Elementi di statistica non parametrica

Lucio Barabesi

Indice

1	L equivalenza in distribuzione	1
	1.1 L'equivalenza in distribuzione	1
	1.2 L'equivalenza in distribuzione e le variabili casuali simmetriche	4
2	Le statistiche "distribution-free"	7
	2.1 I modelli statistici "distribution-free"	7
	2.2 Le statistiche "distribution-free"	8
	2.3 Le statistiche segno	9
	2.4 Le statistiche rango	10
	2.5 Le statistiche rango dei valori assoluti	13
3	Il test statistico "distribution-free"	17
	3.1 I test statistici "distribution-free"	17
	3.2 L'efficienza asintotica relativa	20
	3.3 La significatività osservata	29
4	Gli intervalli di confidenza "distribution-free"	31
	4.1 Gli intervalli di confidenza "distribution-free"	31
	4.2 Gli intervalli di confidenza "distribution-free" per grandi campioni	34
5	I test basati su statistiche lineari dei ranghi con segno	37
	5.1 I test basati su statistiche lineari dei ranghi con segno	37
	5.2 I test basati su statistiche lineari dei ranghi con segno localmente più potenti	40
	5.3 La distribuzione per grandi campioni delle statistiche lineari dei ranghi con segno	42
6	I tests per un parametro di posizione: un campione e due campioni appaiati	49
	6.1 Il test dei segni	49
	6.2 Le prestazioni del test dei segni	50
	6.3 Il test dei segni e gli intervalli di confidenza per la mediana	52
	6.4 Il test dei segni per due campioni appaiati	52
	6.5 Il test di Wilcoxon	53
	6.6 Le prestazioni del test di Wilcoxon	55
	6.7 Il test di Wilcoxon e gli intervalli di confidenza per la mediana	56
	6.8 Il test di Wilcoxon per due campioni appaiati	57
7	I test basati su statistiche lineari dei ranghi	59
	7.1 Le statistiche lineari dei ranghi	59
	7.2 La distribuzione per grandi campioni delle statistiche lineari dei ranghi	64
8	I test per i parametri di posizione: due campioni indipendenti	67
	8.1 Le statistiche lineari dei ranghi per i parametri di posizione	67
	8.2 La distribuzione per grandi campioni delle statistiche lineari	
	dei ranghi per i parametri di posizione	71
	8.3 Il test di Mann-Whitney-Wilcoxon	73
	8.4 Il test della mediana	74
	8.5 Le prestazioni del test di Mann-Whitney-Wilcoxon e del test della mediana	76

9	I test per i parametri di scala: due campioni indipendenti 9.1 Le statistiche lineari dei ranghi per i parametri di scala	79 79
	9.2 La distribuzione per grandi campioni delle statistiche lineari	1)
	dei ranghi per i parametri di scala	84
	9.3 Il test di Mood	86
	9.4 Il test di Ansari-Bradley	87
	9.5 Le prestazioni del test di Mood e del test di Ansari-Bradley	89
10	I test per l'associazione	91
	10.1 Verifica di ipotesi sull'associazione	91
	10.2 Il test di correlazione di Spearman	91
	10.3 Il test di correlazione di Kendall	94
11	L'analisi della varianza	103
	11.1 Ulteriori risultati per le statistiche rango	103
	11.2 Il test di Kruskal-Wallis	104
	11.3 Il test di Friedman	106
	11.4 Il test di concordanza di Kendall	109
12	I test funzionali	111
	13.1 Il test Chi-quadrato per la bontà di adattamento	111
	13.2 Il test Chi-quadrato per la bontà di adattamento con k campioni	115
	13.3 La statistica di Kolmogorov	117
	13.4 Il test di Kolmogorov	120
	13.5 La statistica di Kolmogorov-Smirnov	122
	13.6 Il test di Kolmogorov-Smirnov	124
Appendice		127
	A.1 Alcune distribuzioni e relative caratteristiche	127
	A.2 Alcuni risultati matematici	130
	A.3 Alcuni risultati di teoria delle probabilità	130
Tavole Bibliografia essenziale		13:
		159
Riferimenti bibliografici		159

Capitolo 1

L'equivalenza in distribuzione

1.1. L'equivalenza in distribuzione. L'equivalenza in distribuzione è una particolare relazione di equivalenza tra variabili casuali.

Definizione 1.1.1. Le variabili casuali X e Y, con rispettive funzioni di ripartizione F e G, sono dette equivalenti in distribuzione se

$$F(x) = G(x), \forall x \in \mathbb{R}$$
.

In modo analogo, i vettori di variabili casuali (X_1, \ldots, X_n) e (Y_1, \ldots, Y_n) , con rispettive funzioni di ripartizione congiunte F_n e G_n , sono detti equivalenti in distribuzione se

$$F_n(x_1,\ldots,x_n)=G_n(x_1,\ldots,x_n), \forall (x_1,\ldots,x_n)\in\mathbb{R}^n.$$

Per indicare che X e Y sono equivalenti in distribuzione si adotta la notazione

$$X \stackrel{d}{=} Y$$
.

mentre per indicare che (X_1,\ldots,X_n) e (Y_1,\ldots,Y_n) sono equivalenti in distribuzione si adotta la notazione

$$(X_1,\ldots,X_n)\stackrel{d}{=}(Y_1,\ldots,Y_n)$$
.

L'equivalenza in distribuzione rappresenta in effetti una relazione di equivalenza, in quanto risulta riflessiva, ovvero

$$X \stackrel{d}{=} X$$
,

simmetrica, ovvero

$$X \stackrel{d}{=} Y \Leftrightarrow Y \stackrel{d}{=} X ,$$

e transitiva, ovvero

$$X \stackrel{d}{=} Y, Y \stackrel{d}{=} Z \Rightarrow X \stackrel{d}{=} Z$$
.

- Esempio 1.1.1. Si consideri le variabili casuali X e Y, con rispettive funzioni di ripartizione F e G, dove $G(x) = F(x \lambda)$ con $\lambda \in \mathbb{R}$. La trasformata $Z = Y \lambda$ ha per funzione di ripartizione F, per cui dalla Definizione 1.1.1 risulta $X \stackrel{d}{=} Z$. Di conseguenza, si ha $X \stackrel{d}{=} Y \lambda$. Alternativamente, si consideri le variabili casuali X e Y, con rispettive funzioni di ripartizione F e G, dove $G(x) = F(x/\delta)$ con $\delta \in \mathbb{R}^+$. La trasformata $Z = Y/\delta$ ha per funzione di ripartizione F, per cui dalla Definizione 1.1.1 risulta $X \stackrel{d}{=} Z$ e dunque $X \stackrel{d}{=} Y/\delta$.
- Esempio 1.1.2. Si consideri le variabili casuali X e Y equivalenti in distribuzione e sia F la loro funzione di ripartizione comune. Inoltre, sia data una trasformata misurabile U per cui $\mathrm{E}(U(X)) < \infty$. Dalla definizione di valor medio si ha

$$E(U(X)) = \int_{\mathbb{R}} U(x) dF(x) = \int_{\mathbb{R}} U(y) dF(y) = E(U(Y)),$$

dal momento che X e Y possiedono la stessa funzione di ripartizione. Dunque, si può concludere che se X e Y sono equivalenti in distribuzione allora possiedono i medesimi momenti. Analogamente, se (X_1, \ldots, X_n) e (Y_1, \ldots, Y_n) sono vettori di variabili casuali equivalenti in distribuzione e se (U_1, \ldots, U_k) è un vettore di trasformate misurabili per cui $\mathrm{E}(U_j(X_1, \ldots, X_n)) < \infty$, allora risulta

$$E(U_j(X_1,...,X_n)) = E(U_j(Y_1,...,Y_n)), j = 1,...,k.$$

Si noti infine che la proposizione inversa non è valida, ovvero possono esistere due variabili casuali X e Y che possiedono i medesimi momenti, ma che non sono equivalenti in distribuzione.

• Esempio 1.1.3. Si consideri le variabili casuali X e Y equivalenti in distribuzione. Tenendo presente il risultato dell'Esempio 1.1.2, per un dato insieme misurabile $A \subset \mathbb{R}$ risulta

$$E(\mathbf{1}_A(X)) = E(\mathbf{1}_A(Y)).$$

Dal momento che $E(\mathbf{1}_A(X)) = \Pr(X \in A)$ e $E(\mathbf{1}_A(Y)) = \Pr(Y \in A)$, allora si ha

$$Pr(X \in A) = Pr(Y \in A)$$
.

• Esempio 1.1.4. Si consideri i vettori di variabili casuali (X_1, \ldots, X_n) e (Y_1, \ldots, Y_n) equivalenti in distribuzione. Se $A = \{(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 < \ldots < x_n\}$, tenendo presente il risultato dell'Esempio 1.1.3, risulta

$$E(\mathbf{1}_A(X_1,\ldots,X_n))=E(\mathbf{1}_A(Y_1,\ldots,Y_n)).$$

Si ha $\mathrm{E}(\mathbf{1}_A(X_1,\ldots,X_n)) = \mathrm{Pr}(X_1 < \ldots < X_n)$ e $\mathrm{E}(\mathbf{1}_A(Y_1,\ldots,Y_n)) = \mathrm{Pr}(Y_1 < \ldots < Y_n)$ e si deve concludere che

$$\Pr(X_1 < \dots < X_n) = \Pr(Y_1 < \dots < Y_n).$$

• **Esempio 1.1.5.** Si consideri i vettori di variabili casuali (X_1, \ldots, X_n) e (Y_1, \ldots, Y_n) , tali che $X_i \stackrel{d}{=} Y_i$ per $i=1,\ldots,n$. Si noti che non si può affermare che (X_1,\ldots,X_n) è equivalente in distribuzione a (Y_1,\ldots,Y_n) , come si potrebbe ingenuamente concludere in un primo momento. Infatti, (X_1,\ldots,X_n) e (Y_1,\ldots,Y_n) possiedono in generale funzioni di ripartizione congiunte differenti, anche se con identiche funzioni di ripartizione marginali.

Il seguente teorema estende l'equivalenza in distribuzione a trasformate, nel senso che l'equivalenza rimane valida applicando una trasformata misurabile ad ambo i membri della stessa.

Teorema 1.1.2. Se X e Y sono variabili casuali equivalenti in distribuzione e se U è una trasformata misurabile, allora

$$U(X) \stackrel{d}{=} U(Y)$$
.

Inoltre, se $(X_1, ..., X_n)$ e $(Y_1, ..., Y_n)$ sono vettori di variabili casuali equivalenti in distribuzione e se $(U_1, ..., U_k)$ è un vettore di trasformate misurabili, allora

$$(U_1(X_1,\ldots,X_n),\ldots,U_k(X_1,\ldots,X_n)) \stackrel{d}{=} (U_1(Y_1,\ldots,Y_n),\ldots,U_k(Y_1,\ldots,Y_n)).$$

Dimostrazione. Se F è la funzione di ripartizione comune alle variabili casuali X e Y e se A è un insieme misurabile, allora

$$\Pr(U(X) \in A) = \int_{\mathbb{R}} \mathbf{1}_A(U(x)) \, dF(x) = \int_{\mathbb{R}} \mathbf{1}_A(U(y)) \, dF(y) = \Pr(U(Y) \in A) \, .$$

Dal momento che la precedente relazione è vera per ogni insieme misurabile A, dalla Definizione 1.1.1 risulta $U(X) \stackrel{d}{=} U(Y)$. Risulta analoga la dimostrazione nel caso di due vettori di variabili casuali.

• **Esempio 1.1.6.** Se X e Y sono variabili casuali equivalenti in distribuzione, si consideri la trasformata $U(x) = (x - \lambda)/\delta$, con λ e δ costanti. Dal Teorema 1.1.2 si ha

$$\frac{X-\lambda}{\delta} \stackrel{d}{=} \frac{Y-\lambda}{\delta} ,$$

ovvero in una equivalenza in distribuzione è possibile aggiungere o moltiplicare i membri per una costante.⊲

• Esempio 1.1.7. Il risultato dell'Esempio 1.1.6 non rimane valido in generale se si aggiunge o si moltiplica i membri per una quantità stocastica. Si consideri infatti una variabile casuale X assolutamente continua con funzione di ripartizione F e tale che $X \stackrel{d}{=} -X$. Se si moltiplica ambo i membri dell'equivalenza per X si dovrebbe concludere che le variabili casuali $Y = X^2$ e $Z = -X^2$ sono equivalenti in distribuzione. Questa affermazione è falsa in quanto Y è ovviamente una variabile casuale il cui supporto è contenuto in \mathbb{R}^+ , mentre Z è una variabile casuale il cui supporto è contenuto in \mathbb{R}^- . Infatti la funzione di ripartizione di Y risulta

$$G(y) = \Pr(Y \le y) = \Pr(X^2 \le y) = (F(\sqrt{y}) - F(-\sqrt{y})) \mathbf{1}_{[0,\infty)}(y)$$
 ,

mentre la funzione di ripartizione di Z risulta

$$H(z) = \Pr(Z \le z) = \Pr(-X^2 \le z) = (1 - F(\sqrt{-z}) + F(-\sqrt{-z})) \, \mathbf{1}_{(-\infty,0)}(z) + \mathbf{1}_{[0,\infty)}(z) \, .$$

Questo esempio serve a sottolineare che si deve porre una certa cautela nell'applicare la nozione di equivalenza in distribuzione. In particolare, il Teorema 1.1.2 rimane valido solo se si considera trasformate misurabili.

• Esempio 1.1.8. Se (X_1,\ldots,X_n) e (Y_1,\ldots,Y_n) sono vettori di variabili casuali equivalenti in distribuzione, allora si consideri il vettore di trasformate (U_1,\ldots,U_n) tale che $U_i(x_1,\ldots,x_n)=x_i$ per $i=1,\ldots,n$. Dal Teorema 1.1.2 risulta $X_i\stackrel{d}{=}Y_i$ per $i=1,\ldots,n$, ovvero si deve concludere che se due vettori di variabili casuali sono equivalenti in distribuzione allora anche le singole componenti dei vettori sono ordinatamente equivalenti in distribuzione.

Il seguente teorema consente di ottenere una relazione di equivalenza in distribuzione per un vettore di variabili casuali indipendenti e ugualmente distribuite.

Teorema 1.1.3. Se (X_1, \ldots, X_n) è un vettore di variabili casuali indipendenti e ugualmente distribuite e $(\alpha_1, \ldots, \alpha_n)$ è una qualsiasi permutazione di $(1, \ldots, n)$, allora

$$(X_1,\ldots,X_n)\stackrel{d}{=}(X_{\alpha_1},\ldots,X_{\alpha_n})$$
.

Dimostrazione. Se F è la funzione di ripartizione marginale di X_i per $i=1,\ldots,n$, allora la funzione di ripartizione congiunta di (X_1,\ldots,X_n) è data da

$$F_n(x_1,...,x_n) = \prod_{i=1}^n F(x_i)$$
.

Dal momento che la funzione di ripartizione congiunta di $(X_{lpha_1},\dots,X_{lpha_n})$ risulta

$$G_n(x_{\alpha_1},\ldots,x_{\alpha_n}) = \prod_{i=1}^n F(x_{\alpha_i}) = \prod_{i=1}^n F(x_i) = F_n(x_1,\ldots,x_n),$$

allora si ha $G_n(x_1,\ldots,x_n)=F_n(x_1,\ldots,x_n)$ per ogni $(x_1,\ldots,x_n)\in\mathbb{R}^n$, e dalla Definizione 1.1.1 si conclude che $(X_1,\ldots,X_n)\stackrel{d}{=}(X_{\alpha_1},\ldots,X_{\alpha_n})$.

1.2. L'equivalenza in distribuzione e le variabili casuali simmetriche. In questa sezione vengono introdotte alcune relazioni di equivalenza in distribuzione per variabili casuali simmetriche. A questo fine si consideri innanzitutto la definizione di variabile casuale simmetrica.

Definizione 1.2.1. Una variabile casuale X con funzione di ripartizione F è detta simmetrica rispetto ad una costante λ se

$$F(\lambda + x) = 1 - F(\lambda - x) + \Pr(X = \lambda - x), \forall x \in \mathbb{R}.$$

• Esempio 1.2.1. Se X è una variabile casuale assolutamente continua, simmetrica rispetto a λ , e con funzione di ripartizione F e funzione di densità f, allora dalla Definizione 1.2.1 risulta

$$F(\lambda + x) = 1 - F(\lambda - x), \forall x \in \mathbb{R}$$

da cui si ha inoltre

$$f(\lambda + x) = f(\lambda - x), \forall x \in \mathbb{R}$$
.

Se invece X è una variabile casuale discreta, simmetrica rispetto a λ , con funzione di ripartizione F e funzione di probabilità p, allora dalla Definizione 1.2.1 risulta

$$F(\lambda + x) = 1 - F(\lambda - x) + p(\lambda - x), \forall x \in \mathbb{R}$$

da cui si ottiene inoltre

$$p(\lambda + x) = p(\lambda - x), \forall x \in \mathbb{R}$$
.

Nel seguente teorema si ottiene una condizione necessaria e sufficiente per la simmetria rispetto ad una costante.

Teorema 1.2.2. La variabile casuale X ha una distribuzione simmetrica rispetto alla costante λ se e solo se

$$X - \lambda \stackrel{d}{=} \lambda - X$$
.

Dimostrazione. Si dimostra innanzitutto che la condizione è necessaria. Se X è simmetrica rispetto a λ con funzione di ripartizione F, allora la funzione di ripartizione della trasformata $Y = X - \lambda$ è data da

$$G(y) = \Pr(Y \le y) = \Pr(X - \lambda \le y) = \Pr(X \le \lambda + y) = F(\lambda + y)$$
,

mentre, tenendo presente la definizione di variabile casuale simmetrica, la funzione di ripartizione della trasformata $Z = \lambda - X$ risulta

$$H(z) = \Pr(Z \le z) = \Pr(\lambda - X \le z) = \Pr(X \ge \lambda - z)$$

= 1 - F(\lambda - z) + \Pr(X = \lambda - z) = F(\lambda + z).

Dal momento che Y e Z possiedono la medesima funzione di ripartizione, dalla Definizione 1.1.1 si ha $Y \stackrel{d}{=} Z$, ovvero $X - \lambda \stackrel{d}{=} \lambda - X$. Si dimostra che la condizione è sufficiente. Se $X - \lambda \stackrel{d}{=} \lambda - X$, dalla definizione di equivalenza in distribuzione risulta

$$Pr(X - \lambda \le x) = Pr(\lambda - X \le x)$$
.

◁

◁

Tenendo presente la precedente relazione si ha

$$F(\lambda + x) = \Pr(X \le \lambda + x) = \Pr(X - \lambda \le x) = \Pr(\lambda - X \le x)$$
$$= \Pr(X \ge \lambda - x) = 1 - F(\lambda - x) + \Pr(X = \lambda - x),$$

ovvero X è simmetrica rispetto a λ .

• Esempio 1.2.2. Sia (X_1, X_2) un vettore di variabili casuali tale che $(X_1, X_2) \stackrel{d}{=} (X_2, X_1)$ e si consideri la trasformata $U(x_1, x_2) = x_1 - x_2$. Dal Teorema 1.1.2 si ottiene dunque

$$X_1 - X_2 \stackrel{d}{=} X_2 - X_1 ,$$

ovvero

$$X_1 - X_2 \stackrel{d}{=} - (X_1 - X_2)$$
.

Dunque, per il Teorema 1.2.2 la trasformata $(X_1 - X_2)$ è simmetrica rispetto a 0.

• Esempio 1.2.3. Sia X una variabile casuale simmetrica rispetto a λ con $E(X) < \infty$. Dal Teorema 1.2.2 si ha $X - \lambda \stackrel{d}{=} \lambda - X$. Dal momento che variabili casuali equivalenti in distribuzione hanno la stessa media (vedi Esempio 1.1.2), allora

$$E(X - \lambda) = E(\lambda - X),$$

ovvero

$$E(X) - \lambda = \lambda - E(X)$$
,

da cui infine risulta $E(X) = \lambda$.

Il seguente teorema considera un insieme di equivalenze in distribuzione per un vettore di variabili casuali le cui componenti sono indipendenti e simmetriche.

Teorema 1.2.3. Se $(X_1, ..., X_n)$ è un vettore di variabili casuali indipendenti tali che X_i è simmetrica rispetto a λ_i per i = 1, ..., n, allora

$$(X_1 - \lambda_1, \dots, X_n - \lambda_n) \stackrel{d}{=} (\lambda_1 - X_1, \dots, X_n - \lambda_n) \stackrel{d}{=} \dots \stackrel{d}{=} (\lambda_1 - X_1, \dots, \lambda_n - X_n)$$

dove l'equivalenza in distribuzione è estesa a tutte le possibili 2^n configurazioni di vettori.

Dimostrazione. Si dimostra la prima delle equivalenze in distribuzione. Per il Teorema 1.2.2 la simmetria di X_i rispetto a λ_i implica $X_i - \lambda_i \stackrel{d}{=} \lambda_i - X_i$, ovvero dalla definizione di equivalenza in distribuzione si ottiene

$$\Pr(X_i - \lambda_i \leq x) = \Pr(\lambda_i - X_i \leq x), i = 1, \dots, n.$$

Data l'indipendenza delle componenti di (X_1, \ldots, X_n) , risulta dunque

$$\Pr(X_1 - \lambda_1 \le x_1, \dots, X_n - \lambda_n \le x_n) = \prod_{i=1}^n \Pr(X_i - \lambda_i \le x_i) = \Pr(\lambda_1 - X_1 \le x_1) \prod_{i=2}^n \Pr(X_i - \lambda_i \le x_i)$$

$$= \Pr(\lambda_1 - X_1 \le x_1, \dots, X_n - \lambda_n \le x_n),$$

ovvero $(X_1 - \lambda_1, \dots, X_n - \lambda_n) \stackrel{d}{=} (\lambda_1 - X_1, \dots, X_n - \lambda_n)$. In modo analogo si ottiene la dimostrazione delle altre equivalenze in distribuzione.

