 12 2252

Total 56493 14

Table 2:

R2 = 29460/56493 = 0.52 (32)

52% of the variation in pie sales is explained by the variation in
price and advertising

R2
adj = 0.44 (33)

44% of the variation in pie sales is explained by the variation in
price and advertising, taking into account the sample size and
the number of independent variables 21 / 33
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Empirical example: is the model signi�cant?

• F-test for the overall signi�cance of the model

• Shows if there is a linear relationship between all of the X
variables considered together and Y

• use F test statistic

• in the estimated model the empirical value of F is equal to
6.54

• the critical value of F0.05;2,12 is equal to 3.88
• 6.54 > 3.88 therefore the regression model explains a

signi�cant portion of the variation in pie sales (there is
evidence that at least one independent variable a�ects y)
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Single parameter t-test

β̂ ∼ N
(

β ,σ2
⌊(

X
′
X
)−1
⌋)

(34)

To test the hypothesis if the individual variable Xi has a
signi�cant e�ect on Y we have to test
H0:βi=0 (no linear relationship)
H1:βi 6=0 (linear relationship does exist between Xi and Y)
if σ2 is known, under H0 :

β̂i−0√
σ2
⌊
(X′X)−1

⌋
ii

∼ N (0,1) (35)
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Single parameter t-test

Generally σ2 is unknown and we have to use its estimator

σ̂
2 =

e
′
e

n− k
(36)

Therefore the Standard Errors of β is

se
β̂
=

√
σ̂2
⌊
(X′X)−1

⌋
(37)
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Single parameter t-test

under H0 we have:

β̂i−0√
σ2
⌊
(X′X)

−1
⌋

ii√
e′ e
σ2 /(n−k)

=
β̂i

se
β̂

∼ tn−k (38)

• Find the 95th or the 99th quantile of the distribution t(n−k)

• if |t|> t(1−α/2);(n−k) one rejects H0
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Empirical example: are individual variables

signi�cant?

coe�cients Standard Error t

Intercept 306 114.25 2.67

Price -24 10.83 -2.21

Advertising 74 25.96 2.85

Table 3:

At α =0.05 signi�cant level, the t-value for price is
|-2.21|>t(α/2;12) = 2.1788 so we refuse H0
At α =0.05 signi�cant level, the t-value for advertising is
|2.85|>t(α/2;12)=2.1788 so we refuse H0
There is evidence that both Price and Advertising a�ect pie
sales at α =0.05
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Dummy Variables

Until now we have assumed that in Y = Xβ +u, X are cardinal
variables.
One can also use categorial explanatory (i.e. �dummy�)
variables that identify speci�c factors depending on categories:

• Temporal e�ects

• Spacial e�ects

• Qualitative variables

We suppose that the Dummies in�uence just the model
intercept (not the slopes).
There will be di�erent regression interecepts corresponding to
the di�erent groups/situations, if the dummy variable is
signi�cant.
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Dummy Variables

Lets assume the following generic model:

Ŷ = β0 +β1X1 +β2X2 (39)

Where Y is the pie sale, X1 is the price and X2 is a holiday
indicator function, that will be equal to 1 when a holiday has
occurred during the week, and equal to 0 when there is no
holiday during the week.
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Dummy Variables

Ŷ = β0 +β1X1 +β2(1) = (β0 +β2) + β1 X1

Ŷ = β0 +β1X1 +β2(0) = (β0) + β1 X1︷ ︸︸ ︷
different
intercept

︷ ︸︸ ︷
same
slope

(40)

x1 price

y sales

Holiday

No Holiday

If H0 : β2 = 0
is rejected

Holiday has

a signi�cant e�ect

on pie sales
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Dummy Variables

Example:

Sales = 300−30(Price)+15(Holiday) (41)

• Sales = number of pies sold per week

• Price = pie price in $

• Holiday =

{
1
0

if holiday has occurred
if holiday has not occurred

As we see the dummy coe�cient β2 = 15. This implies that on
average 15 more pies were sold in weeks with holidays then in
weeks without holidays, given the same price.
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Dummy Variables

The number of dummy variables must always be one less then
the number of discriminated levels. Imagine that we are
analyzing the house market have three di�erent housing levels
{ranch, split level, condo}.
Example:

Ŷ = β0 +β1X1 +β2X2 +β3X3 (42)

Y = house price
X1 = square meters

X2 =

{
1
0

if ranch
if not

⇒ β2 impact of ranch vs. condo

X3 =

{
1
0

if split level
if not

⇒ β3 split level vs. condo
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Dummy Variables

Suppose the estimated equation is:

Ŷ = 20+0.05X1 +24X2 +15X3 (43)

The we will have as follows:
For a condo (x2 = x3 = 0):

ŷ = 20+0.05X1 (44)

For a ranch (x3 = 0):

ŷ = 44+0.05X1 (45)

For a split level (x2 = 0):

ŷ = 35+0.05X1 (46)
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