• Esempio 1.2.4. Sia (X_1, \ldots, X_n) un campione casuale da una variabile casuale X simmetrica rispetto a λ . Dal Teorema 1.2.3 risulta dunque $(X_1 - \lambda, \ldots, X_n - \lambda) \stackrel{d}{=} (\lambda - X_1, \ldots, \lambda - X_n)$. Inoltre, se si considera la trasformata $U(x_1, \ldots, x_n) = n^{-1} \sum_{i=1}^n x_i$, dal Teorema 1.1.2 si ha

◁

$$\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\lambda\right)\stackrel{d}{=}\frac{1}{n}\sum_{i=1}^{n}\left(\lambda-X_{i}\right),$$

ovvero

$$\bar{X} - \lambda \stackrel{d}{=} \lambda - \bar{X}$$
,

dove $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ è la media campionaria. Tenendo presente il Teorema 1.2.2, la precedente equivalenza in distribuzione porta a concludere che la media campionaria è simmetrica rispetto a λ .

• Esempio 1.2.5. Sia (X_1, \ldots, X_n) un campione casuale da una variabile casuale X continua e simmetrica rispetto a 0. Dal Teorema 1.2.3 risulta

$$(X_1,\ldots,X_n)\stackrel{d}{=}(-X_1,\ldots,-X_n).$$

Si consideri il vettore di trasformate (U_1,\ldots,U_n) tale che $U_i(x_1,\ldots,x_n)=x_{(i)}$, dove $x_{(i)}$ rappresenta l'i-esimo elemento ordinato nel vettore (x_1,\ldots,x_n) per $i=1,\ldots,n$. Si ha $U_i(-x_1,\ldots,-x_n)=-x_{(n-i+1)}$ per $i=1,\ldots,n$, in quanto cambiando il segno agli elementi del vettore (x_1,\ldots,x_n) se ne inverte l'ordinamento. Dal Teorema 1.1.2 si ottiene dunque

$$(X_{(1)},\ldots,X_{(n)})\stackrel{d}{=}(-X_{(n)},\ldots,-X_{(1)}),$$

dove $X_{(i)}$ rappresenta l'i-esima statistica ordinata per $i=1,\ldots,n$. In particolare, tenendo presente l'Esempio 1.1.8, si ha $X_{(i)} \stackrel{d}{=} -X_{(n-i+1)}$ per $i=1,\ldots,n$. Risulta analogo verificare che, se (X_1,\ldots,X_n) è un campione casuale da una variabile casuale X assolutamente continua e simmetrica rispetto a λ , allora

$$(X_{(1)}-\lambda,\ldots,X_{(n)}-\lambda)\stackrel{d}{=}(\lambda-X_{(n)},\ldots,\lambda-X_{(1)}),$$

che implica $X_{(i)} - \lambda \stackrel{d}{=} \lambda - X_{(n-i+1)}$ per $i = 1, \dots, n$.

• Esempio 1.2.6. Sia (X_1,\ldots,X_n) un campione casuale da una variabile casuale X assolutamente continua e simmetrica rispetto a 0. Tenendo presente l'Esempio 1.2.5, si applichi all'equivalenza in distribuzione $(X_{(1)},\ldots,X_{(n)})\stackrel{d}{=} (-X_{(n)},\ldots,-X_{(1)})$ la trasformata U, tale che $U(x_1,\ldots,x_n)=x_{(l)}$ con l=(n+1)/2 se n è dispari e $U(x_1,\ldots,x_n)=(x_{(l)}+x_{(l+1)})/2$ con l=n/2 se n è pari. Dal Teorema 1.1.2 per n dispari si ha dunque

$$X_{(l)} \stackrel{d}{=} -X_{(l)} ,$$

mentre per n pari si ha

$$\frac{1}{2} \left(X_{(l)} + X_{(l+1)} \right) \stackrel{d}{=} \, - \frac{1}{2} \left(X_{(l)} + X_{(l+1)} \right).$$

Dal momento che la mediana campionaria è usualmente definita come $\widetilde{X}=X_{(l)}$ con l=(n+1)/2 se n è dispari ed è definita come $\widetilde{X}=(X_{(l)}+X_{(l+1)})/2$ con l=n/2 se n è pari, allora risulta

$$\widetilde{X} \stackrel{d}{=} -\widetilde{X}$$
,

ovvero, tenendo presente il Teorema 1.2.2, si deve concludere che in questo caso la mediana campionaria è simmetrica rispetto a 0. Risulta analogo verificare che se (X_1, \ldots, X_n) è un campione casuale da una variabile casuale X assolutamente continua e simmetrica rispetto a λ , allora la mediana campionaria è simmetrica rispetto a λ .

Capitolo 2

Le statistiche "distribution-free"

2.1. I modelli statistici "distribution-free". Nella statistica inferenziale classica si assume nota la morfologia funzionale delle funzioni di ripartizione congiunte specificate dal modello statistico, e in particolare si assume che queste siano dello stesso tipo a meno di un insieme di parametri. Invece, nella statistica moderna si tende a non fare assunzioni funzionali sulla distribuzione congiunta del campione, ovvero si considera i cosiddetti modelli statistici "distribution-free" (una definizione anglosassone ormai consolidata anche nella terminologia statistica italiana). Un modello statistico "distribution-free" ha la seguente definizione formale.

Definizione 2.1.1. Si consideri il campione (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}$, dove \mathcal{F} è una classe di funzioni di ripartizione congiunte, ovvero un modello statistico. Se \mathcal{F} contiene più di una famiglia di funzioni di ripartizione congiunte, allora è detto modello statistico "distribution-free". \triangle

• Esempio 2.1.1. Il modello statistico

$$\mathcal{F} = \{F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^n \Phi((x_i - \mu)/\sigma), \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+\}$$

non è "distribution-free", in quanto contiene una sola famiglia di funzioni di ripartizione congiunte, ovvero le funzioni di ripartizione congiunte di un campione casuale da una distribuzione $N(\mu, \sigma^2)$. Il precedente modello statistico è tipico nell'inferenza classica. Invece, se \mathcal{C}_n rappresenta la classe delle funzioni di ripartizione di un vettore di n variabili casuali assolutamente continue, allora

$$\mathcal{F} = \{F_n : F_n \in \mathcal{C}_n\}$$

◁

costituisce un modello statistico "distribution-free".

Frequentemente il modello statistico è del tipo \mathcal{F}_{ψ} , ovvero è indicizzato mediante un insieme di "parametri" ψ (non necessariamente reali). Importanti modelli statistici "distribution-free" possono essere indicizzati in questa maniera. Ad esempio nel seguito sarà fatto riferimento al modello statistico "distribution-free"

$$C_F = \{F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^n F(x_i), F \in C\},$$

dove C rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua. Quindi, C_F rappresenta il modello statistico relativo ad un campione casuale proveniente da una variabile casuale assolutamente continua. Una importante sottoclasse di C_F è data dal modello statistico "distribution-free"

$$\mathcal{M}_{\lambda,F} = \{F_n : F_n(x_1,\ldots,x_n) = \prod_{i=1}^n F(x_i-\lambda), F \in \mathcal{M}, \lambda \in \mathbb{R}\},$$

dove \mathcal{M} rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua con mediana pari a 0, ovvero

$$\mathcal{M} = \{ F : F \in \mathcal{C}, F(0) = 1/2 \} .$$

Dunque, $\mathcal{M}_{\lambda,F}$ rappresenta il modello statistico relativo ad un campione casuale proveniente da una variabile casuale assolutamente continua con funzione di ripartizione $F(x-\lambda)$ e con mediana pari a λ . Una sottoclasse di $\mathcal{M}_{\lambda,F}$ è data dal modello statistico "distribution-free"

$$\mathcal{S}_{\lambda,F} = \{F_n : F_n(x_1,\ldots,x_n) = \prod_{i=1}^n F(x_i-\lambda), F \in \mathcal{S}, \lambda \in \mathbb{R}\},$$

dove S rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua e simmetrica rispetto a 0, ovvero

$$S = \{F : F \in C, F(x) = 1 - F(-x)\}.$$

Dunque, $S_{\lambda,F}$ rappresenta il modello statistico relativo ad un campione casuale proveniente da una variabile casuale assolutamente continua con funzione di ripartizione $F(x-\lambda)$ e simmetrica rispetto a λ . Due ulteriori sottoclassi di C_F di uso frequente sono rappresentati dai modelli statistici "distribution-free"

$$\mathcal{L}_{\Delta,F} = \{ F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^{n_1} F(x_i) \prod_{i=n_1+1}^n F(x_i - \Delta), F \in \mathcal{C}, \Delta \in \mathbb{R} \},$$

e

$$\mathcal{V}_{\eta,F} = \{F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^{n_1} F(x_i) \prod_{i=n_1+1}^n F(x_i/\eta), F \in \mathcal{C}, \ \eta \in \mathbb{R}^+ \},$$

dove $1 \leq n_1 \leq n$.

2.2. Le statistiche "distribution-free". Le statistiche "distribution-free" hanno la seguente definizione formale.

Definizione 2.2.1. Si consideri il campione (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}$, dove \mathcal{F} è un modello statistico. La statistica $T = T(X_1, \ldots, X_n)$ è detta "distribution-free" su \mathcal{F} se la corrispondente funzione di ripartizione rimane invariata per ogni $F_n \in \mathcal{F}$.

• Esempio 2.2.1. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\sigma}$, dove

$$\mathcal{F}_{\sigma} = \{F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^n \Phi(x_i/\sigma), \ \sigma \in \mathbb{R}^+\}.$$

Il modello statistico \mathcal{F}_{σ} è quello relativo ad un campione casuale da una distribuzione Normale $N(0,\sigma^2)$. Se \overline{X} e S^2 rappresentano rispettivamente la media campionaria e la varianza campionaria corretta, allora la statistica $T=\sqrt{n}\overline{X}/S$ è distribuita come una t di Student con (n-1) gradi di libertà. Dal momento che la distribuzione di T non dipende dal parametro σ , allora T è una statistica "distribution-free" su \mathcal{F}_{σ} .

L'Esempio 2.2.1 evidenzia che una tipica statistica dell'inferenza classica può essere considerata "distribution-free" su un particolare modello statistico classico. Tuttavia, usualmente una statistica è detta "distribution-free" quando il modello statistico \mathcal{F} è anch'esso "distribution-free". Quando si dispone di campioni di numerosità elevata si considerano anche statistiche "distribution-free" per grandi campioni, che sono definite formalmente di seguito.

Definizione 2.2.2. Si consideri il campione (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}$, dove \mathcal{F} è un modello statistico per ogni n. La statistica $T = T_n = T_n(X_1, \ldots, X_n)$ è detta "distribution-

◁

 \triangle

free" per grandi campioni su \mathcal{F} , se per $n \to \infty$ risulta $T_n \stackrel{d}{\to} V$ per ogni $F_n \in \mathcal{F}$, dove V è una variabile casuale limite.

• Esempio 2.2.2. Si consideri il modello statistico "distribution-free"

$$\mathcal{F}_{\sigma,F} = \{F_n : F_n \in \mathcal{C}_F, E(X) = 0, Var(X) = \sigma^2 < \infty\}.$$

Se (X_1, \dots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\sigma,F}$, si consideri la statistica $T = T_n = \sqrt{nX}/S$ dell'Esempio 2.2.1. La statistica T_n può essere espressa come

$$T_n = \frac{\bar{X}}{\sigma/\sqrt{n}} \frac{\sigma}{S} .$$

Dal momento che $S^2 \xrightarrow{p} \sigma^2$ per $n \to \infty$ (vedi Esempio A.3.4), per il Teorema di Sverdrup (Teorema A.3.4) si ha $S \xrightarrow{p} \sigma$ per $n \to \infty$. Inoltre, per il Teorema Fondamentale Classico del Limite (Teorema A.3.6) si ha $\sqrt{n}\overline{X}/\sigma \xrightarrow{d} N(0,1)$. Combinando questi risultati mediante il Teorema di Slutsky (Teorema A.3.5) si ottiene infine

$$T_n = \frac{\overline{X}}{S/\sqrt{n}} \stackrel{d}{\to} N(0,1) .$$

Si deve dunque concludere che la statistica T_n è "distribution-free" per grandi campioni su $\mathcal{F}_{\sigma,F}$.

2.3. Le statistiche segno. In questa sezione viene introdotta una prima classe di statistiche "distribution-free", ovvero le cosiddette statistiche segno.

Definizione 2.3.1. Sia (X_1, \dots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{0,F}$. Si definiscono statistiche segno le trasformate

$$Z_i = \mathbf{1}_{(0,\infty)}(X_i) , i = 1, \dots, n .$$

Il vettore di statistiche (Z_1, \ldots, Z_n) è detto vettore dei segni.

Ogni statistica segno Z_i assume valore 1 se $X_i > 0$ (ovvero se X_i è maggiore della mediana) e il valore 0 altrimenti, e da questo fatto deriva la loro denominazione. Il seguente teorema fornisce la distribuzione congiunta delle statistiche segno.

Teorema 2.3.2. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{0,F}$, il relativo vettore dei segni $(Z_1, ..., Z_n)$ ha componenti indipendenti ed ugualmente distribuite come variabili casuali Binomiali Bi(1, 1/2).

Dimostrazione. Dal momento che dalla Definizione 2.3.1 ogni statistica segno Z_i è trasformata solo della relativa X_i , e poichè il campione casuale (X_1, \ldots, X_n) ha componenti indipendenti, allora anche le componenti del vettore dei segni (Z_1, \ldots, Z_n) sono indipendenti. Inoltre, il supporto della statistica segno Z_i è l'insieme $\{0, 1\}$. Dalla assunzione di continuità per X_i si ha

$$\Pr(Z_i = 1) = \Pr(X_i > 0) = 1 - F(0) = \frac{1}{2}, i = 1, ..., n,$$

e di conseguenza

$$\Pr(Z_i = 0) = 1 - \Pr(Z_i = 1) = \frac{1}{2}, i = 1, \dots, n.$$

Dunque, si deve concludere che la statistica segno Z_i ha distribuzione Binomiale Bi(1, 1/2).

 \triangle

Corollario 2.3.3. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{0,F}$. Se $T = T(Z_1, ..., Z_n)$, ovvero T è una statistica basata solo sul vettore dei segni, allora T è "distribution-free" su $\mathcal{M}_{0,F}$.

Dimostrazione. Il risultato segue dal Teorema 2.3.2 e dalla Definizione 2.3.1, in quanto per qualsiasi distribuzione congiunta $F_n \in \mathcal{M}_{0,F}$ la statistica T è distribuita come una trasformata di un vettore di variabili casuali indipendenti ed ugualmente distribuite, ognuna con distribuzione Binomiale Bi(1, 1/2). \square

• Esempio 2.3.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{0,F}$. Si consideri la statistica

$$B = \sum_{i=1}^{n} Z_i ,$$

che rappresenta il numero di osservazioni positive nel campione. Utilizzando il Teorema 2.3.2 si verifica che B ha distribuzione Binomiale Bi(n,1/2). Di conseguenza, poichè la funzione di ripartizione di B rimane invariata per ogni funzione di ripartizione congiunta di $\mathcal{M}_{0,F}$, allora B è una statistica "distribution-free" su $\mathcal{M}_{0,F}$. Questo risultato può essere ottenuto dal Corollario 2.3.3.

2.4. Le statistiche rango. La classe delle statistiche rango è fondamentale per costruire statistiche "distribution-free". La seguente è la definizione formale di statistica rango.

Definizione 2.4.1. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Si definiscono statistiche rango le seguenti trasformate

$$R_i = \sum_{j=1}^n \mathbf{1}_{[0,\infty)}(X_i - X_j) , i = 1, \dots, n .$$

Il vettore di statistiche (R_1, \ldots, R_n) è detto vettore dei ranghi.

La statistica R_i rappresenta la posizione di X_i all'interno del campione ordinato, ovvero

$$X_i = X_{(R_i)}, i = 1, \dots, n,$$

e da questo deriva ovviamente la denominazione di statistiche rango.

Definizione 2.4.2. Si definisce insieme delle permutazioni $\mathcal{R}_n \subset \mathbb{R}^n$ dato da

$$\mathcal{R}_n = \{(r_1, \dots, r_n) : (r_1, \dots, r_n) \text{ è una permutazione di } (1, \dots, n)\}$$
 . \triangle

Nel seguente teorema viene ottenuta la distribuzione congiunta del vettore dei ranghi.

Teorema 2.4.3. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in C_F$, allora la funzione di probabilità congiunta del relativo vettore dei ranghi (R_1, \ldots, R_n) è data da

$$\Pr(R_1 = r_1, \dots, R_n = r_n) = \frac{1}{n!} \mathbf{1}_{\mathcal{R}_n}(r_1, \dots, r_n).$$

Dimostrazione. Il vettore di variabili casuali (R_1, \ldots, R_n) è discreto con supporto \mathcal{R}_n . Per un prefissato $(r_1, \ldots, r_n) \in \mathcal{R}_n$ risulta

$$\Pr(R_1 = r_1, \dots, R_n = r_n) = \Pr(X_1 = X_{(r_1)}, \dots, X_n = X_{(r_n)}) = \Pr(X_{d_1} < \dots < X_{d_n}),$$

dove d_i è la posizione del numero i nella permutazione (r_1, \ldots, r_n) . Dal Teorema 1.1.3 si ha inoltre $(X_1, \ldots, X_n) \stackrel{d}{=} (X_{d_1}, \ldots, X_{d_n})$, che implica (vedi Esempio 1.1.4)

$$\Pr(X_{d_1} < \ldots < X_{d_n}) = \Pr(X_1 < \ldots < X_n)$$
.

Dunque, risulta

$$Pr(R_1 = r_1, ..., R_n = r_n) = Pr(X_1 < ... < X_n) = Pr(R_1 = 1, ..., R_n = n)$$
.

Inoltre, dal momento che $\#(\mathcal{R}_n) = n!$, si ha

$$\sum_{\substack{(r_1, \dots, r_n) \in \mathcal{R}_n}} \Pr(R_1 = r_1, \dots, R_n = r_n) = \sum_{\substack{(r_1, \dots, r_n) \in \mathcal{R}_n}} \Pr(R_1 = 1, \dots, R_n = n)$$

$$= n! \Pr(R_1 = 1, \dots, R_n = n).$$

Infine, essendo

$$\sum_{(r_1,\ldots,r_n)\in\mathcal{R}_n} \Pr(R_1=r_1,\ldots,R_n=r_n)=1\;,$$

allora segue

$$\Pr(R_1 = 1, \dots, R_n = n) = \frac{1}{n!}$$
.

Si deve concludere dunque che

$$\Pr(R_1 = r_1, \dots, R_n = r_n) = \Pr(R_1 = 1, \dots, R_n = n) = \frac{1}{n!}, (r_1, \dots, r_n) \in \mathcal{R}_n$$

ovvero il vettore dei ranghi (R_1, \ldots, R_n) è distribuito uniformemente su \mathcal{R}_n .

Dal Teorema 2.4.3 è possibile ricavare i seguenti quattro corollari.

Corollario 2.4.4. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. La funzione di probabilità della statistica rango R_i , per i = 1, ..., n, risulta

$$\Pr(R_i = r) = \frac{1}{n}, r = 1, ..., n$$

la funzione di probabilità congiunta di una scelta di due statistiche rango (R_i, R_j) per $i \neq j = 1, ..., n$, risulta

$$\Pr(R_i=r_1,R_j=r_2)=rac{1}{n(n-1)}$$
 , $r_1
eq r_2=1,\ldots,n$,

mentre la funzione di probabilità congiunta di una scelta di k = 1, ..., n statistiche rango $(R_{i_1}, ..., R_{i_k})$ per $i_1 \neq ... \neq i_k = 1, ..., n$, risulta

$$\Pr(R_{i_1} = r_1, \dots, R_{i_k} = r_k) = \frac{1}{n(n-1)\cdots(n-k+1)}$$
, $r_1 \neq \dots \neq r_k = 1, \dots, n$.

Dimostrazione. Dal Teorema 2.4.3 si ha che ogni determinazione del vettore $(R_1, ..., R_n)$ in \mathcal{R}_n è ugualmente probabile. Inoltre, vi sono (n-1)! elementi di \mathcal{R}_n per cui $R_i = r$ con r = 1, ..., n, e dunque si ha

$$Pr(R_i = r) = (n-1)! \frac{1}{n!} = \frac{1}{n}$$
.

Analogamente, vi sono (n-2)! elementi di \mathcal{R}_n per cui $R_i = r_1$ e $R_j = r_2$ con $r_1 \neq r_2 = 1, \dots, n$, e quindi

$$\Pr(R_i = r_1, R_j = r_2) = (n-2)! \frac{1}{n!} = \frac{1}{n(n-1)}.$$

Infine, vi sono (n-k)! elementi di \mathcal{R}_n per cui $R_{i_1}=r_1,\ldots,R_{i_k}=r_k$ con $r_1\neq\ldots\neq r_k=1,\ldots,n$, e quindi

$$\Pr(R_{i_1} = r_1, \dots, R_{i_k} = r_k) = (n - k)! \frac{1}{n!} = \frac{1}{n(n - 1) \dots (n - k + 1)}.$$

Corollario 2.4.5. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Per i = 1, ..., n, si ha

$$\mathrm{E}(R_i) = rac{n+1}{2}$$
 , $\mathrm{Var}(R_i) = rac{n^2-1}{12}$,

 $e \ per \ i \neq j = 1, \dots, n$, si ha

$$Cov(R_i, R_j) = -\frac{n+1}{12}.$$

Dimostrazione. Dal Corollario 2.4.4 e tenendo presente il Teorema A.2.1, si ha

$$E(R_i) = \frac{1}{n} \sum_{r=1}^{n} r = \frac{n+1}{2}.$$

Analogamente, si ha

$$\mathrm{E}(R_i^2) = \frac{1}{n} \sum_{r=1}^n r^2 = \frac{(n+1)(2n+1)}{6} \; ,$$

da cui

$$\operatorname{Var}(R_i) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}.$$

Di nuovo dal Corollario 2.4.4 e tenendo presente il Teorema A.2.1, si ha

$$E(R_i R_j) = \frac{1}{n(n-1)} \sum_{r_1=1}^n \sum_{r_2\neq r_1=1}^n r_1 r_2 = \frac{1}{n(n-1)} \left(\left(\sum_{r=1}^n r \right)^2 - \sum_{r=1}^n r^2 \right)$$
$$= \frac{1}{n(n-1)} \left(\frac{n^2(n+1)^2}{4} - \frac{n(n+1)(2n+1)}{6} \right) = \frac{(n+1)(3n+2)}{12} ,$$

per cui

$$Cov(R_i, R_j) = \frac{(n+1)(3n+2)}{12} - \frac{(n+1)^2}{4} = -\frac{n+1}{12}.$$

Corollario 2.4.6. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Se $T = T(R_1, ..., R_n)$, ovvero T è una statistica basata solo sul vettore dei ranghi, allora T è "distribution-free" sulla classe \mathcal{C}_F .

Dimostrazione. Il risultato segue immediatamente dal Teorema 2.4.3, in quanto per qualsiasi distribuzione congiunta di $F_n \in \mathcal{C}_F$ la statistica T è distribuita come una trasformata di un vettore di variabili casuali uniformemente distribuito su \mathcal{R}_n .

Corollario 2.4.7. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Si consideri una scelta di $k = 1, \ldots, n$ statistiche rango $(R_{i_1}, \ldots, R_{i_k})$ e sia $(R_{(i_1)}, \ldots, R_{(i_k)})$ il relativo vettore di statistiche rango ordinato in senso crescente per $i_1 \neq \ldots \neq i_k = 1, \ldots, n$. Si ha

$$\Pr(R_{(i_1)} = r_{(1)}, \dots, R_{(i_k)} = r_{(k)}) = \binom{n}{k}^{-1}$$
 , $1 \le r_{(1)} < \dots < r_{(k)} \le n$.

Dimostrazione. Sia $(r_{(1)},\ldots,r_{(k)})$ una scelta di k elementi di $(1,\ldots,n)$ tale che $1\leq r_{(1)}<\ldots< r_{(k)}\leq n$. Dal Corollario 2.4.4 si ha

$$\Pr(R_{i_1} = r_{(1)}, \dots, R_{i_k} = r_{(k)}) = \frac{1}{n(n-1)\dots(n-k+1)}.$$

Tuttavia, questa è solamente una possibile permutazione di $(R_{i_1}, \ldots, R_{i_k})$ per cui si ha $R_{(i_1)} = r_{(1)}, \ldots, R_{(i_k)} = r_{(k)}$. Poichè esistono k! di tali permutazioni ed ognuna è ugualmente probabile, allora

$$\Pr(R_{(i_1)} = r_{(1)}, \dots, R_{(i_k)} = r_{(k)}) = k! \frac{1}{n(n-1)\dots(n-k+1)} = \binom{n}{k}^{-1}.$$

• Esempio 2.4.1. Si consideri due campioni casuali (X_1,\ldots,X_{n_1}) e (Y_1,\ldots,Y_{n_2}) provenienti da due variabili casuali continue ed equivalenti in distribuzione. Dunque, se $n=n_1+n_2$, il campione misto $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ formato dai due campioni casuali originali può essere considerato sua volta un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{C}_F$. Di conseguenza, siano (R_1,\ldots,R_{n_1}) i ranghi assegnati a (X_1,\ldots,X_{n_2}) nel campione misto. Si consideri la statistica

$$W = \sum_{i=1}^{n_1} R_i ,$$

che fornisce la somma dei ranghi assegnati a (X_1,\ldots,X_{n_1}) . Quando i ranghi assegnati a (X_1,\ldots,X_{n_1}) sono i più bassi, ovvero $1,\ldots,n_1$, si ottiene il valore minimo che W può assumere, dato da $\sum_{i=1}^{n_1}i=n_1(n_1+1)/2$. Alternativamente, quando i ranghi assegnati a (X_1,\ldots,X_{n_1}) sono i più elevati, ovvero n_2+1,\ldots,n , si ottiene il valore massimo che W può assumere, dato da $\sum_{i=1}^{n_1}(n_2+i)=n_1(n+n_2+1)/2$. Quindi, il supporto di W risulta

$${n_1(n_1+1)/2, n_1(n_1+1)/2+1, \ldots, n_1(n+n_2+1)/2}.$$

Se $c_{n_1,n_2}(w)$ rappresenta il numero di sottoinsiemi di n_1 interi di $(1,\ldots,n)$ la cui somma è w, dal momento che

$$W = \sum_{i=1}^{n_1} R_{(i)} ,$$

allora tenendo presente il Corollario 2.4.7 la funzione di probabilità di W è data da

$$p_{n_1,n_2}(w) = \Pr(W = w) = \binom{n}{n_1}^{-1} c_{n_1,n_2}(w) \mathbf{1}_{\{n_1(n_1+1)/2,n_1(n_1+1)/2+1,...,n_1(n+n_2+1)/2\}}(w).$$

Poichè la distribuzione di W rimane invariata per ogni funzione di ripartizione congiunta di C_F , si deve concludere che W è "distribution-free" su C_F . Questo risultato può essere ottenuto immediatamente dal Corollario 2.4.6.

2.5. Le statistiche rango dei valori assoluti. Le statistiche rango dei valori assoluti costituiscono un'ulteriore importante classe di statistiche "distribution-free".

Definizione 2.5.1. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$. Si definiscono come statistiche rango dei valori assoluti le seguenti trasformate

$$R_i^+ = \sum_{j=1}^n \mathbf{1}_{[0,\infty)}(|X_i| - |X_j|), i = 1,\dots,n.$$

Il vettore di statistiche (R_1^+, \dots, R_n^+) è detto vettore dei ranghi dei valori assoluti.

Si noti che (R_1^+, \ldots, R_n^+) non è altro che il vettore dei ranghi assegnati ai valori assoluti degli elementi del campione casuale originale. Il seguente teorema fornisce la distribuzione congiunta delle statistiche rango dei valori assoluti.

Teorema 2.5.2. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in S_{0,F}$, allora la funzione di probabilità congiunta del relativo vettore dei ranghi dei valori assoluti $(R_1^+, ..., R_n^+)$ è data da

$$\Pr(R_1^+ = r_1, \dots, R_n^+ = r_n) = \frac{1}{n!} \mathbf{1}_{\mathcal{R}_n}(r_1, \dots, r_n).$$

Dimostrazione. Si noti che $(|X_1|,\ldots,|X_n|)$ è ancora un campione casuale. Dunque, poichè (R_1^+,\ldots,R_n^+) è un vettore dei ranghi relativo ad un campione casuale, allora dal Teorema 2.4.3 si ha che (R_1^+,\ldots,R_n^+) è uniformemente distribuito su \mathcal{R}_n .

Se una variabile casuale assolutamente continua è simmetrica, il punto di simmetria coincide con la mediana. Dunque, essendo $S_{0,F} \subset \mathcal{M}_{0,F}$, la distribuzione congiunta del vettore dei segni è quella ottenuta nel Teorema 2.3.2. I seguenti teoremi forniscono la distribuzione congiunta del vettore dei segni e del vettore dei ranghi dei valori assoluti.

Teorema 2.5.3. Se X è una variabile casuale con funzione di ripartizione $F \in \mathcal{S}$, allora le variabili casuali trasformate Y = |X| e $Z = \mathbf{1}_{(0,\infty)}(X)$ sono indipendenti.

Dimostrazione. Per un dato x > 0 si ha

$$\begin{split} \Pr(Y \leq x \mid Z = 1) &= \frac{\Pr(Y \leq x, Z = 1)}{\Pr(Z = 1)} = \frac{\Pr(|X| \leq x, X > 0)}{\Pr(X > 0)} \\ &= \frac{\Pr(0 < X \leq x)}{\Pr(X > 0)} = \frac{F(x) - F(0)}{1 - F(0)} \,. \end{split}$$

Dal momento che F(0) = 1/2 e che la funzione di ripartizione di Y è data da $(2F(x) - 1)\mathbf{1}_{(0,\infty)}(x)$, si ha

$$\Pr(Y \le x \mid Z = 1) = \frac{F(x) - 1/2}{1/2} = 2F(x) - 1 = \Pr(Y \le x).$$

Analogamente, per un dato x > 0 si ha

$$\begin{split} \Pr(Y \leq x \mid Z = 0) &= \frac{\Pr(Y \leq x, Z = 0)}{\Pr(Z = 0)} = \frac{\Pr(\mid X \mid \leq x, X \leq 0)}{\Pr(X \leq 0)} \\ &= \frac{\Pr(-x \leq X \leq 0)}{\Pr(X < 0)} = \frac{F(0) - F(-x)}{F(0)} \,, \end{split}$$

da cui, tenendo presente che F(-x) = 1 - F(x), si ha

$$\Pr(Y \le x \mid Z = 0) = \frac{1/2 - 1 + F(x)}{1/2} = 2F(x) - 1 = \Pr(Y \le x).$$

Poichè il supporto di Z è l'insieme $\{0,1\}$, allora dalle precedenti relazioni si ottiene che $\Pr(Y \le x \mid Z = z) = \Pr(Y \le x)$ per z = 0,1, da cui si conclude che le variabili casuali Y e Z sono indipendenti.

Teorema 2.5.4. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$, i relativi vettori di statistiche (Z_1, \ldots, Z_n) e (R_1^+, \ldots, R_n^+) sono indipendenti.

Dimostrazione. Dal Teorema 2.5.3, si ottiene che Z_i e $|X_i|$ sono indipendenti per $i=1,\ldots,n$. Dunque ogni statistica segno Z_i è indipendente dal campione trasformato $(|X_1|,\ldots,|X_n|)$, in quanto questo vettore costituisce un campione casuale. Di conseguenza, dal momento che per la Definizione 2.5.1 ogni statistica

rango dei valori assoluti R_i^+ , per $i=1,\ldots,n$, dipende solo dal campione trasformato $(|X_1|,\ldots,|X_n|)$, allora risulta indipendente dal vettore dei segni (Z_1,\ldots,Z_n) . Quindi, si deve concludere (Z_1,\ldots,Z_n) e (R_1^+,\ldots,R_n^+) sono vettori di statistiche indipendenti.

Corollario 2.5.5. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$. Se $T = T(Z_1, ..., Z_n, R_1^+, ..., R_n^+)$, ovvero T è una statistica basata sul vettore dei segni e sul vettore dei ranghi dei valori assoluti, allora T è "distribution-free" su $\mathcal{S}_{0,F}$.

Dimostrazione. Segue immediatamente dai Teoremi 2.3.2 e 2.5.2, in quanto per ogni distribuzione congiunta $F_n \in \mathcal{S}_{0,F}$ la statistica T è una trasformata di un vettore di variabili casuali indipendenti ed ugualmente distribuite come variabili casuali Binomiali Bi(1,1/2) e di un vettore uniformemente distribuito su \mathcal{R}_n .

Teorema 2.5.6. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$. Si consideri una scelta di $k = 0, 1, \ldots, n$ statistiche rango dei valori assoluti $(R_{i_1}^+, \ldots, R_{i_k}^+)$ e sia $(R_{(i_1)}^+, \ldots, R_{(i_k)}^+)$ il relativo vettore dei ranghi dei valori assoluti ordinato in senso crescente per $i_1 \neq \ldots \neq i_k = 1, \ldots, n$. Sia inoltre $(Z_{i_1}, \ldots, Z_{i_k})$ la scelta di k statistiche segno associata a $(R_{i_1}^+, \ldots, R_{i_k}^+)$. Se $K = \sum_{i=1}^n Z_i$, si ha

$$\Pr(R_{(i_1)}^+ = r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)}, K = k \mid Z_{i_1} = 1, \dots, Z_{i_k} = 1) = 2^{-n}$$
 ,

 $con 1 \le r_{(1)} < \ldots < r_{(k)} \le n.$

Dimostrazione. Dal Corollario 2.4.7 si ha

$$\Pr(R_{(i_1)}^+ = r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)} \mid K = k) = \binom{n}{k}^{-1}, 1 \le r_{(1)} < \dots < r_{(k)} \le n.$$

Inoltre, dal Teorema 2.3.2 si verifica che

$$\Pr(K = k) = \binom{n}{k} 2^{-n} \mathbf{1}_{\{0,1,\ldots,n\}}(k),$$

da cui si ottiene

$$\begin{split} \Pr(R_{(i_1)}^+ = r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)}, K = k) &= \Pr(R_{(i_1)}^+ = r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)} \mid K = k) \Pr(K = k) \\ &= \binom{n}{k}^{-1} \binom{n}{k} \ 2^{-n} = 2^{-n} \ , k = 0, 1, \dots, n \ , 1 \leq r_{(1)} < \dots < r_{(k)} \leq n \ . \end{split}$$

Tenendo presente che $(R_{i_1}^+,\ldots,R_{i_k}^+)$ è indipendente da (Z_{i_1},\ldots,Z_{i_k}) per il Teorema 2.5.4, allora si ha

$$\begin{aligned} \Pr(R_{(i_1)}^+ &= r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)}, K = k \mid Z_{i_1} = 1, \dots, Z_{i_k} = 1) = \\ &= \Pr(R_{(i_1)}^+ = r_{(1)}, \dots, R_{(i_k)}^+ = r_{(k)}, K = k) \\ &= 2^{-n}, k = 0, 1, \dots, n, 1 \le r_{(1)} < \dots < r_{(k)} \le n, \end{aligned}$$

che conclude la dimostrazione.

• Esempio 2.5.1. Sia (X_1, \dots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$. Si consideri dunque la statistica

$$W^{+} = \sum_{i=1}^{n} Z_{i} R_{i}^{+} .$$

Il supporto di W^+ risulta $\{0, 1, \dots, n(n+1)/2\}$. Se $c_n(w)$ rappresenta il numero di sottoinsiemi di interi di $(1, \dots, n)$ la cui somma è w, allora dal Teorema 2.5.6 segue che la funzione di probabilità di W^+ è data da

$$p_n(w) = \Pr(W^+ = w) = 2^{-n} c_n(w) \mathbf{1}_{\{0,1,\ldots,n(n+1)/2\}}(w)$$
.

Poichè la distribuzione di W^+ rimane invariata per ogni funzione di ripartizione congiunta di $\mathcal{S}_{0,F}$, allora W^+ è "distribution-free" su $\mathcal{S}_{0,F}$. Questo risultato poteva essere ottenuto immediatamente dal Corollario 2.5.5. Infine, dal momento che ad ogni sottoinsieme di interi di $(1,\ldots,n)$ la cui somma è w corrisponde un sottoinsieme complementare la cui somma è (n(n+1)/2-w), allora si ottiene $c_n(w)=c_n(n(n+1)/2-w)$. Quindi, si ha anche $p_n(w)=p_n(n(n+1)/2-w)$, ovvero $p_n(n(n+1)/4+w)=p_n(n(n+1)/4-w)$ per $w=0,1,\ldots,n(n+1)/2$. Tenendo presente l'Esempio 1.2.1 si può dunque concludere che W^+ è simmetrica rispetto a n(n+1)/4.

Capitolo 3

Il test statistico "distribution-free"

- 3.1. I test statistici "distribution-free". Se si dispone di un campione (X_1, \ldots, X_n) , si può stabilire un insieme H delle ipotesi ammissibili sulla relativa funzione di ripartizione congiunta F_n . Se gli insiemi H_0 e H_1 costituiscono una partizione di H, il problema della verifica delle ipotesi consiste nel verificare l'ipotesi di base $H_0: F_n \in \mathcal{F}_0$ contro l'ipotesi alternativa $H_1: F_n \in \mathcal{F} \setminus \mathcal{F}_0$, dove \mathcal{F} è il modello statistico e \mathcal{F}_0 una sua sottoclasse. L'insieme H delle ipotesi ammissibili e la sua partizione in H_0 e H_1 è detto sistema di ipotesi. Se il modello statistico è indicizzato mediante un insieme di parametri ψ e il contesto probabilistico in cui si lavora è evidente, per semplicità di notazione il sistema di ipotesi può essere indicato con $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$, dove Ψ rappresenta lo spazio dei parametri e Ψ_0 un suo sottoinsieme.
- Esempio 3.1.1. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$. Si vuole verificare che il punto di simmetria è un particolare valore λ_0 , ovvero l'ipotesi di base $H_0: F_n \in \mathcal{S}_{\lambda_0,F}$ contro l'ipotesi alternativa $H_1: F_n \in \mathcal{S}_{\lambda,F} \setminus \mathcal{S}_{\lambda_0,F}$. Il modello statistico è "distribution-free" ed è indicizzato da due parametri, ovvero $\psi = \{\lambda, F\}$. Il sistema di ipotesi può dunque essere espresso più semplicemente come $H_0: \lambda = \lambda_0, F \in \mathcal{S}$, contro $H_1: \lambda \neq \lambda_0, F \in \mathcal{S}$. In maniera analoga, in un contesto di statistica classica si potrebbe considerare un modello statistico $\mathcal{F}_{\lambda} \subset \mathcal{S}_{\lambda,F}$ del tipo

$$\mathcal{F}_{\lambda} = \{F_n : F_n(x_1, \dots, x_n) = \prod_{i=1}^n \Phi(x_i - \lambda), \lambda \in \mathbb{R}\}.$$

Si osservi che \mathcal{F}_{λ} contiene una sola famiglia di funzioni di ripartizione congiunte ed in particolare rappresenta il modello statistico relativo ad un campione casuale da una distribuzione Normale $N(\lambda, 1)$. Il modello \mathcal{F}_{λ} è indicizzato solo attraverso λ , ovvero $\psi = \lambda$, e quindi in questo caso il sistema di ipotesi si riduce a verificare $H_0: \lambda = \lambda_0$ contro $H_1: \lambda \neq \lambda_0$. Tuttavia, può risultare poco plausibile in pratica assumere un modello statistico classico, ovvero assumere una specifica morfologia funzionale per F.

Lo strumento statistico che sulla base dei dati campionari consente di concludere in favore dell'una o dell'altra ipotesi è il cosiddetto test.

Definizione 3.1.1. Sia $(X_1, ..., X_n)$ un campione con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Se \mathcal{X}_n è lo spazio campionario, ovvero il supporto di F_n , si dice test la funzione $D: \mathcal{X}_n \to \{H_0, H_1\}$.

Il test è in effetti una regola decisionale che suddivide \mathcal{X}_n negli insiemi complementari \mathcal{X}_0 e \mathcal{X}_1 in modo tale che si accetta H_0 se la realizzazione del campione è in \mathcal{X}_0 , mentre si accetta H_1 se la realizzazione del campione è in \mathcal{X}_1 . L'insieme \mathcal{X}_1 è detto regione critica del test.

Definizione 3.1.2. Sia (X_1, \ldots, X_n) un campione con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Se $T = T(X_1, \ldots, X_n)$ è una statistica con supporto T, si definisce test basato sulla statistica T la funzione $D: T \to \{H_0, H_1\}$. La statistica T è detta statistica test.

Il test basato sulla statistica T è dunque una regola decisionale che suddivide T negli insiemi complementari T_0 e T_1 , in modo che si accetta H_0 se la realizzazione di T è in T_0 , mentre si accetta H_1 se la realizzazione di T è in T_1 . L'insieme T_1 è detto regione critica del test basato sulla statistica T.

Definizione 3.1.3. Sia (X_1,\ldots,X_n) un campione con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0:\psi\in\varPsi_0$ contro $H_1:\psi\in\varPsi\setminus\varPsi_0$. Un test per questo sistema di ipotesi è detto "distribution-free" se è basato su una statistica $T=T(X_1,\ldots,X_n)$ "distribution-free" su \mathcal{F}_{ψ} per ogni $\psi\in\varPsi_0$.

Uno strumento per misurare la capacità discriminatoria del test basato su una statistica T è dato dalla funzione potenza, che possiede la seguente difinizione.

Definizione 3.1.4. Sia (X_1,\ldots,X_n) un campione con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0:\psi\in\varPsi_0$ contro $H_1:\psi\in\varPsi\setminus\varPsi_0$. La funzione potenza del test basato sulla statistica T è data da

$$P_T(\psi) = \Pr_{\psi}(T \in \mathcal{T}_1)$$
,

dove Pr_{ψ} indica che la probabilità è quella indotta da F_n con il valore del parametro pari a ψ .

Per ogni $\psi \in \Psi_0$ la funzione potenza $P_T(\psi)$ fornisce quindi la probabilità di respingere H_0 quando questa è vera, ovvero la probabilità di commettere un errore di I specie. Analogamente, per ogni $\psi \in \Psi \setminus \Psi_0$ la quantità $(1-P_T(\psi))$ fornisce la probabilità di accettare H_0 quando è vera H_1 , ovvero la probabilità di commettere un errore di II specie.

Definizione 3.1.5. Sia (X_1, \ldots, X_n) un campione con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Si dice che il test basato sulla statistica T è al livello di significatività α se

$$\sup_{\psi \in \Psi_0} P_T(\psi) = \alpha . \qquad \triangle$$

Il livello di significatività α rappresenta dunque la massima probabilità di errore di I specie. Quando il test è basato su una statistica discreta, allora esiste solo un numero finito o al più contabile di possibili livelli di significatività, che vengono detti livelli di significatività naturali. Sebbene esistano tecniche per ottenere un qualsiasi livello di significatività per un test basato su una statistica discreta (la cosiddetta casualizzazione del test), tuttavia risultano artificiose ed è preferibile considerare in pratica solo livelli di significatività naturali.

Definizione 3.1.6. Sia (X_1, \ldots, X_n) un campione con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Un test basato sulla statistica T al livello di significatività α con funzione potenza $P_T(\psi)$ è detto corretto al livello di significatività α se

$$P_T(\psi) \ge \alpha , \forall \psi \in \Psi \setminus \Psi_0 .$$

La proprietà della correttezza assicura che la probabilità di accettare H_1 quando è vera risulta maggiore della probabilità di commettere un errore di I specie.

• Esempio 3.1.2. Si consideri un campione casuale (X_1,\ldots,X_n) con funzione di ripartizione $F_n\in\mathcal{F}_\lambda$, dove il modello statistico \mathcal{F}_λ è definito nell'Esempio 3.1.1. Si vuole verificare $H_0:\lambda=0$ contro $H_1:\lambda>0$ mediante il test basato sulla statistica $T=\sqrt{n}\overline{X}$. Se è vera H_0 la statistica T ha distribuzione Normale N(0,1). Essendo $T=(-\infty,+\infty)$, si può scegliere $T_0=(-\infty,z_{1-\alpha}]$ e $T_1=(z_{1-\alpha},\infty)$. Se è vera H_1 la statistica T ha distribuzione Normale $N(\sqrt{n}\lambda,1)$ e perciò la funzione potenza, che in questo caso dipende dal solo parametro λ , risulta

◁

$$P_T(\lambda) = \Pr_{\lambda}(T \in \mathcal{T}_1) = 1 - \Phi(z_{1-\alpha} - \sqrt{n\lambda}), \lambda \ge 0.$$

Dal momento che $P_T(0) = \alpha$, allora il test è al livello di significatività α . Inoltre, essendo $P_T(\lambda)$ una funzione crescente, il test è corretto al livello di significatività α .

• Esempio 3.1.3. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione $F_n \in \mathcal{S}_{\lambda,F}$. Si vuole verificare $H_0: \lambda = 0, F \in \mathcal{S}$, contro $H_1: \lambda > 0, F \in \mathcal{S}$. Si consideri dunque il test basato sulla statistica

$$B = \sum_{i=1}^{n} Z_i ,$$

definita nell'Esempio 2.3.1. Se è vera H_0 , la statistica B è distribuita come una Binomiale Bi(n,1/2) essendo $S_{0,F} \subset \mathcal{M}_{0,F}$. Dal momento che $\mathcal{T} = \{0,1,\ldots,n\}$, si può scegliere $\mathcal{T}_0 = \{0,1,\ldots,b_{n,1-\alpha}\}$ e $\mathcal{T}_1 = \{b_{n,1-\alpha}+1,\ldots,n\}$. Se è vera H_1 risulta

$$Pr(X_i > 0) = 1 - F(-\lambda) = F(\lambda),$$

per $i=1,\ldots,n$, per cui B ha distribuzione Binomiale $Bi(n,F(\lambda))$. La funzione potenza è dunque data da

$$P_B(\lambda, F) = \Pr_{\lambda, F}(B \in \mathcal{T}_1) = \sum_{b=b_{n,1-a}+1}^{n} {n \choose b} F(\lambda)^b (1 - F(\lambda))^{n-b}, \lambda \ge 0.$$

Essendo F(0) = 1/2, allora risulta $P_B(0, F) = \alpha$ per ogni $F \in \mathcal{S}$ e quindi si deve concludere che il test è al livello di significatività α . Inoltre, dal momento che si può verificare che $P_B(\lambda, F)$ è una funzione crescente di λ per ogni $F \in \mathcal{S}$, allora il test è corretto al livello di significatività α .

La seguente definizione enuncia una proprietà desiderabile per grandi campioni, ovvero quando $n \to \infty$, della funzione potenza di un test.

Definizione 3.1.7. Si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Data la statistica $T = T_n$, si consideri inoltre la successione di test al livello di significatività α basati sulla successione di statistiche $(T_n)_{n\geq 1}$. La successione di test è detta coerente se

$$\lim_n P_{T_n}(\psi) = 1 ,$$

per ogni $\psi \in \Psi \setminus \Psi_0$.

La proprietà della coerenza assicura dunque che la probabilità di commettere un errore di II specie tende a 0 per $n \to \infty$ per ogni valore del parametro nell'alternativa.

• Esempio 3.1.4. Si consideri il sistema di ipotesi dell'Esempio 3.1.2 e sia $(T_n)_{n\geq 1}$ la successione di statistiche data da $(\sqrt{n}\overline{X})_{n\geq 1}$. Dal momento che la successione di funzioni $(\Phi(z_{1-\alpha}-\sqrt{n}\lambda))_{n\geq 1}$ converge uniformemente alla funzione identicamente nulla per $\lambda>0$, allora si ha

$$\lim_{n} P_{T_n}(\lambda) = 1, \lambda > 0.$$

Dunque, la successione di test basata sulla successione di statistiche $(T_n)_{n\geq 1}$ è coerente.

Il seguente teorema stabilisce delle condizioni per cui una successione di test basata su una successione di statistiche $(T_n)_{n\geq 1}$ è coerente.

Teorema 3.1.8. Si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Data la statistica $T = T_n$, si consideri inoltre la successione di test al livello di significatività α basati sulla successione di

statistiche $(T_n)_{n\geq 1}$, tale che la regione critica del test basato su T_n è data da $T_{1,n}=\{t:t\geq c_n\}$. Se esiste una funzione g per cui

- $i) T_n \stackrel{p}{\to} g(\psi), \forall \psi \in \Psi,$
- ii) $g(\psi) = g_0, \forall \psi \in \Psi_0,$
- $iii) g(\psi) > g_0, \forall \psi \in \Psi \setminus \Psi_0,$
- iv) $\lim_{n} c_n \leq g_0$,

allora la successione di test basata su $(T_n)_{n\geq 1}$ è coerente.

Dimostrazione. Per un dato $\psi \in \Psi \setminus \Psi_0$, sia $\epsilon = (g(\psi) - g_0)/2$. Dalla condizione *iii*) si ha $\epsilon > 0$ e dunque per n sufficientemente elevato dalla condizione *iv*) si ha $c_n \leq g_0 + \epsilon = g(\psi) - \epsilon$. Quindi, risulta

$$\begin{split} \lim_n P_{T_n}(\psi) &= \lim_n \Pr_{\psi}(T_n \geq c_n) \geq \lim_n \Pr_{\psi}(T_n \geq g(\psi) - \epsilon) \\ &\geq \lim_n \Pr_{\psi}(g(\psi) - \epsilon \leq T_n \leq g(\psi) + \epsilon) = \lim_n \Pr_{\psi}(|T_n - g(\psi)| \leq \epsilon) \;. \end{split}$$

Per la condizione i) si ha $\lim_n \Pr_{\psi}(|T_n - g(\psi)| \le \epsilon) = 1$, da cui

$$\lim_{n} P_{T_n}(\psi) = 1, \forall \psi \in \Psi \setminus \Psi_0,$$

ovvero dalla Definizione 3.1.7 si ha che la successione di test basata su $(T_n)_{n\geq 1}$ è coerente.

• Esempio 3.1.5. Se si considera il sistema di ipotesi dell'Esempio 3.1.3, si vuole verificare che la successione di test basata sulla successione di statistiche $(B_n)_{n\geq 1}$ è coerente. Si devono dunque verificare le condizioni i)-iv) del Teorema 3.1.8. A questo fine si considera la successione di test basata sulla successione di statistiche $(B_n/n)_{n\geq 1}$, che ha le stesse proprietà di quella basata sulla successione di statistiche $(B_n)_{n\geq 1}$. Per quanto riguarda i), si noti che per la Legge Debole dei Grandi Numeri di Khintchine (Teorema A.3.1) si ottiene $B_n/n \stackrel{p}{\to} g(\lambda, F) = F(\lambda)$ per ogni $\lambda \geq 0$. Inoltre, per quanto riguarda ii) e iii), si ha $g_0 = g(0, F) = 1/2$ da cui $g(\lambda, F) = F(\lambda) > g_0$ per ogni $\lambda > 0$. Infine, per quanto riguarda iv), si ha $\mathcal{T}_{1,n} = \{b: b \geq b_{n,1-\alpha}/n\}$. Per il Teorema Fondamentale Classico del Limite (Teorema A.3.6), se H_0 è vera risulta

$$\frac{B_n/n - 1/2}{1/\sqrt{4n}} \stackrel{d}{\to} N(0,1)$$
,

da cui $b_{n,1-\alpha}/n \simeq 1/2 + z_{1-\alpha}/\sqrt{4n}$ per n elevato. Dunque, si ha $\lim_n b_{n,1-\alpha}/n = 1/2 = g_0$. Le condizioni i)-iv) del Teorema 3.1.8 sono pertanto soddisfatte e dunque la successione di test basata sulla successione di statistiche $(B_n/n)_{n\geq 1}$ è coerente. Di conseguenza, anche la successione di test basata sulla successione di statistiche $(B_n)_{n>1}$ è coerente.

3.2. L'efficienza asintotica relativa. Sia (X_1,\ldots,X_n) un campione con funzione di ripartizione congiunta $F_n\in\mathcal{F}_\psi$ e si consideri il sistema di ipotesi $H_0:\psi\in\varPsi_0$ contro $H_1:\psi\in\varPsi\setminus\Psi_0$. Se si dispone di due statistiche test T e U sorge a questo punto il problema di determinare quale delle due è preferibile. Un modo di procedere è quello di fissare il livello di significatività dei due test ad un medesimo valore preassegnato α (ovvero di controllare l'errore di I specie) e di considerare le relative funzioni potenza $P_T(\psi)$ e $P_U(\psi)$. Se risulta $P_T(\psi) \geq P_U(\psi)$ per ogni $\psi \in \Psi \setminus \Psi_0$, viene preferita la statistica test T, mentre se risulta $P_T(\psi) \leq P_U(\psi)$ per ogni $\psi \in \Psi \setminus \Psi_0$, viene preferita invece la statistica test U. Tuttavia, quando si considera test "distribution-free" in generale non è possibile determinare un test uniformemente più potente come nella statistica classica, dato che la struttura del sistema di ipotesi non è abbastanza rigida da consentire un risultato come il Lemma di Neyman-Pearson. Per determinati sistemi di ipotesi una possibilità alternativa è quella di ottenere il test localmente più potente, ovvero il test che ha la maggiore potenza dove la discriminazione fra H_0 e H_1 è più difficoltosa, ovvero in prossimità del punto di soglia delle due ipotesi (questi test verrano discussi nei prossimi capitoli). In questa sezione viene considerato piuttosto un confronto locale dei test per grandi campioni.

Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, dove θ è un parametro reale e F rappresenta la funzione di ripartizione della variabile casuale X da cui proviene il campione. Si consideri il problema di verificare l'ipotesi $H_0: \theta \in \Theta_0, F \in \mathcal{F}$, contro

 $H_1: \theta \in \Theta \setminus \Theta_0, F \in \mathcal{F}$, dove Θ è lo spazio parametrico relativo a θ e Θ_0 un suo sottoinsieme, mentre \mathcal{F} è una classe di funzioni di ripartizione. Se per verificare questo sistema di ipotesi si considera i test basati sulle statistiche T e U, allora il problema è stabilire quale dei due test è preferibile. A questo fine, è utile la seguente definizione.

Definizione 3.2.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, e si consideri il sistema di ipotesi $H_0: \theta \in \Theta_0, F \in \mathcal{F}$, contro $H_1: \theta \in \Theta \setminus \Theta_0, F \in \mathcal{F}$. Data la statistica $T = T_n$, si consideri inoltre la successione di test basata sulla successione di statistiche $(T_n)_{n\geq 1}$. Se la regione critica del test basato su T_n è data da $T_{1,n}$, allora per un dato $\alpha \in (0,1)$, sia

$$P_{T_n}(\theta, F) = \Pr_{\theta, F}(T_n \in \mathcal{T}_{1,n}) \le \alpha, \forall \theta \in \Theta_0, n = 1, 2, \dots$$

Se N è il più piccolo valore di n tale che per un dato $\beta \in (\alpha, 1)$ risulta

$$P_{T_N}(\theta, F) = \Pr_{\theta, F}(T_n \in \mathcal{T}_{1,n}) \ge \beta, \forall \theta \in \Theta \setminus \Theta_0$$

allora si dice che N è la minima numerosità campionaria del test al livello di significatività α basato sulla statistica T per raggiungere la potenza β per l'alternativa $\theta \in \Theta \setminus \Theta_0$.

La quantità N è funzione di α , β , θ e della funzione di ripartizione F, ovvero $N=N(\alpha,\beta,\theta,F)$. Per una determinata alternativa θ e per α e β fissati, un test è dunque maggiormente preferibile quanto minore risulta $N(\alpha,\beta,\theta,F)$. Questa considerazione conduce alla seguente definizione.

Definizione 3.2.2. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, e si consideri il sistema di ipotesi $H_0: \theta \in \Theta_0, F \in \mathcal{F}$, contro $H_1: \theta \in \Theta \setminus \Theta_0, F \in \mathcal{F}$. Siano inoltre $N(\alpha, \beta, \theta, F)$ e $M(\alpha, \beta, \theta, F)$ le minime numerosità campionarie dei test al livello di significatività α basati sulle statistiche T e U per raggiungere la potenza β per l'alternativa $\theta \in \Theta \setminus \Theta_0$. Si dice efficienza relativa del test basato sulla statistica T rispetto al test basato sulla statistica U la quantità

$$e_{T,U}(\alpha,\beta,\theta,F) = \frac{M(\alpha,\beta,\theta,F)}{N(\alpha,\beta,\theta,F)}, \theta \in \Theta \setminus \Theta_0.$$

Se $e_{T,U}(\alpha,\beta,\theta,F) > 1$ allora il test basato su T è più efficiente di quello basato su U, mentre se $e_{T,U}(\alpha,\beta,\theta,F) < 1$ è vero l'opposto.

L'efficienza relativa è una misura locale dell'efficienza di un test rispetto ad un altro, nel senso che dipende dalle quantità α , β , θ e F. Al fine di eliminare almeno la dipendenza da α , β , θ e quindi di ottenere una misura più globale dell'efficienza, è conveniente introdurre un indice basato su un confronto per grandi campioni in un particolare sistema di ipotesi.

Definizione 3.2.3. Sia (X_1,\ldots,X_n) un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\theta,F}$, e si consideri il sistema di ipotesi $H_0:\theta=\theta_0,F\in\mathcal{F}$, contro $H_1:\theta=\theta_i,F\in\mathcal{F}$, dove $(\theta_i)_{i\geq 1}$ è una successione di alternative tali che $\lim_i\theta_i=\theta_0$. Date le statistiche $T=T_n$ e $U=U_n$, si consideri le due successioni di test al livello di significatività α basati sulle successioni di statistiche $(T_{n_i})_{i\geq 1}$ e $(U_{m_i})_{i\geq 1}$. Se le regioni critiche dei test basati su T_{n_i} e U_{m_i} sono date da $T_{1,n_i}=\{t:t\geq c_{n_i}\}$ e $U_{1,m_i}=\{u:u\geq d_{m_i}\}$, allora siano

$$P_{T_{n_i}}(\theta_i, F) = \Pr_{\theta_i, F}(T_{n_i} \ge c_{n_i})$$

e

$$P_{U_{m_i}}(\theta_i, F) = \Pr_{\theta_i, F}(U_{m_i} \ge d_{m_i})$$

le rispettive potenze per l'alternativa θ_i con $i=1,2,\ldots$ Se $(n_i)_{i\geq 1}$ e $(m_i)_{i\geq 1}$ sono due successioni crescenti di interi tali che

$$\alpha < \lim_{i} P_{T_{n_i}}(\theta_i, F) = \lim_{i} P_{U_{m_i}}(\theta_i, F) < 1$$
,

si definisce efficienza asintotica relativa del test basato su T rispetto a quella basato su U

$$EAR_{T,U} = \lim_{i} \frac{m_i}{n_i} ,$$

dove il limite deve essere costante per qualsiasi successione $(n_i)_{i\geq 1}$ e $(m_i)_{i\geq 1}$ ed essere indipendente dalla successione $(\theta_i)_{i>1}$.

Si osservi che $EAR_{T,U}$ è il limite del rapporto delle numerosità campionarie necessarie ad ottenere la medesima potenza dei due test per la stessa successione di alternative (che converge al valore specificato sotto ipotesi di base) a un livello di significatività costante. Si ha $EAR_{T,U} = EAR_{T,U}(F)$, ovvero l'efficienza asintotica relativa dipende comunque dalla struttura funzionale della funzione di ripartizione F. Il seguente teorema permette di determinare una espressione di $EAR_{T,U}$ più conveniente dal punto di vista computazionale.

Teorema 3.2.4. (**Teorema di Noether**) Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, e si consideri il sistema di ipotesi $H_0: \theta = \theta_0, F \in \mathcal{F}$, contro $H_1: \theta = \theta_i, F \in \mathcal{F}$, dove $(\theta_i)_{i \geq 1}$ è una successione di alternative tali che $\lim_i \theta_i = \theta_0$. Date le statistiche $T = T_n$ e $U = U_n$, siano $(T_{n_i})_{i \geq 1}$ e $(U_{m_i})_{i \geq 1}$ due successioni di statistiche a cui sono associate le successioni $(\mu_{T_{n_i}}(\theta))_{i \geq 1}, (\sigma_{T_{n_i}}(\theta))_{i \geq 1}, (\mu_{U_{m_i}}(\theta))_{i \geq 1}$ e $(\sigma_{U_{m_i}}(\theta))_{i \geq 1}, dove (n_i)_{i \geq 1}$ e $(m_i)_{i \geq 1}$ sono due successioni crescenti di interi. Siano inoltre $T_{1,n_i} = \{t: t \geq c_{n_i}\}$ e $U_{1,m_i} = \{u: u \geq d_{m_i}\}$ le regioni critiche dei test al livello di significatività α basati sulle statistiche T_{n_i} e U_{m_i} . Se: i) quando θ_i è il vero valore di θ , per una variabile casuale limite V si ha

$$rac{T_{n_i}-\mu_{T_{n_i}}(heta_i)}{\sigma_{T_{n_i}}(heta_i)} \stackrel{d}{ o} V$$
 , $rac{U_{m_i}-\mu_{U_{m_i}}(heta_i)}{\sigma_{U_{m_i}}(heta_i)} \stackrel{d}{ o} V$;

ii) stessa condizione i) con θ_0 al posto di θ_i ;

iii) si ha

$$\lim_i rac{\sigma_{T_{n_i}}(heta_i)}{\sigma_{T_{n_i}}(heta_0)} = \lim_i rac{\sigma_{U_{m_i}}(heta_i)}{\sigma_{U_{m_i}}(heta_0)} = 1$$
 ;

iv) le derivate

$$\frac{d}{d\theta} \, \mu_{T_n}(\theta) = \mu'_{T_n}(\theta)$$
 , $\frac{d}{d\theta} \, \mu_{U_m}(\theta) = \mu'_{U_m}(\theta)$

sono continue in intorno di $\theta = \theta_0$ e $\mu'_{T_n}(\theta_0) \neq 0$, $\mu'_{U_m}(\theta_0) \neq 0$; ν) si ha

$$\lim_{i} \frac{\mu'_{T_{n_{i}}}(\theta_{i})}{\mu'_{T_{n.}}(\theta_{0})} = \lim_{i} \frac{\mu'_{U_{m_{i}}}(\theta_{i})}{\mu'_{U_{m.}}(\theta_{0})} = 1;$$

vi) si ha

$$K_T=\lim_nrac{\mu'_{T_n}(heta_0)}{\sqrt{n}\sigma_{T_n}(heta_0)}>0$$
 , $K_U=\lim_mrac{\mu'_{U_m}(heta_0)}{\sqrt{m}\sigma_{U_m}(heta_0)}>0$;

allora

$$EAR_{T,U} = \frac{K_T^2}{K_U^2}.$$

Dimostrazione. In base alla condizione iv) si può ottenere la seguente espansione in serie di Taylor di $\mu_{T_{n_i}}(\theta)$ nel punto $\theta=\theta_0$

$$\mu_{T_{n_i}}(\theta_i) = \mu_{T_{n_i}}(\theta_0) + (\theta_i - \theta_0)\mu'_{T_{n_i}}(\theta_i^*), \, \theta_0 < \theta_i^* < \theta_i.$$

Analogamente, per $\mu_{U_{m_i}}(\theta)$ si ha

$$\mu_{U_{m_i}}(\theta_i) = \mu_{U_{m_i}}(\theta_0) + (\theta_i - \theta_0)\mu'_{U_{m_i}}(\theta_i^{**}) , \theta_0 < \theta_i^{**} < \theta_i .$$

Dalle assunzioni fatte risulta

$$\lim_{i} P_{T_{n_i}}(\theta_0, F) = \lim_{i} \Pr_{\theta_0, F}(T_{n_i} \geq c_{n_i}) = \lim_{i} \Pr_{\theta_0, F}(\frac{T_{n_i} - \mu_{T_{n_i}}(\theta_0)}{\sigma_{T_{n_i}}(\theta_0)} \geq \frac{c_{n_i} - \mu_{T_{n_i}}(\theta_0)}{\sigma_{T_{n_i}}(\theta_0)}) = \alpha \ .$$

Tenendo presente la condizione ii), per il Teorema A.3.12 la precedente relazione implica che

$$\lim_i rac{c_{n_i}-\mu_{T_{n_i}}(heta_0)}{\sigma_{T_{n_i}}(heta_0)}=v_{1-lpha} \ ,$$

dove $v_{1-\alpha}$ rappresenta il quantile di ordine $(1-\alpha)$ della variabile casuale V. Mediante la precedente relazione e la condizione iii) si ha

$$\lim_{i} \frac{c_{n_{i}} - \mu_{T_{n_{i}}}(\theta_{i})}{\sigma_{T_{n_{i}}}(\theta_{i})} = \lim_{i} \frac{c_{n_{i}} - \mu_{T_{n_{i}}}(\theta_{0}) + \mu_{T_{n_{i}}}(\theta_{0}) - \mu_{T_{n_{i}}}(\theta_{i})}{\sigma_{T_{n_{i}}}(\theta_{0})} \frac{\sigma_{T_{n_{i}}}(\theta_{0})}{\sigma_{T_{n_{i}}}(\theta_{i})} = v_{1-\alpha} + \lim_{i} \frac{\mu_{T_{n_{i}}}(\theta_{0}) - \mu_{T_{n_{i}}}(\theta_{i})}{\sigma_{T_{n_{i}}}(\theta_{0})}.$$

Si supponga che

$$\lim_i P_{T_{n_i}}(heta_i,F) = \lim_i \operatorname{Pr}_{ heta_i,F}(T_{n_i} \geq c_{n_i}) = eta$$
 ,

ovvero che il limite della potenza della successione di test basata sulla successione di statistiche $(T_{n_i})_{i\geq 1}$ per la successione di alternative $(\theta_i)_{i\geq 1}$ sia β . Con un procedimento simile a quello visto in precedenza, tenendo presente la condizione i), per il Teorema A.3.12 si ha che

$$\lim_i rac{c_{n_i} - \mu_{T_{n_i}}(heta_i)}{\sigma_{T_{n_i}}(heta_i)} = v_{1-eta} \ .$$

Analogamente, si ha

$$\lim_{i} P_{U_{m_i}}(\theta_0, F) = \lim_{i} \Pr_{\theta_0, F}(U_{m_i} \ge d_{m_i}) = \alpha ,$$

da cui

$$\lim_{i} \frac{d_{m_{i}} - \mu_{U_{m_{i}}}(\theta_{i})}{\sigma_{U_{m_{i}}}(\theta_{i})} = v_{1-\alpha} + \lim_{i} \frac{\mu_{U_{m_{i}}}(\theta_{0}) - \mu_{U_{m_{i}}}(\theta_{i})}{\sigma_{U_{m_{i}}}(\theta_{0})},$$

mentre se si suppone che

$$\lim_{i} P_{U_{m_i}}(\theta_i, F) = \lim_{i} \Pr_{\theta_i, F}(U_{m_i} \geq d_{m_i}) = \beta$$
 ,

allora

$$\lim_i rac{d_{m_i} - \mu_{U_{m_i}}(heta_i)}{\sigma_{U_{m_i}}(heta_i)} = v_{1-eta} \ .$$

Combinando le relazioni ottenute si ha dunque

 \triangle

$$\lim_{i} \frac{\mu_{T_{n_i}}(\theta_0) - \mu_{T_{n_i}}(\theta_i)}{\sigma_{T_{n_i}}(\theta_0)} = \lim_{i} \frac{\mu_{U_{m_i}}(\theta_0) - \mu_{U_{m_i}}(\theta_i)}{\sigma_{U_{m_i}}(\theta_0)},$$

ovvero

$$\lim_{i} \frac{\mu_{T_{n_{i}}}(\theta_{0}) - \mu_{T_{n_{i}}}(\theta_{i})}{\sigma_{T_{n_{i}}}(\theta_{0})} \frac{\sigma_{U_{m_{i}}}(\theta_{0})}{\mu_{U_{m_{i}}}(\theta_{0}) - \mu_{U_{m_{i}}}(\theta_{i})} = 1.$$

Sostituendo in questa ultima espressione le opportune espansioni in serie di Taylor si ha

$$\lim_i rac{(heta_i - heta_0) \mu'_{T_{n_i}}(heta_i^*)}{\sigma_{T_{n_i}}(heta_0)} rac{\sigma_{U_{m_i}}(heta_0)}{(heta_i - heta_0) \mu'_{U_{m_i}}(heta_i^{**})} = 1 \; ,$$

ovvero

$$\lim_{i} \frac{\sqrt{n_{i}}}{\sqrt{m_{i}}} \frac{\mu'_{T_{n_{i}}}(\theta_{i}^{*})}{\sqrt{n_{i}}\sigma_{T_{n_{i}}}(\theta_{0})} \frac{\sqrt{m_{i}}\sigma_{U_{m_{i}}}(\theta_{0})}{\mu'_{U_{m_{i}}}(\theta_{i}^{**})} = 1.$$

Tenendo presente la condizione iv), v) vi) si ha dunque

$$rac{K_T}{K_U} \lim_i rac{\sqrt{n_i}}{\sqrt{m_i}} = 1$$
 ,

da cui si ottiene infine

$$\mathrm{EAR}_{T,U} = \lim_i \frac{m_i}{n_i} = \frac{K_T^2}{K_U^2} \,.$$

Definizione 3.2.5. Se sono soddisfatte le condizioni del Teorema 3.2.4, la quantità

$$K_T = \lim_{n} \frac{\mu'_{T_n}(\theta_0)}{\sqrt{n}\sigma_{T_n}(\theta_0)}$$

è detta efficacia del test basato sulla statistica T ed è denotata con eff $_T$.

Nell'espressione dell'efficacia la quantità $\mu'_{T_n}(\theta_0)$ non è altro che una misura del tasso di variazione del parametro di posizione $\mu_{T_n}(\theta)$ per valori di θ prossimi a θ_0 . La quantità $\sigma_{T_n}(\theta_0)$ serve invece a standardizzare la quantità al numeratore. Dunque, l'efficacia è in effetti il limite del tasso di variazione standardizzato del parametro di posizione di T_n per alternative prossime a θ_0 . Più il tasso di variazione è sensibile alle alternative, più alta è l'efficacia del test. Inoltre, il Teorema 3.2.4 implica

$$\lim_i rac{\mu_{T_{n_i}}(heta_i)-\mu_{T_{n_i}}(heta_0)}{\sigma_{T_{n_i}}(heta_0)}=v_{1-lpha}-v_{1-eta}$$
 ,

ovvero

$$\lim_i \sqrt{n_i} (heta_i - heta_0) \, rac{\mu_{T_{n_i}}'(heta_i^*)}{\sqrt{n_i} \sigma_{T_{n_i}}(heta_0)} \, = v_{1-lpha} - v_{1-eta} \, ,$$

da cui

$$\lim_{i} \sqrt{n_i} (\theta_i - \theta_0) = \frac{v_{1-\alpha} - v_{1-\beta}}{K_T}.$$

Dunque, la successione di alternative $(\theta_i)_{i>1}$ deve essere tale che

$$\theta_i = \theta_0 + \frac{v_{1-\alpha} - v_{1-\beta}}{\sqrt{n_i} K_T} + g(n_i) ,$$

dove $\lim_i \sqrt{n_i} g(n_i) = 0$. Quindi, il Teorema 3.2.4 assume implicitamente una struttura particolare per la successione di alternative $(\theta_i)_{i\geq 1}$, che possono essere espresse in funzione della numerosità campionaria. Infatti, la successione di alternative $(\theta_i)_{i\geq 1}$ è equivalente ad una successione di alternative del tipo $(\theta_0 + c/\sqrt{n_i})_{i\geq 1}$ con c costante, che è detto sistema di alternative di Pitman.

• Esempio 3.2.1. Si consideri un campione casuale $(X_1, ..., X_n)$ con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\lambda,F}$, dove

$$\mathcal{F}_{\lambda,F} = \{ F_n : F_n \in \mathcal{S}_{\lambda,F}, \operatorname{Var}(X) = \sigma^2 < \infty \}.$$

Dall'Esempio 1.2.3 si verifica che $\mathrm{E}(X)=\lambda$. Si consideri il sistema di ipotesi $H_0:\lambda=0, F\in\mathcal{F}$, contro $H_1:\lambda=\lambda_i, F\in\mathcal{F}$, dove $(\lambda_i)_{i\geq 1}$ è una successione di alternative tali che $\lambda_i=c/\sqrt{n_i}$ con c costante. Inoltre, \mathcal{F} rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua e simmetrica rispetto a 0 con varianza finita. Non si perde di generalità nell'assumere questo sistema di ipotesi, in quanto se risulta $H_0:\lambda=\lambda_0, F\in\mathcal{F}$, contro $H_1:\lambda=\lambda_i=\lambda_0+c/\sqrt{n_i}, F\in\mathcal{F}$, si può ottenere il sistema di ipotesi originale considerando il campione trasformato $(X_1-\lambda_0,\ldots,X_n-\lambda_0)$. Si vuole determinare l'efficacia del test basato sulla statistica di Student

$$T = T_n = \frac{\overline{X}}{S/\sqrt{n}} .$$

Si devono verificare le condizioni del Teorema 3.2.4. Innanzitutto, si sceglie $\mu_{T_{n_i}}(\lambda) = \sqrt{n_i} \lambda/\sigma$ e $\sigma_{T_{n_i}}(\lambda) = 1$. Per quanto riguarda la verifica della condizione i) si noti che

$$\frac{T_{n_i} - \mu_{T_{n_i}}(\lambda_i)}{\sigma_{T_{n_i}}(\lambda_i)} = \frac{\bar{X}}{S/\sqrt{n_i}} - \frac{\lambda_i}{\sigma/\sqrt{n_i}} = \frac{\bar{X} - c/\sqrt{n_i}}{\sigma/\sqrt{n_i}} \frac{\sigma}{S} + \frac{c}{\sigma} \left(\frac{\sigma}{S} - 1\right).$$

Dal momento che $S^2 \stackrel{p}{\to} \sigma^2$ per $i \to \infty$ (vedi Esempio A.3.5), dal Teorema di Svedrup (Teorema A.3.4) si ha $S \stackrel{p}{\to} \sigma$ per $i \to \infty$. Inoltre, tenendo presente il Corollario A.3.8 al Teorema Fondamentale del Limite di Lindberg, si ottiene $\sqrt{n_i}(\bar{X}-c/\sqrt{n_i})/\sigma \stackrel{d}{\to} N(0,1)$ per $i \to \infty$. Combinando questi risultati mediante il Teorema di Slutsky (Teorema A.3.5) si ha

$$rac{T_{n_i} - \mu_{T_{n_i}}(\lambda_i)}{\sigma_{T_{n_i}}(\lambda_i)} \stackrel{d}{
ightarrow} N(0,1) \ ,$$

e quindi la condizione i) è verificata. Anche la condizione ii) è verificata, in quanto se è vera H_0 si ha $S \stackrel{p}{\to} \sigma$ e $\sqrt{n_i} \overline{X}/\sigma \stackrel{d}{\to} N(0,1)$ per $i \to \infty$ (vedi Esempio 2.2.2). Di conseguenza, applicando il Teorema di Slutski (Teorema A.3.5) si ha

$$\frac{T_{n_i} - \mu_{T_{n_i}}(0)}{\sigma_{T_{n_i}}(0)} = \frac{\bar{X}}{\sigma/\sqrt{n_i}} \frac{\sigma}{S} \stackrel{d}{\to} N(0,1) .$$

E' banale verificare la condizione iii). Anche la condizione iv) è verificata, in quanto

$$\mu'_{T_n}(\lambda) = \frac{d}{d\lambda} \, \mu_{T_n}(\lambda) = \frac{d}{d\lambda} \, \frac{\lambda}{\sigma/\sqrt{n}} = \frac{\sqrt{n}}{\sigma}$$

è una funzione continua in un intorno di 0 e $\mu'_{T_n}(0) \neq 0$. Risulta banale verificare anche la condizione ν). Infine, per quanto riguarda la condizione ν i), si ha

$$K_T = \lim_n \frac{\mu_{T_n}'(0)}{\sqrt{n}\sigma_{T_n}(0)} = \lim_n \frac{\sqrt{n}/\sigma}{\sqrt{n}} = \frac{1}{\sigma} > 0$$
.

Le condizioni del Teorema 3.2.4 sono dunque soddisfatte e quindi si ha

$$\operatorname{eff}_T = \frac{1}{\sigma}$$
.

Questa quantità sarà utilizzata per determinare l'efficienza asintotica relativa di questo test classico rispetto ad alcuni test "distribution-free".

• Esempio 3.2.2. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\lambda,F}$, dove

$$\mathcal{F}_{\lambda,F} = \{ F_n : F_n \in \mathcal{S}_{\lambda,F}, 0 < F'(0) = f(0) < \infty \}.$$

Si consideri inoltre il sistema di ipotesi $H_0: \lambda = 0, F \in \mathcal{F}$, contro $H_1: \lambda = \lambda_i, F \in \mathcal{F}$, dove $(\lambda_i)_{i \geq 1}$ è una successione di alternative tali che $\lambda_i = c/\sqrt{n_i}$ con c costante. Inoltre, \mathcal{F} rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua e simmetrica rispetto a 0 con funzione di densità finita e non nulla a 0. Si vuole determinare l'efficacia del test basato sulla statistica considerata nell'Esempio 2.3.1

$$B = B_n = \sum_{i=1}^n Z_i .$$

Si deve dunque verificare le condizioni del Teorema 3.2.4. Se è vera H_1 , allora risulta

$$Pr(X > 0) = 1 - F(-\lambda) = F(\lambda)$$
.

Dunque, è conveniente scegliere $\mu_{B_{n_i}}(\lambda) = n_i F(\lambda)$ e $\sigma_{B_{n_i}}(\lambda) = \sqrt{n_i F(\lambda)(1 - F(\lambda))}$. Inoltre, si ha $\mathrm{E}(Z_i) = F(c/\sqrt{n_i})$ e $\mathrm{Var}(Z_i) = F(c/\sqrt{n_i})(1 - F(c/\sqrt{n_i}))$. Dunque, la condizione i) è verificata, dal momento che per il Corollario A.3.8 al Teorema Fondamentale del Limite di Lindberg per $i \to \infty$ si ha

$$\frac{B_{n_i} - \mu_{B_{n_i}}(\lambda_i)}{\sigma_{B_{n_i}}(\lambda_i)} = \frac{B_{n_i} - n_i F(\lambda_i)}{\sqrt{n_i F(\lambda_i)(1 - F(\lambda_i))}} = \sqrt{n_i} \frac{B_{n_i}/n_i - F(\lambda_i)}{\sqrt{F(\lambda_i)(1 - F(\lambda_i))}} \stackrel{d}{\to} N(0, 1).$$

Anche la condizione *ii*) è verificata, in quanto dal Teorema Fondamentale del Limite Classico (Teorema A.3.6) si ha

$$rac{B_{n_i} - \mu_{B_{n_i}}(0)}{\sigma_{B_{n_i}}(0)} = rac{B_{n_i} - n_i/2}{\sqrt{n_i/4}} = \sqrt{n_i} \, rac{B_{n_i}/n_i - 1/2}{\sqrt{1/4}} \stackrel{d}{
ightarrow} N(0,1) \ .$$

Risulta banale verificare la condizione iii). La condizione iv) è verificata, in quanto

$$\mu'_{B_n}(\lambda) = \frac{d}{d\lambda} \, \mu_{B_n}(\lambda) = \frac{d}{d\lambda} \, nF(\lambda) = nf(\lambda) \,,$$

è una funzione continua in un intorno di 0 e $\mu'_{T_n}(0) \neq 0$. Risulta banale verificare anche la condizione ν). Infine, per quanto riguarda la condizione ν i), si ha

$$K_B = \lim_n \frac{\mu'_{B_n}(0)}{\sqrt{n}\sigma_{B_n}(0)} = \lim_n \frac{nf(0)}{n/2} = 2f(0) > 0.$$

Le condizioni del Teorema 3.2.4 sono dunque soddisfatte e quindi si ha

$$eff_B = 2f(0)$$
.

Utilizzando i risultati dell'Esempio 3.2.1, l'efficienza asintotica relativa del test basato sulla statistica B rispetto al test basato sulla statistica T di Student è data da

$$EAR_{B,T} = \frac{K_B^2}{K_T^2} = \frac{4f(0)^2}{1/\sigma^2} = 4\sigma^2 f(0)^2.$$

Se il campione casuale proviene da una distribuzione $N(\lambda, \sigma^2)$, dal momento che $f(0) = 1/\sqrt{2\pi\sigma^2}$, allora $\text{EAR}_{B,T} = 2/\pi \simeq 0.6366$. Tuttavia, se il campione casuale proviene da una distribuzione $L(\lambda, \delta)$, dal momento che $\sigma^2 = 2\delta^2$ e $f(0) = 1/(2\delta)$ allora $\text{EAR}_{B,T} = 2$. Quindi, se cade l'assunzione di normalità si può avere una notevole perdita di efficienza dei test classici.

• Esempio 3.2.3. Si consideri i due campioni casuali indipendenti (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) , tali che se $n = n_1 + n_2$, allora $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ costituisce un campione misto con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\Delta,F}$, dove

$$\mathcal{F}_{\Delta,F} = \{F_n : F_n \in \mathcal{L}_{\Delta,F}, \operatorname{Var}(X) = \sigma^2 < \infty\}.$$

Si ha $\mathrm{Var}(Y)=\sigma^2$ e senza perdita di generalità si può supporre $\mathrm{E}(X)=0$, da cui segue $\mathrm{E}(Y)=\Delta$. Si consideri il sistema di ipotesi $H_0:\Delta=0, F\in\mathcal{F}$, contro $H_1:\Delta=\Delta_i, F\in\mathcal{F}$ dove $(\Delta_i)_{i\geq 1}$ è una successione di alternative tali che $\Delta_i=c/\sqrt{n_i}$ con c costante. In questo caso, \mathcal{F} rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua con varianza finita. Siano inoltre $(n_{1i})_{i\geq 1}$ e $(n_{2i})_{i\geq 1}$ due successioni tali che $\lim_i n_{1i}/n_i=\nu$ e $\lim_i n_{2i}/n_i=1-\nu$ con $\nu\in(0,1)$. Si vuole determinare l'efficacia del test basato sulla statistica di Student per due campioni indipendenti, data da

$$T = T_n = \frac{\overline{Y} - \overline{X}}{S\sqrt{n/(n_1 n_2)}},$$

dove \bar{X} e \bar{Y} rappresentano le medie campionarie, mentre

$$S^{2} = \frac{1}{n-2} \left(\sum_{i=1}^{n_{1}} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{n_{2}} (Y_{j} - \bar{Y})^{2} \right) = \frac{1}{n-2} \left((n_{1} - 1)S_{x}^{2} + (n_{2} - 1)S_{y}^{2} \right),$$

dove S_x^2 e S_y^2 rappresentano le varianze campionarie corrette. Si devono dunque verificare le condizioni del Teorema 3.2.4. Innanzitutto, si sceglie $\mu_{T_{n_i}}(\Delta) = \sqrt{n_{1i}n_{2i}/n_i}(\Delta/\sigma)$ e $\sigma_{T_{n_i}}(\Delta) = 1$. Per quanto riguarda la verifica della condizione i), si noti che

$$\begin{split} \frac{T_{n_i} - \mu_{T_{n_i}}(\Delta_i)}{\sigma_{T_{n_i}}(\Delta_i)} &= \frac{\bar{Y} - \bar{X}}{S\sqrt{n_i/(n_{1i}n_{2i})}} - \frac{\Delta_i}{\sigma\sqrt{n_i/(n_{1i}n_{2i})}} \\ &= \frac{(\bar{Y} - c/\sqrt{n_i}) - \bar{X}}{\sigma\sqrt{n_i/(n_{1i}n_{2i})}} \frac{\sigma}{S} + \frac{c\sqrt{n_{1i}n_{2i}}}{\sigma n_i} \left(\frac{\sigma}{S} - 1\right). \end{split}$$

Analogamente all'Esempio 3.2.1 si ha $S_y \stackrel{p}{\to} \sigma$ e $\sqrt{n_{2i}}(\overline{Y} - c/\sqrt{n_i})/\sigma \stackrel{d}{\to} N(0,1)$ per $i \to \infty$. Inoltre, dall'Esempio 2.2.2 si ha $S_x \stackrel{p}{\to} \sigma$ e $\sqrt{n_{1i}}\overline{X}/\sigma \stackrel{d}{\to} N(0,1)$ per $i \to \infty$. Di conseguenza, applicando il Teorema di Sverdrup (Teorema A.3.4), per $i \to \infty$ si ha

$$S^{2} = \frac{(n_{1i} - 1)S_{x}^{2}}{n_{i} - 2} + \frac{(n_{2i} - 1)S_{y}^{2}}{n_{i} - 2} \xrightarrow{p} \nu\sigma^{2} + (1 - \nu)\sigma^{2} = \sigma^{2},$$

da cui $S \xrightarrow{p} \sigma$. Inoltre, applicando il Metodo Delta (Teorema A.3.10) alle variabili casuali indipendenti $\sqrt{n_{1i}X}/\sigma$ e $\sqrt{n_{2i}}(\overline{Y}-c/\sqrt{n_{i}})/\sigma$ mediante la funzione g(x,y)=y-x, per $i\to\infty$ si ottiene

$$\frac{(\overline{Y} - c/\sqrt{n_i}) - \overline{X}}{\sqrt{\sigma^2/n_{1i} + \sigma^2/n_{2i}}} = \frac{(\overline{Y} - c/\sqrt{n_i}) - \overline{X}}{\sigma\sqrt{n_i/(n_{1i}n_{2i})}} \xrightarrow{d} N(0, 1) .$$

Per il Teorema di Slutski (Teorema A.3.5), combinando i precedenti risultati, per $i \to \infty$ risulta infine

$$\frac{T_{n_i} - \mu_{T_{n_i}}(\Delta_i)}{\sigma_{T_{n_i}}(\Delta_i)} \stackrel{d}{\to} N(0, 1) .$$

La condizione ii) è verificata, in quanto con un procedimento analogo a quello considerato per verificare la condizione i) per $i \to \infty$ si ha

$$rac{T_{n_i}-\mu_{T_{n_i}}(0)}{\sigma_{T_{n_i}}(0)}\stackrel{d}{
ightarrow} N(0,1) \ .$$

Risulta banale verificare la condizione iii). La condizione iv) è verificata, dal momento che

$$\mu'_{T_n}(\Delta) = \frac{d}{d\Delta} \, \mu_{T_n}(\Delta) = \frac{d}{d\Delta} \, \frac{\Delta}{\sigma \sqrt{n/(n_1 n_2)}} = \frac{1}{\sigma \sqrt{n/(n_1 n_2)}} \, ,$$

è una funzione continua in un intorno di 0 e $\mu'_{T_n}(0) \neq 0$. Risulta banale verificare anche la condizione ν). Infine, per quanto riguarda la condizione νi), si ha

$$K_T = \lim_n \frac{\mu'_{T_n}(0)}{\sqrt{n}\sigma_{T_n}(0)} = \lim_n \frac{1}{\sigma} \frac{\sqrt{n_1}}{\sqrt{n}} \frac{\sqrt{n_2}}{\sqrt{n}} = \frac{1}{\sigma} \sqrt{\nu(1-\nu)} > 0.$$

Le condizioni del Teorema 3.2.4 sono dunque soddisfatte e quindi si ha

$$\operatorname{eff}_T = \frac{1}{\sigma} \sqrt{\nu(1-\nu)}$$
.

Questa quantità sarà utilizzata per determinare l'efficienza asintotica relativa di questo test classico rispetto ad alcuni test "distribution-free".

• Esempio 3.2.4. Si consideri i due campioni casuali indipendenti (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) , tali che se $n = n_1 + n_2$, allora $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ costituisce un campione misto con funzione di ripartizione $F_n \in \mathcal{F}_{n,F}$, dove

$$\mathcal{F}_{\eta,F} = \{ F_n : F_n \in \mathcal{V}_{\eta,F}, \mathcal{E}(X^4) = \mu_4 < \infty \}$$

Si ha $E(X^r) = \eta^r E(Y^r)$. Quindi, se $Var(X) = \sigma^2$ si ha $Var(Y) = \eta^2 \sigma^2$ e se

$$\gamma^2 = E(X^4) - Var(X)^2 = \mu_4 - \sigma^4$$

si ha $\mathrm{E}(Y^4) - \mathrm{Var}(Y)^2 = \eta^4 \gamma^2$. Si consideri il sistema di ipotesi $H_0: \eta = 1, F \in \mathcal{F}$, contro $H_1: \eta = \eta_i, F \in \mathcal{F}$, dove $(\eta_i)_{i\geq 1}$ è una successione di alternative tali che $\eta_i = 1 + c/\sqrt{n_i}$ con c costante. Inoltre, \mathcal{F} rappresenta la classe delle funzioni di ripartizione di una variabile casuale assolutamente continua con quarto momento finito. Siano inoltre $(n_{1i})_{i\geq 1}$ e $(n_{2i})_{i\geq 1}$ due successioni tali che $\lim_i n_{1i}/n_i = \nu$ e $\lim_i n_{2i}/n_i = 1 - \nu$ con $\nu \in (0,1)$. Si vuole determinare l'efficacia del test basato sulla statistica di Snedecor per l'omogeneità delle varianze, data da

$$T = T_n = \frac{S_y^2}{S_x^2} \,,$$

dove S_x^2 e S_y^2 rappresentano le varianze campionarie corrette. Si deve dunque verificare le condizioni del Teorema 3.2.4. Innanzitutto, si sceglie $\mu_{T_n}(\eta) = \eta^2$ e $\sigma_{T_n}(\eta) = \sqrt{n/(n_1 n_2)}(\eta^2 \gamma/\sigma^2)$. Per quanto riguarda la condizione i), si ha

$$\frac{T_{n_i} - \mu_{T_{n_i}}(\eta_i)}{\sigma_{T_{n_i}}(\eta_i)} = \frac{S_y^2 / S_x^2 - \eta_i^2}{\sqrt{n_i / (n_{1i}n_{2i})}(\eta_i^2 \gamma / \sigma^2)} = \frac{(S_y^2 - \eta_i^2 \sigma^2) - \eta_i^2 (S_x^2 - \sigma^2)}{\eta_i^2 \gamma \sqrt{n_i / (n_{1i}n_{2i})}} \frac{\sigma^2}{S_x^2}.$$

Applicando il Corollario A.3.8 al Teorema Fondamnetale del Limite di Lindberg, si ottiene che $\sqrt{n_{2i}}(S_y^2-\eta_i^2\sigma^2)/(\gamma\eta_i^2)\stackrel{d}{\to} N(0,1)$ per $i\to\infty$. Inoltre, dall'Esempio A.3.4 si ha $S_x^2\stackrel{p}{\to}\sigma^2$ per $i\to\infty$ e dall'Esempio A.3.6 si ha $\sqrt{n_{1i}}(S_x^2-\sigma^2)/\gamma\stackrel{d}{\to} N(0,1)$ per $i\to\infty$. Inoltre, applicando il Metodo Delta (Teorema A.3.10) alle variabili casuali indipendenti $\sqrt{n_{1i}}(S_x^2-\sigma^2)/\gamma$ e $\sqrt{n_{2i}}(S_y^2-\eta_i^2\sigma^2)/(\gamma\eta_i^2)$ mediante la funzione g(x,y)=y-x, per $i\to\infty$ si ottiene

$$\frac{(S_y^2 - \eta_i^2 \sigma^2) - \eta_i^2 (S_x^2 - \sigma^2)}{\eta_i^2 \sqrt{\gamma^2 / n_{1i} + \gamma^2 / n_{2i}}} = \frac{(S_y^2 - \eta_i^2 \sigma^2) - \eta_i^2 (S_x^2 - \sigma^2)}{\eta_i^2 \gamma \sqrt{n_i / (n_{1i} n_{2i})}} \xrightarrow{d} N(0, 1).$$

Per il Teorema di Slutski (Teorema A.3.5), combinando i precedenti risultati, per $i \to \infty$ risulta infine

$$rac{T_{n_i} - \mu_{T_{n_i}}(\eta_i)}{\sigma_{T_{n_i}}(\eta_i)} \stackrel{d}{
ightarrow} N(0,1) \ .$$

La condizione ii) è verificata, in quanto con un procedimento analogo a quello considerato per verificare la condizione i) per $i \to \infty$ si ha

$$rac{T_{n_i}-\mu_{T_{n_i}}(1)}{\sigma_{T_{n_i}}(1)}\stackrel{d}{
ightarrow} N(0,1) \ .$$

La condizione iii) è verificata in quanto dal momento che

$$\lim_{i} \frac{\sigma_{T_{n_{i}}}(\eta_{i})}{\sigma_{T_{n_{i}}}(1)} = \lim_{i} \frac{\sqrt{n_{i}/(n_{1i}n_{2i})}(\eta_{i}^{2}\gamma/\sigma^{2})}{\sqrt{n_{i}/(n_{1i}n_{2i})(\gamma/\sigma^{2})}} = \lim_{i} \eta_{i}^{2} = 1.$$

Inoltre, si ha

$$\mu_{T_n}'(\eta) = rac{d}{d\eta}\,\mu_{T_n}(\eta) = rac{d}{d\eta}\,\eta^2 = 2\eta\;,$$

che è una funzione continua in un intorno di 1 e $\mu'_{T_n}(1) \neq 0$ e quindi anche la condizione iv) è verificata. Risulta banale verificare anche la condizione v). Infine, per quanto riguarda la condizione vi), si ha

$$K_T = \lim_n \frac{\mu'_{T_n}(1)}{\sqrt{n}\sigma_{T_n}(1)} = \lim_n \frac{2\sigma^2}{\gamma} \frac{\sqrt{n_1}}{\sqrt{n}} \frac{\sqrt{n_2}}{\sqrt{n}} = \frac{2\sigma^2}{\gamma} \sqrt{\nu(1-\nu)} > 0.$$

Le condizioni del Teorema 3.2.4 sono dunque soddisfatte e quindi si ha

$$\mathrm{eff}_T = rac{2\sigma^2}{\gamma} \, \sqrt{
u(1-
u)} \, .$$

Questa quantità sarà utilizzata per determinare l'efficienza asintotica relativa di questo test classico rispetto ai test "distribution-free".

3.3. La significatività osservata. Anche se per sviluppare la teoria è necessario fissare il livello di significatività α , quando si lavora operativamente non esiste nessuna regola ragionevole per stabilirne la scelta. Questa considerazione porta al concetto di significatività osservata o valore-P.

Definizione 3.3.1. Sia (X_1,\ldots,X_n) un campione con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0:\psi\in\varPsi_0$ contro $H_1:\psi\in\varPsi\setminus\varPsi_0$. Se la regione critica del test basato su T è data da $\mathcal{T}_1=\{t:t\geq c\}$, per un determinato valore campionario t si definisce significatività osservata la quantità

$$lpha_{oss} = \sup_{\psi \in \varPsi_0} \Pr_{\psi}(T \ge t)$$
 .

Alternativamente, se la regione critica del test basato su T è data da $\mathcal{T}_1 = \{t : t \leq c\}$, per un determinato valore campionario t si definisce significatività osservata la quantità

$$\alpha_{oss} = \sup_{\psi \in \Psi_0} \Pr_{\psi}(T \le t) \ .$$
 \triangle

Dalla definizione si può constatare che la significatività osservata rappresenta la probabilità di ottenere, quando H_0 è vera, un valore campionario t di T estremo (nella appropriata direzione) almeno quanto quello osservato. La significatività osservata fornisce dunque una misura su quanto l'ipotesi di base risulta compatibile con i dati campionari. Una significatività osservata esigua porta a ritenere poco compatibile con i dati campionari l'ipotesi di base, mentre con una significatività osservata elevata è vera l'affermazione contraria. Di conseguenza, in una verifica di ipotesi si può semplicemente riportare la significatività osservata, oppure si può arrivare ad una decisione sull'accettazione di H_0 fissando un livello di significatività α . Se la significatività osservata è minore o uguale ad α , allora si respinge H_0 , altrimenti si accetta H_0 . La significatività osservata diventa in questo caso il più elevato livello di significatività per cui si accetta H_0 . Tuttavia, in questo caso la significatività osservata diventa non solo uno strumento per la decisione nella verifica di ipotesi, ma anche misura quantitativa di questa decisione. Infine, la seguente definizione di significatività osservata è utile quando la statistica test T è simmetrica.

Definizione 3.3.2. Sia (X_1, \ldots, X_n) un campione con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\psi}$ e si consideri il sistema di ipotesi $H_0: \psi \in \Psi_0$ contro $H_1: \psi \in \Psi \setminus \Psi_0$. Se T è una statistica simmetrica e se la regione critica del test basato su T è data da $\mathcal{T}_1 = \{t: t \leq c_1, t \geq c_2\}$, per un determinato valore campionario t si definisce significatività osservata la quantità

$$\alpha_{oss} = 2 \min(\sup_{\psi \in \varPsi_0} \Pr_{\psi}(T \leq t), \sup_{\psi \in \varPsi_0} \Pr_{\psi}(T \geq t)) \; . \tag{\triangle}$$

Capitolo 4

Gli intervalli di confidenza "distribution-free"

4.1. Gli intervalli di confidenza "distribution-free". La seguente è la definizione formale di intervallo di confidenza "distribution-free".

Definizione 4.1.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, dove θ è un parametro reale e F rappresenta la funzione di ripartizione della variabile casuale da cui proviene il campione. Supponiamo che $\theta \in \Theta$ e $F \in \mathcal{F}$, dove Θ è lo spazio parametrico e \mathcal{F} è una classe di funzioni di ripartizione. Sia inoltre $P = P(X_1, \ldots, X_n; \theta)$ una quantità pivot "distribution-free" su $\mathcal{F}_{\theta,F}$, ovvero una trasformata la cui funzione di ripartizione rimane invariata per ogni $F_n \in \mathcal{F}_{\theta,F}$. Se c_1 e c_2 sono due valori tali che

$$\Pr_{\theta,F}(c_1 < P(X_1,...,X_n;\theta) < c_2) = 1 - \alpha, 0 < \alpha < 1, \theta \in \Theta, F \in \mathcal{F},$$

e se $L = L(X_1, ..., X_n)$ e $U = U(X_1, ..., X_n)$ sono statistiche tali che per ogni θ

$$\{(x_1,\ldots,x_n): c_1 < P(x_1,\ldots,x_n;\theta) < c_2\} \Leftrightarrow \{(x_1,\ldots,x_n): L(x_1,\ldots,x_n) < \theta < U(x_1,\ldots,x_n)\}$$

allora l'intervallo casuale (L,U) è detto intervallo di confidenza di θ "distribution-free" su $\mathcal{F}_{\theta,F}$ al livello di confidenza $(1-\alpha)$.

Quando la quantità pivot è una variabile casuale discreta, allora esiste un numero finito o contabile di livelli di confidenza ottenibili, che vengono detti livelli di confidenza naturali. Nel seguito saranno considerati solo livelli di confidenza naturali. Sia (X_1,\ldots,X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$ e si consideri il sistema di ipotesi $H_0: \theta = \theta_0, F \in \mathcal{F}$, contro $H_1: \theta \neq \theta_0, F \in \mathcal{F}$, dove θ è un parametro reale e F rappresenta la funzione di ripartizione della variabile casuale da cui proviene il campione. Si abbia inoltre un test basato sulla statistica $T = T(X_1,\ldots,X_n)$ "distribution-free" su $\mathcal{F}_{\theta,F}$ al livello di significatività α e sia

$$\mathcal{X}_0 = \{(x_1, \dots, x_n) : c_1 < T(x_1, \dots, x_n) < c_2\}$$

la relativa regione di accettazione. Si ha

$$\Pr_{\theta_0, F}(c_1 < T < c_2) = 1 - \alpha$$
,

che evidenzia come la regione di accettazione \mathcal{X}_0 dipenda dal valore prefissato θ_0 di θ . Dunque, esiste una quantità pivot $P = P(X_1, \dots, X_n; \theta)$ per cui si ha

$$\Pr_{\theta,F}(c_1 < P(X_1,\ldots,X_n;\theta) < c_2) = \Pr_{\theta_0,F}(c_1 < T < c_2) = 1 - \alpha$$
.

Di conseguenza, se è possibile costruire l'intervallo di confidenza (L,U) a partire dalla quantità pivot P, allora si deve concludere che esiste una equivalenza tra la regione critica del test nel sistema di ipotesi considerato e l'intervallo di confidenza di θ . Questa considerazione consente di costruire un intervallo di confidenza per un dato parametro partendo da un opportuno sistema di ipotesi.

• Esempio 4.1.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{\lambda,F}$ e si consideri il sistema di ipotesi $H_0: \lambda = 0, F \in \mathcal{M}$, contro $H_1: \lambda \neq 0, F \in \mathcal{M}$. Dal momento che λ rappresenta la mediana della variabile casuale da cui proviene il campione, a partire da questo sistema di ipotesi si può costruire un intervallo di confidenza per la mediana. In questo caso, un test opportuno è basato

sulla statistica $B = B(X_1, ..., X_n)$ dell'Esempio 2.3.1. La statistica test B è "distribution-free" su $\mathcal{M}_{0,F}$ e se è vera l'ipotesi di base si distribuisce come una variabile casuale Binomiale Bi(n, 1/2). Dunque, scelto un livello di significatività α , si ha

$$\Pr_{0,F}(b_{n,\alpha/2} < B(X_1, \dots, X_n) < n - b_{n,\alpha/2}) = 1 - \alpha.$$

In questo caso, la quantità pivot associata a B è data da $P = B(X_1 - \lambda, ..., X_n - \lambda)$, per cui tenendo presente l'Esempio 1.1.1 e la definizione della classe $\mathcal{M}_{\lambda,F}$, si ha

$$\Pr_{\lambda,F}(b_{n,\alpha/2} < B(X_1 - \lambda, \dots, X_n - \lambda) < n - b_{n,\alpha/2}) = 1 - \alpha$$
.

La quantità pivot $B(X_1 - \lambda, ..., X_n - \lambda)$ rappresenta il numero di X_i maggiori di λ per i = 1, ..., n. Se $(X_{(1)}, ..., X_{(n)})$ è la statistica ordinata, si ottiene che

$$\{(x_1,\ldots,x_n): B(x_1-\lambda,\ldots,x_n-\lambda) < n-b_{n,\alpha/2}\} \Leftrightarrow \{(x_1,\ldots,x_n): x_{(b_{n,\alpha/2}+1)} < \lambda\}.$$

Analogamente

$$\{(x_1,\ldots,x_n): b_{n,\alpha/2} < B(x_1-\lambda,\ldots,x_n-\lambda)\} \Leftrightarrow \{(x_1,\ldots,x_n): \lambda < x_{(n-b_{n,\alpha/2})}\}.$$

Dunque, $L = X_{(b_{n,\alpha/2}+1)}$ e $U = X_{(n-b_{n,\alpha/2})}$, ovvero $(X_{(b_{n,\alpha/2}+1)}, X_{(n-b_{n,\alpha/2})})$, è un intervallo di confidenza della mediana λ "distribution-free" su $\mathcal{M}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.

Il seguente teorema permette di costruire intervalli di confidenza di un parametro θ "distribution-free" su una classe $\mathcal{F}_{\theta,F}$ se la statistica test su cui si basa il sistema di ipotesi associato ha una particolare struttura.

Teorema 4.1.2. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\theta,F}$, dove $\theta \in \Theta$ è un parametro reale e $F \in \mathcal{F}$ rappresenta la funzione di ripartizione della variabile casuale da cui proviene il campione. Si consideri inoltre l'insieme di statistiche $V_i = V_i(X_1, ..., X_n)$ per i = 1, ..., k, tali che

$$T = T(V_1, \dots, V_k) = \sum_{i=1}^k \mathbf{1}_{(0,\infty)}(V_i)$$

è una statistica "distribution-free" su $\mathcal{F}_{0,F}$. Sia inoltre

$$\Pr_{0,F}(c_1 < T(V_1, \dots, V_k) < c_2) = \Pr_{\theta,F}(c_1 < T(V_1 - \theta, \dots, V_k - \theta) < c_2) = 1 - \alpha.$$

Se $(V_{(1)},\ldots,V_{(k)})$ è la statistica ordinata relativa al vettore di statistiche (V_1,\ldots,V_k) , allora $(V_{(k+1-c_2)},V_{(k-c_1)})$ è un intervallo di confidenza di θ "distribution-free" su $\mathcal{F}_{\theta,F}$ al livello di confidenza $(1-\alpha)$.

Dimostrazione. Si noti che $T(V_1 - \theta, ..., V_k - \theta)$ è una quantità pivot. Inoltre, dal momento che $T(V_1 - \theta, ..., V_k - \theta)$ rappresenta il numero di V_i maggiori di θ per i = 1, ..., k, si ha che

$$\{(v_1, \ldots, v_k) : T(v_1 - \theta, \ldots, v_k - \theta) < c_2\} \Leftrightarrow \{(v_1, \ldots, v_k) : v_{(k+1-c_2)} < \theta\}.$$

Analogamente

$$\{(v_1,\ldots,v_k): c_1 < T(v_1-\theta,\ldots,v_k-\theta)\} \Leftrightarrow \{(v_1,\ldots,v_k): \theta < v_{(k-c_1)}\}.$$

Di conseguenza, in base alla Definizione 4.1.1, si ha che $(V_{(k+1-c_2)}, V_{(k-c_1)})$ è un intervallo di confidenza di θ "distribution-free" su $\mathcal{F}_{\theta,F}$ al livello di confidenza $(1-\alpha)$.

• Esempio 4.1.2. Sia (X_1,\ldots,X_n) un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{S}_{\lambda,F}$. In questo caso, λ rappresenta la mediana della variabile casuale da cui proviene il campione. Si consideri inoltre la statistica W^+ "distribution-free" su $\mathcal{S}_{0,F}$ dell'Esempio 2.5.1. Se $(X_{(1)},\ldots,X_{(n)})$ è la statistica ordinata, allora si ha $\mathbf{1}_{(0,\infty)}((X_{(i)}+X_{(j)})/2)=1$ se e solo se $X_{(i)}>0$ e $|X_{(i)}|>|X_{(j)}|$ per j< i, mentre si

ha $\mathbf{1}_{(0,\infty)}((X_{(i)}+X_{(i)})/2)=1$ se e solo se $X_{(i)}>0$. Di conseguenza, le variabili casuali $Z_iR_i^+$ possono essere espresse come

$$Z_i R_i^+ = \sum_{j=1}^i \mathbf{1}_{(0,\infty)}((X_{(i)} + X_{(j)})/2), i = 1, \dots, n,$$

per cui una rappresentazione alternativa di W^+ è data da

$$W^+ = \sum_{i=1}^n \sum_{j=1}^i \mathbf{1}_{(0,\infty)}((X_{(i)} + X_{(j)})/2) = \sum_{i=1}^n \sum_{j=1}^i \mathbf{1}_{(0,\infty)}((X_i + X_j)/2).$$

Dunque, W^+ è basata sulle k = n(n+1)/2 statistiche $V_{ij} = (X_i + X_j)/2$ per $i \ge j = 1, ..., n$, dette anche medie di Walsh. Se si indicizzano di nuovo le statistiche V_{ij} denotandole con W_i per i = 1, ..., k, si ottiene

$$W^+(W_1,\ldots,W_k) = \sum_{i=1}^k \mathbf{1}_{(0,\infty)}(W_i) ,$$

ovvero la statistica W^+ può essere espressa nella forma richiesta dal Teorema 4.1.2. Inoltre, dal momento che

$$V_{ij} - \lambda = \frac{1}{2} (X_i + X_j) - \lambda = \frac{1}{2} (X_i - \lambda + X_j - \lambda), i \ge j = 1, ..., n,$$

tenendo presente l'Esempio 1.1.1 e la definizione della classe $S_{\lambda,F}$, si ha

$$\begin{aligned} \Pr_{0,F}(w_{\alpha/2} < W^+(W_1, \dots, W_k) < k - w_{\alpha/2}) &= \\ &= \Pr_{\lambda,F}(w_{\alpha/2} < T(W_1 - \lambda, \dots, W_k - \lambda) < k - w_{\alpha/2}) = 1 - \alpha \,, \end{aligned}$$

dove w_{α} rappresenta il quantile di ordine α della distribuzione di W^+ e dove si è tenuto presente che W^+ è simmetrica rispetto a k/2 (vedi Esempio 2.5.1). Dunque, se $(W_{(1)},\ldots,W_{(k)})$ rappresenta la statistica ordinata relativo al vettore di statistiche (W_1,\ldots,W_k) , risulta che $(W_{(w_{\alpha/2}+1)},W_{(k-w_{\alpha/2})})$ è un intervallo di confidenza della mediana λ "distribution-free" su $\mathcal{S}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$. Questo intervallo di confidenza è "distribution-free" su una classe più ristretta di quello ottenuto nell'Esempio 4.1.1, dal momento che $\mathcal{S}_{\lambda,F} \subset \mathcal{M}_{\lambda,F}$.

• Esempio 4.1.3. Si consideri i due campioni casuali indipendenti (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) , tali che se $n=n_1+n_2$, allora $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ costituisce un campione misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$. Si consideri inoltre la statistica W "distribution-free" su $\mathcal{L}_{0,F}$ dell'Esempio 2.4.1. Si noti che le classi $\mathcal{L}_{0,F}$ e \mathcal{C}_F coincidono. Se $(X_{(1)}, \ldots, X_{(n_1)})$ e $(Y_{(1)}, \ldots, Y_{(n_2)})$ sono le statistiche ordinate relative ai due campioni, si ha (vedi Esempio 2.4.1)

$$R_{(i)} = \sum_{i=1}^{n_2} \mathbf{1}_{(0,\infty)} (X_{(i)} - Y_{(j)}) + i , i = 1, \ldots, n_1 ,$$

per cui una rappresentazione alternativa di W risulta

$$W = \sum_{i=1}^{n_1} \sum_{i=1}^{n_2} \mathbf{1}_{(0,\infty)} (X_{(i)} - Y_{(j)}) + \frac{n_1(n_1+1)}{2}.$$

Dalla precedente espressione si ha che la statistica W è equivalente alla statistica U data da

$$U = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}_{(0,\infty)} (X_{(i)} - Y_{(j)}) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{1}_{(0,\infty)} (X_i - Y_j).$$

La statistica U ha supporto $\{0, 1, \ldots, n_1 n_2\}$ ed è simmetrica rispetto a $n_1 n_2 / 2$. Inoltre, U è basata sulle $k = n_1 n_2$ statistiche $V_{ij} = X_i - Y_j$ per $i = 1, \ldots, n_1, j = 1, \ldots, n_2$. Se si indicizzano di nuovo le statistiche V_{ij} denotandole con D_i per $i = 1, \ldots, k$, si ha

$$U(D_1,...,D_k) = \sum_{i=1}^k \mathbf{1}_{(0,\infty)}(D_i),$$

ovvero la statistica U può essere espressa nella forma richiesta dal Teorema 4.1.2. Inoltre, dal momento che

$$V_{ij} - \Delta = X_i - (Y_j + \Delta), i = 1, ..., n_1, j = 1, ..., n_2,$$

allora, tenendo presente l'Esempio 1.1.1 e la definizione della classe $\mathcal{L}_{\Delta,F}$, si ha

$$\begin{aligned} \Pr_{0,F}(u_{\alpha/2} < U(D_1, \dots, D_k) < k - u_{\alpha/2}) &= \\ &= \Pr_{\Delta,F}(u_{\alpha/2} < U(D_1 - \Delta, \dots, D_k - \Delta) < k - u_{\alpha/2}) = 1 - \alpha , \end{aligned}$$

dove u_{α} rappresenta il quantile di ordine α della distribuzione di U e dove si è tenuto presente che U è simmetrica rispetto a k/2. Dunque, se $(D_{(1)},\ldots,D_{(k)})$ rappresenta la statistica ordinata relativa al vettore di statistiche (D_1,\ldots,D_k) , allora $(D_{(u_{\alpha/2}+1)},D_{(k-u_{\alpha/2})})$ è un intervallo di confidenza per Δ "distribution-free" su $\mathcal{L}_{\Delta,F}$ al livello di confidenza $(1-\alpha)$.

4.2. Gli intervalli di confidenza "distribution-free" per grandi campioni. Di seguito viene definito il concetto di intervallo di confidenza "distribution-free" per grandi campioni.

Definizione 4.2.1. Sia (X_1,\ldots,X_n) un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\theta,F}$, dove θ è un parametro reale e F rappresenta la funzione di ripartizione della variabile casuale da cui proviene il campione. Supponiamo inoltre che $\theta\in\Theta$ e $F\in\mathcal{F}$, dove Θ è lo spazio parametrico, mentre \mathcal{F} è una classe di funzioni di ripartizione. Sia $P_n=P_n(X_1,\ldots,X_n;\theta)$ una quantità pivot "distribution-free" per grandi campioni su $\mathcal{F}_{\theta,F}$, ovvero una trasformata tale che $P_n\stackrel{d}{\to} V$ con $n\to\infty$ per ogni $F_n\in\mathcal{F}_{\theta,F}$. Se c_1 e c_2 sono due valori tali che

$$\lim \Pr_{\theta,F}(c_1 < P_n(X_1,\ldots,X_n;\theta) < c_2) = 1-\alpha$$
 , $0 < \alpha < 1$, $\theta \in \Theta$, $F \in \mathcal{F}$,

e se $L_n = L_n(X_1, \dots, X_n)$ e $U_n = U_n(X_1, \dots, X_n)$ sono statistiche tali che per ogni θ

$$\{(x_1,\ldots,x_n): c_1 < P_n(x_1,\ldots,x_n;\theta) < c_2\} \Leftrightarrow \{(x_1,\ldots,x_n): L_n(x_1,\ldots,x_n) < \theta < U_n(x_1,\ldots,x_n)\}$$

allora l'intervallo casuale (L_n, U_n) è detto intervallo di confidenza di θ "distribution-free" per grandi campioni su $\mathcal{F}_{\theta,F}$ al livello di confidenza $(1-\alpha)$.

• Esempio 4.2.1. Si consideri un campione casuale (X_1,\ldots,X_n) con funzione di ripartizione congiunta $F_n\in\mathcal{F}_{\lambda,F}$, dove la classe $\mathcal{F}_{\lambda,F}$ è definita nell'Esempio 3.2.1. Sia inoltre $P_n=\sqrt{n}(\bar{X}-\lambda)/S$ la quantità pivot. Dal momento che per ogni $F_n\in\mathcal{F}_{\lambda,F}$ si ha $P_n\stackrel{d}{\to} N(0,1)$, allora P_n è una quantità pivot "distribution-free" per grandi campioni su $\mathcal{F}_{\lambda,F}$. Scelto dunque un livello di confidenza pari a $(1-\alpha)$, si ha

$$\lim_n \Pr_{\lambda,F}(\,-\,z_{1-lpha/2} < rac{\sqrt{n}(ar{X}-\lambda)}{S} < z_{1-lpha/2}) = 1-lpha \;.$$

Dal momento che l'insieme

$$\{(x_1,\ldots,x_n): -z_{1-\alpha/2} < \frac{\sqrt{n}(\overline{x}-\lambda)}{s} < z_{1-\alpha/2}\}$$

è equivalente a

$$\{(x_1,\ldots,x_n): \overline{x}-z_{1-\alpha/2}\frac{s}{\sqrt{n}}<\lambda<\overline{x}+z_{1-\alpha/2}\frac{s}{\sqrt{n}}\},$$

allora $L_n = \bar{X} - z_{1-\alpha/2}S/\sqrt{n}$ e $U_n = \bar{X} + z_{1-\alpha/2}S/\sqrt{n}$, e $(\bar{X} - z_{1-\alpha/2}S/\sqrt{n}, \bar{X} + z_{1-\alpha/2}S/\sqrt{n})$ è un intervallo di confidenza di λ "distribution-free" per grandi campioni su $\mathcal{F}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.

• Esempio 4.2.2. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{F}_{\sigma,F}$, dove

$$\mathcal{F}_{\sigma,F} = \{F_n : F_n \in \mathcal{C}_F, \operatorname{Var}(X) = \sigma^2 < \infty, \operatorname{E}(X^4) = \mu_4 < \infty\}.$$

Dall'Esempio A.3.6 si ha $\sqrt{n}(S^2-\sigma^2)/\gamma \stackrel{d}{\to} N(0,1)$, dove $\gamma^2=\mu_4-\sigma^4$. Inoltre, se M_4 rappresenta il quarto momento centrale campionario, allora applicando la Legge Debole dei Grandi Numeri di Khintchine (Teorema A.3.1) e il Teorema di Sverdrup (Teorema A.3.4), si può dimostrare che $G^2=M_4-S^4\stackrel{p}{\to}\gamma^2$. Applicando il Teorema di Slutsky risulta $P_n=\sqrt{n}(S^2-\sigma^2)/G\stackrel{d}{\to} N(0,1)$ per ogni $F_n\in\mathcal{F}_{\sigma,F}$, ovvero la quantità pivot P_n è "distribution-free" per grandi campioni su $\mathcal{F}_{\sigma,F}$. Scelto dunque un livello di confidenza pari a $(1-\alpha)$, si ha

$$\lim_n \Pr_{\sigma,F}(\,-z_{1-lpha/2} < rac{\sqrt{n}(S^2-\sigma^2)}{G} < z_{1-lpha/2}) = 1-lpha \ .$$

Dal momento che l'insieme

$$\{(x_1,\ldots,x_n):\ -z_{1-lpha/2}<rac{\sqrt{n}(s^2-\sigma^2)}{q}< z_{1-lpha/2}\}$$

è equivalente a

$$\{(x_1,\ldots,x_n): s^2-z_{1-lpha/2}\,rac{g}{\sqrt{n}}<\sigma^2< s^2+z_{1-lpha/2}\,rac{g}{\sqrt{n}}\}\ ,$$

si ha $L_n = S^2 - z_{1-\alpha/2}G/\sqrt{n}$, $U_n = S^2 + z_{1-\alpha/2}G/\sqrt{n}$ e $(S^2 - z_{1-\alpha/2}G/\sqrt{n}, S^2 + z_{1-\alpha/2}G/\sqrt{n})$ è un intervallo di confidenza di σ^2 "distribution-free" per grandi campioni su $\mathcal{F}_{\sigma,F}$ al livello di confidenza $(1-\alpha)$.

• Esempio 4.2.3. Si consideri un campione casuale (X_1, \ldots, X_n) con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{\lambda,F}$. Sia inoltre

$$P_n = B_n(X_1 - \lambda, \dots, X_n - \lambda) = \sum_{i=1}^n \mathbf{1}_{(0,\infty)}(X_i - \lambda)$$

la quantità pivot dell'Esempio 4.1.1. Dal Teorema Fondamentale Classico del Limite (Teorema A.3.6) si ha

$$\frac{P_n - n/2}{\sqrt{n/4}} \xrightarrow{d} N(0,1)$$

per ogni $F_n \in \mathcal{M}_{\lambda,F}$, ovvero la quantità pivot P_n è "distribution-free" per grandi campioni su $\mathcal{M}_{\lambda,F}$. Scelto dunque un livello di confidenza pari a $(1-\alpha)$, si ha

$$\lim_n \Pr_{\lambda,F}(\,-z_{1-lpha/2} < rac{P_n-n/2}{\sqrt{n}/2} < z_{1-lpha/2}) = 1-lpha \;.$$

Tenendo presente che $B_n(X_1 - \lambda, \dots, X_n - \lambda)$ può assumere solo valori interi, posto $l = \lfloor n/2 - z_{1-\alpha/2} \sqrt{n/4} \rfloor$, dove $\lfloor \cdot \rfloor$ rappresenta la funzione troncamento, analogamente all'Esempio 4.1.1 si ha che l'insieme

7

$$\{(x_1,\ldots,x_n): -z_{1-\alpha/2}< \frac{B_n(x_1-\lambda,\ldots,x_n-\lambda)-n/2}{\sqrt{n}/2}< z_{1-\alpha/2}\}$$

è equivalente a

$$\{(x_1,\ldots,x_n): \frac{n}{2}-z_{1-\alpha/2}\frac{\sqrt{n}}{2} < B_n(x_1-\lambda,\ldots,x_n-\lambda) < \frac{n}{2}+z_{1-\alpha/2}\frac{\sqrt{n}}{2}\},$$

da cui

$$\{(x_1, \dots, x_n) : l < B_n(x_1 - \lambda, \dots, x_n - \lambda) < n - l\} \Leftrightarrow \{x_{(l+1)} < \lambda < x_{(n-l)}\}.$$

Di conseguenza, $(X_{(l+1)}, X_{(n-l)})$ è un intervallo di confidenza di λ "distribution-free" per grandi campioni su $\mathcal{M}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.

Capitolo 5

I test basati su statistiche lineari dei ranghi con segno

5.1. I test basati su statistiche lineari dei ranghi con segno. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$ e si consideri il sistema di ipotesi $H_0: \lambda = 0, F \in \mathcal{S}$ contro una alternativa bilaterale $H_1: \lambda \neq 0, F \in \mathcal{S}$, o direzionale $H_1: \lambda > 0$ ($\lambda < 0$), $F \in \mathcal{S}$. Questo sistema di ipotesi è del tutto generale. Infatti, se l'ipotesi di base è data da $H_0: \lambda = \lambda_0, F \in \mathcal{S}$, allora si ritorna al sistema di ipotesi precedente semplicemente considerando il campione trasformato $(X_1 - \lambda_0, \ldots, X_n - \lambda_0)$. Una classe di statistiche test "distribution-free" opportuna in questo sistema di ipotesi è quella delle statistiche lineari dei ranghi con segno.

Definizione 5.1.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$ e siano (Z_1, \ldots, Z_n) e (R_1^+, \ldots, R_n^+) i relativi vettori dei segni e dei ranghi dei valori assoluti. Siano inoltre i punteggi un insieme di valori a(i) per $i = 1, \ldots, n$, tali che

$$0 \le a(1) \le \dots \le a(n), a(n) > 0.$$

Una statistica del tipo

$$T^+ = \sum_{i=1}^n Z_i a(R_i^+) ,$$

 \triangle

è detta statistica lineare dei ranghi con segno.

In base al Corollario 2.5.5 la statistica T^+ è "distribution-free" sulla classe $S_{0,F}$, ovvero fornisce un test "distribution-free" per il sistema di ipotesi considerato. Inoltre, la statistica test T^+ è sensibile a variazioni nel parametro di posizione, in quanto se non è vera l'ipotesi di base T^+ tende ad assumere o valori piccoli o valori elevati. La scelta dei punteggi influisce sul peso che si vuole assegnare ad ogni singolo rango dei valori assoluti.

• Esempio 5.1.1. Se i punteggi sono scelti come a(i) = i per i = 1, ..., n, si ottiene la cosiddetta statistica di Wilcoxon (introdotta nell'Esempio 2.5.1), ovvero

$$W^{+} = \sum_{i=1}^{n} Z_{i} R_{i}^{+} .$$

Se i punteggi sono scelti come a(i) = 1 per i = 1, ..., n, si ottiene la cosiddetta statistica dei segni (introdotta nell'Esempio 2.3.1), ovvero

$$B = \sum_{i=1}^{n} Z_i .$$

Per la statistica W^+ i punteggi vengono scelti come funzione lineare crescente dei ranghi dei valori assoluti, ovvero in modo da assegnare un peso maggiore ai ranghi assoluti più elevati. Al contrario, per la statistica B i punteggi sono costanti per tutti i ranghi dei valori assoluti.

Il seguente teorema permette di ottenere una importante equivalenza in distribuzione per le statistiche lineari dei ranghi con segno quando è vera l'ipotesi di base.

Teorema 5.1.2. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$, per una statistica lineare dei ranghi con segno T^+ si ha

$$T^+ = \sum_{i=1}^n Z_i a(R_i^+) \stackrel{d}{=} \sum_{i=1}^n Z_i a(i)$$
.

Dimostrazione. Dal momento che per il Teorema 2.5.4 i vettori di statistiche (Z_1,\ldots,Z_n) e (R_1^+,\ldots,R_n^+) sono indipendenti, allora per ogni $(r_1,\ldots,r_n)\in\mathcal{R}_n$ si ha

$$(T^+ \mid R_1^+ = r_1, \dots, R_n^+ = r_n) = (\sum_{i=1}^n Z_i a(R_i^+) \mid R_1^+ = r_1, \dots, R_n^+ = r_n) = \sum_{i=1}^n Z_i a(r_i).$$

Se d_i è la posizione dell'intero i nel vettore (r_1, \ldots, r_n) , allora si ha

$$\sum_{i=1}^{n} Z_i a(r_i) = \sum_{i=1}^{n} Z_{d_i} a(j) .$$

Tuttavia, dal momento che il vettore dei segni (Z_1, \ldots, Z_n) ha componenti indipendenti per il Teorema 2.3.2, allora dal Teorema 1.1.3 risulta $(Z_1, \ldots, Z_n) \stackrel{d}{=} (Z_{d_1}, \ldots, Z_{d_n})$ essendo (d_1, \ldots, d_n) una permutazione di $(1, \ldots, n)$. Dunque, si ha

$$(T^+ \mid R_1^+ = r_1, \dots, R_n^+ = r_n) = \sum_{i=1}^n Z_{d_i} a(j) \stackrel{d}{=} \sum_{i=1}^n Z_i a(i)$$
.

Questa equivalenza in distribuzione vale per ogni $(r_1, \ldots, r_n) \in \mathcal{R}_n$ e il teorema è dimostrato.

• Esempio 5.1.2. Si consideri la statistica W^+ dell'Esempio 5.1.1. Dal Teorema 5.1.2 si verifica che

$$W^{+} = \sum_{i=1}^{n} Z_{i} R_{i}^{+} \stackrel{d}{=} \sum_{i=1}^{n} i Z_{i}$$
,

ovvero, tenendo presente il Teorema 2.3.2, la statistica W^+ è distribuita come una combinazione lineare di variabili casuali distribuite come Binomiali Bi(1, 1/2), i cui i pesi sono dati da (1, ..., n).

Il seguente teorema fornisce la media e la varianza di una statistica lineare dei ranghi con segno quando è vera l'ipotesi di base.

Teorema 5.1.3. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in S_{0,F}$, allora per una statistica lineare dei ranghi con segno T^+ si ha

$$E(T^+) = \frac{1}{2} \sum_{i=1}^n a(i)$$
, $Var(T^+) = \frac{1}{4} \sum_{i=1}^n a(i)^2$.

Dimostrazione. Dal momento che il Teorema 2.3.2 implica che $\mathrm{E}(Z_i)=1/2$, dal Teorema 5.1.2 si ha

$$E(T^+) = E(\sum_{i=1}^n Z_i a(R_i^+)) = E(\sum_{i=1}^n Z_i a(i)) = \sum_{i=1}^n E(Z_i) a(i) = \frac{1}{2} \sum_{i=1}^n a(i).$$

Inoltre, il Teorema 2.3.2 implica che $Var(Z_i) = 1/4$ per i = 1, ..., n, e tenendo presente che $(Z_1, ..., Z_n)$ ha componenti indipendenti, dal Teorema 5.1.2 si ha

$$\mathrm{Var}(T^+) = \mathrm{Var}(\sum_{i=1}^n Z_i a(R_i^+)) = \mathrm{Var}(\sum_{i=1}^n Z_i a(i)) = \sum_{i=1}^n \mathrm{Var}(Z_i) a(i)^2 = \frac{1}{4} \sum_{i=1}^n a(i)^2 \ . \qquad \qquad \Box$$

• Esempio 5.1.3. Si consideri la statistica W^+ dell'Esempio 5.1.1. Tenendo presente il Teorema A.2.1, dal Teorema 5.1.3 si verifica che

$$E(W^+) = \frac{1}{2} \sum_{i=1}^{n} i = \frac{n(n+1)}{4}$$

e

$$Var(W^+) = \frac{1}{4} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{24}.$$

Nel seguente teorema si dimostra la simmetria rispetto alla media di ogni statistica lineare dei ranghi con segno quando è vera l'ipotesi di base.

Teorema 5.1.4. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in S_{0,F}$, allora una statistica lineare dei ranghi con segno T^+ è simmetrica rispetto a $E(T^+)$.

Dimostrazione. Il Teorema 2.3.2 implica la simmetria di ogni statistica segno Z_i per $i=1,\ldots,n$ rispetto alla media, ovvero tenendo presente il Teorema 1.2.2 risulta

$$(Z_1-1/2,\ldots,Z_n-1/2)\stackrel{d}{=} (1/2-Z_1,\ldots,1/2-Z_n)$$
.

Tenendo presente l'Esempio 1.1.6, dalla precedente relazione si ha

$$(Z_1,\ldots,Z_n)\stackrel{d}{=}(1-Z_1,\ldots,1-Z_n).$$

Di conseguenza, dal Teorema 5.1.2 segue che

$$T^{+} - E(T^{+}) \stackrel{d}{=} \sum_{i=1}^{n} Z_{i}a(i) - E(T^{+}) \stackrel{d}{=} \sum_{i=1}^{n} (1 - Z_{i})a(i) - E(T^{+})$$

$$= \sum_{i=1}^{n} a(i) - \sum_{i=1}^{n} Z_{i}a(i) - E(T^{+}) \stackrel{d}{=} 2E(T^{+}) - T^{+} - E(T^{+}) = E(T^{+}) - T^{+}.$$

Il Teorema 1.2.2 permette infine di concludere che T^+ è simmetrica rispetto a $E(T^+)$.

Il seguente teorema fornisce la funzione generatrice di probabilità di una statistica lineare dei ranghi con segno nel caso che i punteggi siano valori interi.

Teorema 5.1.5. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$, allora la funzione generatrice di probabilità di una statistica lineare dei ranghi con segno T^+ risulta

$$L_{T^+}(t) = 2^{-n} \prod_{i=1}^n (1 + t^{a(i)}), |t| < 1.$$

Dimostrazione. Tenendo presente il Teorema 5.1.2 e il Teorema 2.3.2, dalla definizione di funzione generatrice di probabilità si ha

$$L_{T^+}(t) = \mathrm{E}(t^{T^+}) = \mathrm{E}(\prod_{i=1}^n t^{a(i)Z_i}) = \prod_{i=1}^n \mathrm{E}(t^{a(i)Z_i}) = \prod_{i=1}^n 2^{-1}(1+t^{a(i)}) = 2^{-n}\prod_{i=1}^n (1+t^{a(i)})$$
.

 \triangle

Quando i punteggi non sono interi allora per impiegare il precedente teorema è sufficiente determinare una trasformata biunivoca che discretizzi i punteggi originali. Dal momento che la distribuzione di una statistica lineare dei ranghi con segno sotto l'ipotesi di base $H_0: \lambda = 0, F \in \mathcal{S}$, si può ottenere mediante il Teorema 5.1.5, allora si può determinare le appropriate regioni critiche del test. Se l'alternativa è bilaterale, ovvero $H_1: \lambda \neq 0, F \in \mathcal{S}$, allora si ha $\Pr(Z_i = 1) \neq 1/2$ e quindi si respingere l'ipotesi di base per determinazioni sia troppo elevate che troppo piccole di T^+ . Fissato quindi un livello di significatività α , poichè la distribuzione della statistica T^+ è simmetrica se è vera l'ipotesi di base, allora la regione critica è data dall'insieme

$$\mathcal{T}_1 = \{t^+ : t^+ \le t^+_{n,\alpha/2}, t^+ \ge t^+_{n,1-\alpha/2}\}$$
,

dove $t_{n,\alpha}^+$ rappresenta il quantile di ordine α della distribuzione di T^+ per una numerosità campionaria pari a n. Data la simmetria di T^+ , si ha $t_{n,1-\alpha/2}^++1=\sum_{i=1}^n a(i)-t_{n,\alpha/2}^+$. Se l'alternativa è direzionale del tipo $H_1: \lambda>0, F\in\mathcal{S}$, allora si ha $\Pr(Z_i=1)>1/2$ e quindi si respinge l'ipotesi di base per determinazioni troppo elevate di T^+ . Fissato quindi un livello di significatività α , si ha la seguente regione critica

$$\mathcal{T}_1 = \{t^+ : t^+ \ge t_{n,1-\alpha}^+\}$$
.

Al contrario, se l'alternativa è direzionale del tipo $H_1: \lambda < 0, F \in \mathcal{S}$, allora $\Pr(Z_i = 1) < 1/2$ e quindi si respinge l'ipotesi di base per determinazioni troppo piccole di T^+ . Fissato quindi un livello di significatività α , si ha la seguente regione critica

$$\mathcal{T}_1 = \{t^+ : t^+ \le t_{n,\alpha}^+\}.$$

Il test basato sulla T^+ per i precedenti sistemi di ipotesi è corretto al livello di significatività α . Infatti, dal momento che si può dimostrare che $P_{T^+}(\lambda, F) = \Pr_{\lambda, F}(T^+ \in \mathcal{T}_1)$ è una funzione monotona crescente per $\lambda > 0$ e monotona decrescente per $\lambda < 0$ per ogni $F \in \mathcal{S}$, allora risulta $P_{T^+}(\lambda, F) > \alpha$, ovvero il test è corretto.

5.2. I test basati su statistiche lineari dei ranghi con segno localmente più potenti. Si desidera determinare la scelta ottima dei punteggi della statistica test per verificare il ipotesi del tipo $H_0: \lambda = 0, F = F_0$, contro un'alternativa direzionale $H_1: \lambda > 0$ ($\lambda < 0$), $F = F_0$, ovvero quando si verifica ipotesi sul parametro di posizione fissando la struttura della funzione di ripartizione F. Dal momento che non è possibile determinare una scelta ottima dei punteggi per ottenere un test uniformemente più potente, allora è utile introdurre un concetto di test localmente più potente.

Definizione 5.2.1. Sia (X_1,\ldots,X_n) un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{S}_{\lambda,F}$ e si consideri il sistema di ipotesi $H_0:\lambda=0,F=F_0$, contro $H_1:\lambda>0$ ($\lambda<0$), $F=F_0$, dove $F_0\in\mathcal{S}$. Il test basato sulla statistica lineare dei ranghi con segno T_*^+ è detto localmente più potente se esiste un $\epsilon>0$ tale che per ogni livello di significatività naturale si ha

$$P_{T_*^+}(\lambda) \ge P_{T^+}(\lambda)$$
, $0 < \lambda < \epsilon$,

per ogni statistica lineare dei ranghi con segno T^+ .

Il prossimo teorema fornisce la scelta ottima dei punteggi per la costruzione del test localmente più potente per verificare ipotesi sul parametro di posizione. L'utilità di questo teorema consiste solamente nell'evidenziare la struttura ottima dei punteggi al variare della funzione di ripartizione, dal momento che questa non è mai nota in pratica.

Teorema 5.2.2. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$ e sia f la funzione di densità relativa a F. Si assuma inoltre che f' esista, sia assolutamente continua e che

$$\int_{\mathbb{R}} |f'(x)| \, dx < \infty \, .$$

Il test localmente più potente per verificare il sistema di ipotesi $H_0: \lambda = 0, F = F_0$, contro $H_1: \lambda > 0$ ($\lambda < 0$), $F = F_0$, è basato sulla statistica lineare dei ranghi con segno

$$T_*^+ = \sum_{i=1}^n Z_i a_*(R_i^+)$$
 ,

dove

$$a_*(i) = \mathrm{E}(\,-\,rac{f'(Y_{(i)})}{f(Y_{(i)})})$$
 , $i=1,\ldots,n$,

 $e(Y_{(1)},\ldots,Y_{(n)})$ è la statistica ordinata relativa al campione casuale $(|X_1|,\ldots,|X_n|)$.

Dimostrazione. Si veda Hettmansperger e McKean (1998).

Supponiamo che $F(x) = G(x/\delta)$, ovvero $f(x) = (1/\delta)g(x/\delta)$, dove G e g sono rispettivamente la funzione di ripartizione e la funzione di densità di una variabile casuale standard. Se $f_{(i)}$ rappresenta la funzione di densità di $Y_{(i)}$, allora risulta $f_{(i)}(x) = (1/\delta)g_{(i)}(x/\delta)$, dove $g_{(i)}$ è la funzione di densità della variabile casuale standard ordinata $V_{(i)} = Y_{(i)}/\delta$ per $i = 1, \ldots, n$. Dunque, si ha

$$a_*(i) = \mathrm{E}(-\frac{f'(Y_{(i)})}{f(Y_{(i)})}) = \int_{\mathbb{R}} -\frac{f'(x)}{f(x)} \, f_{(i)}(x) \, dx = \frac{1}{\delta} \int_{\mathbb{R}} -\frac{g'(x)}{g(x)} \, g_{(i)}(x) \, dx = \frac{1}{\delta} \, \mathrm{E}(-\frac{g'(V_{(i)})}{g(V_{(i)})}) \, .$$

Di conseguenza, se i punteggi ottimi sono ottenuti sulla base della distribuzione standardizzata, allora la relativa statistica test ottima è data da δT_*^+ , che è una statistica test equivalente a T_*^+ . Dal momento che la statistica test ottima non dipende dal parametro di scala della distribuzione, allora i punteggi ottimi possono essere calcolati semplicemente a partire dalla distribuzione standard.

• Esempio 5.2.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$, dove F è la funzione di ripartizione di una distribuzione Normale N(0,1). Si può verificare che le condizioni del Teorema 5.2.2 sono soddisfatte. Inoltre, dal momento che risulta f'(x) = -xf(x), allora si ha

$$-\frac{f'(x)}{f(x)} = x .$$

Di conseguenza, la scelta ottimale dei punteggi è data da

$$a_*(i) = E(Y_{(i)}), i = 1, ..., n,$$

dove $(Y_{(1)}, \dots, Y_{(n)})$ è la statistica ordinata relativa ai valori assoluti di un campione casuale da una distribuzione Normale N(0,1).

• Esempio 5.2.2. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$, dove F è la funzione di ripartizione di una distribuzione Logistica Lo(0,1). Si può verificare che le condizioni del Teorema 5.2.2 sono soddisfatte. Inoltre, si ha $f(x) = F(x) - F(x)^2$, ovvero risulta f'(x) = -f(x)(2F(x)-1), da cui

$$-\frac{f'(x)}{f(x)} = 2F(x) - 1.$$

Di conseguenza, la scelta ottimale dei punteggi è data da

$$a_*(i) = E(2F(Y_{(i)}) - 1), i = 1, ..., n,$$

dove $(Y_{(1)}, \ldots, Y_{(n)})$ è la statistica ordinata relativa ai valori assoluti di un campione casuale da una distribuzione Lo(0,1). Dal momento che dal Teorema dell'Integrale di Probabilità (vedi Feller, 1971) si ha

 $2F(Y_{(i)}) - 1 \stackrel{d}{=} U_{(i)}$ per i = 1, ..., n, dove $(U_{(1)}, ..., U_{(n)})$ rappresenta la statistica ordinata relativa ad un campione casuale da una distribuzione Uniforme U(0,1), allora risulta

$$a_*(i) = \mathrm{E}(U_{(i)}) = \frac{i}{n+1}, i = 1, \dots, n.$$

La statistica lineare dei ranghi con segno costruita su questi punteggi è data da

$$T_*^+ = \frac{1}{n+1} \sum_{i=1}^n Z_i R_i^+ = \frac{W^+}{n+1}$$
,

dove W^+ è la statistica di Wilcoxon. Quindi T^+_* e W^+ forniscono test equivalenti, ovvero la scelta dei punteggi fatta per la statistica di Wilcoxon risulta ottima per una variabile casuale Logistica.

• Esempio 5.2.3. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$, dove F è la funzione di ripartizione di una distribuzione di Laplace L(0,1). Si può verificare che le condizioni del Teorema 5.2.2 sono soddisfatte. Inoltre, dal momento che risulta $f'(x) = -\operatorname{segn}(x)f(x)$, dove $\operatorname{segn}(x) = 2\mathbf{1}_{(0,\infty)}(x) - 1$, allora

$$-\frac{f'(x)}{f(x)} = \operatorname{segn}(x) .$$

Dunque, la scelta ottimale dei punteggi è data da

$$a_*(i) = E(segn(Y_{(i)})), i = 1, ..., n$$

dove $(Y_{(1)}, \ldots, Y_{(n)})$ è la statistica ordinata relativa ai valori assoluti di un campione casuale da una distribuzione di Laplace L(0,1). Dal momento che $E(\text{segn}(Y_{(i)})) = 1$, allora risulta $a_*(i) = 1$ per $i = 1, \ldots, n$. Questa scelta dei punteggi fornisce dunque la statistica dei segni B.

5.3. La distribuzione per grandi campioni delle statistiche lineari dei ranghi con segno. In questa sezione vengono considerate le proprietà per grandi campioni delle statistiche lineari dei ranghi con segno. Di seguito vengono considerati due risultati preliminari.

Lemma 5.3.1. *Se i punteggi sono tali che*

$$a_n(i) = \phi(i/(n+1)), i = 1, \dots, n$$

dove ϕ è una funzione punteggio non negativa e non decrescente che non dipende da n per cui

$$0<\int_0^1\!\phi(u)^2\,du<\infty\,,$$

allora

$$\lim_{n} \frac{1}{n} \sum_{i=1}^{n} a_n(i)^2 = \int_0^1 \phi(u)^2 du.$$

Dimostrazione. Sia

$$q_n(u) = \sum_{i=1}^n \phi(i/(n+1)) \mathbf{1}_{[(i-1)/n, i/n]}(u)$$

una discretizzazione della funzione ϕ . Dal momento che si ha $\mathbf{1}_{[(i-1)/n,i/n]}(u)^2 = \mathbf{1}_{[(i-1)/n,i/n]}(u)$ per $i=1,\ldots,n$, e che $\mathbf{1}_{[(i-1)/n,i/n]}(u)\mathbf{1}_{[(j-1)/n,j/n]}(u) = 0$ per $i\neq j=1,\ldots,n$, allora

$$\int_0^1 q_n(u)^2 du = \int_0^1 \left(\sum_{i=1}^n \phi(i/(n+1)) \mathbf{1}_{[(i-1)/n,i/n]}(u)\right)^2 du = \int_0^1 \sum_{i=1}^n \phi(i/(n+1))^2 \mathbf{1}_{[(i-1)/n,i/n]}(u) du$$

$$= \sum_{i=1}^n \phi(i/(n+1))^2 \int_0^1 \mathbf{1}_{[(i-1)/n,i/n]}(u) du = \frac{1}{n} \sum_{i=1}^n \phi[i/(n+1)]^2 = \frac{1}{n} \sum_{i=1}^n a_n(i)^2.$$

Inoltre, poichè ϕ è una funzione non negativa e non decrescente, si ha

$$\frac{1}{n}\phi(i/(n+1))^2 \le \frac{1}{n}\phi(i/n)^2 \le \int_{i/n}^{(i+1)/n}\phi(u)^2 du , 1 \le i \le n-1 ,$$

e

$$\frac{1}{n+1}\phi(n/(n+1))^2 < \frac{1}{n}\phi(n/(n+1))^2 \le \frac{n+1}{n}\int_{n/(n+1)}^1 \phi(u)^2 du.$$

Di conseguenza, si ha

$$\int_{0}^{1} q_{n}(u)^{2} du = \frac{1}{n} \sum_{i=1}^{n} \phi(i/(n+1))^{2} \leq \sum_{i=1}^{n-1} \int_{i/n}^{(i+1)/n} \phi(u)^{2} du + \frac{n+1}{n} \int_{n/(n+1)}^{1} \phi(u)^{2} du$$
$$= \int_{1/n}^{1} \phi(u)^{2} du + \frac{n+1}{n} \int_{n/(n+1)}^{1} \phi(u)^{2} du ,$$

da cui

$$\limsup_{n} \int_{0}^{1} q_{n}(u)^{2} du \leq \int_{0}^{1} \phi(u)^{2} du.$$

Inoltre, per il Lemma di Fatou si ha

$$\int_0^1 \phi(u)^2 \, du \le \liminf_n \int_0^1 q_n(u)^2 \, du \, .$$

Si deve concludere dunque che

$$\lim_{n} \int_{0}^{1} q_{n}(u)^{2} du = \int_{0}^{1} \phi(u)^{2} du ,$$

ovvero

$$\lim_{n} \frac{1}{n} \sum_{i=1}^{n} a_n(i)^2 = \int_0^1 \phi(u)^2 du .$$

Lemma 5.3.2. Se sono valide le condizioni del Lemma 5.3.1 si ha

$$\lim_n rac{\sum_{i=1}^n a_n(i)^2}{\max_{1 \le i \le n} a_n(i)^2} = \infty.$$

Dimostrazione. Si ha

$$\lim_n \frac{\sum_{i=1}^n a_n(i)^2}{\max_{1 \le i \le n} a_n(i)^2} = \lim_n \frac{(1/n) \sum_{i=1}^n a_n(i)^2}{(1/n) \max_{1 \le i \le n} a_n(i)^2} = \frac{\lim_n (1/n) \sum_{i=1}^n a_n(i)^2}{\lim_n (1/n) \max_{1 \le i \le n} a_n(i)^2}.$$

Dal Lemma 5.3.1 si ottiene che il numeratore della precedente espressione è finito e positivo. Inoltre, poichè ϕ è non decrescente, allora

$$\frac{1}{n} \max_{1 \le i \le n} a_n(i)^2 = \frac{1}{n} \, \phi(n/(n+1))^2 \le \frac{n+1}{n} \int_{n/(n+1)}^1 \phi(u)^2 \, du \,,$$

per cui

$$\lim_{n} \frac{1}{n} \max_{1 \le i \le n} a_n(i)^2 = 0 ,$$

da cui segue la tesi.

Nel prossimo teorema si ottiene la distribuzione per grandi campioni delle statistiche lineari dei ranghi con segno sotto ipotesi di base.

Teorema 5.3.3. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{0,F}$, allora per una statistica lineare dei ranghi con segno

$$T^+ = T_n^+ = \sum_{i=1}^n Z_i a_n(R_i^+)$$
 ,

i cui punteggi $a_n(i)$ per $i=1,\ldots,n$, soddisfano le condizioni del Lemma 5.3.1, risulta

$$\frac{T_n^+ - \mathrm{E}(T_n^+)}{\sqrt{\mathrm{Var}(T_n^+)}} \stackrel{d}{\to} N(0,1) ,$$

dove $E(T_n^+)$ e $Var(T_n^+)$ sono definite nel Teorema 5.1.3.

Dimostrazione. Dal Teorema 5.1.2 si ottiene che

$$T_n^+ = \sum_{i=1}^n Z_i a_n(R_i^+) \stackrel{d}{=} \sum_{i=1}^n Z_i a_n(i) .$$

Tenendo presente il Teorema 2.3.2 si ha $E[|Z_i - 1/2|^3] = 1/8$ e $Var(Z_i) = 1/4$, da cui

$$\begin{split} &\frac{\sum_{i=1}^{n}\mathrm{E}(|Z_{i}a_{n}(i)-a_{n}(i)/2|^{3})}{(\sum_{i=1}^{n}\mathrm{Var}(Z_{i}a_{n}(i)))^{3/2}} = \frac{\sum_{i=1}^{n}a_{n}(i)^{3}\mathrm{E}(|Z_{i}-1/2|^{3})}{(\sum_{i=1}^{n}a_{n}(i)^{2}\mathrm{Var}(Z_{i}))^{3/2}} = \frac{\sum_{i=1}^{n}a_{n}(i)^{3}}{(\sum_{i=1}^{n}a_{n}(i)^{2})^{3/2}} \\ &\leq \frac{\sum_{i=1}^{n}a_{n}(i)^{2}\max_{1\leq j\leq n}|a_{n}(j)|}{(\sum_{i=1}^{n}a_{n}(i)^{2})^{3/2}} = \frac{\max_{1\leq i\leq n}|a_{n}(i)|\sum_{i=1}^{n}a_{n}(i)^{2}}{(\sum_{i=1}^{n}a_{n}(i)^{2})^{3/2}} = \sqrt{\frac{\max_{1\leq i\leq n}a_{n}(i)^{2}}{\sum_{i=1}^{n}a_{n}(i)^{2}}}. \end{split}$$

Di conseguenza, dal Lemma 5.3.2 si ha

$$\lim_n \frac{\sum_{i=1}^n \mathrm{E}(|Z_i a_n(i) - a_n(i)/2|^3)}{(\sum_{i=1}^n \mathrm{Var}[Z_i a_n(i)])^{3/2}} = \lim_n \sqrt{\frac{\max\limits_{1 \leq i \leq n} a_n(i)^2}{\sum_{i=1}^n a_n(i)^2}} = 0 \ .$$

Applicando il Teorema Fondamentale del Limite di Lyapunov (Teorema A.3.9) con $\delta = 1$, si ottiene

$$\frac{\sum_{i=1}^{n} Z_i a_n(i) - \mathrm{E}(T_n^+)}{\sqrt{\mathrm{Var}(T_n^+)}} \xrightarrow{d} N(0,1) ,$$

ovvero, dato che

$$\frac{T_n^+ - \mathrm{E}(T_n^+)}{\sqrt{\mathrm{Var}(T_n^+)}} \stackrel{d}{=} \frac{\sum_{i=1}^n Z_i a_n(i) - \mathrm{E}(T_n^+)}{\sqrt{\mathrm{Var}(T_n^+)}} ,$$

si ha la tesi.

Se si considera la statistica $T_n^{+\prime}$ i cui punteggi sono dati da

$$a'_n(i) = b_n \phi(i/(n+1)) = b_n a_n(i), i = 1, ..., n,$$

allora risulta $T_n^{+\prime} = b_n T_n^+$ con

$$E(T_n^{+\prime}) = b_n E(T_n^+)$$
, $Var(T_n^{+\prime}) = b_n^2 Var(T_n^+)$.

Di conseguenza, si ha

$$\frac{T_n^{+\prime} - \mathrm{E}(T_n^{+\prime})}{\sqrt{\mathrm{Var}(T_n^{+\prime})}} = \frac{b_n T_n^+ - b_n \mathrm{E}(T_n^+)}{\sqrt{b_n^2 \mathrm{Var}(T_n^+)}} = \frac{T_n^+ - \mathrm{E}(T_n^+)}{\sqrt{\mathrm{Var}(T_n^+)}} \;,$$

ovvero T_n^+ e $T_n^{+\prime}$ hanno le medesime proprietà per grandi campioni. Dunque, la costante b_n non influenza il comportamento per grandi campioni della statistica dei ranghi con segno, mentre la scelta della funzione punteggio ϕ è determinante sotto questo punto di vista.

• Esempio 5.3.1. Si consideri la statistica $W^+ = W_n^+$ di Wilcoxon. Al fine di determinare la distribuzione per grandi campioni di W_n^+ è conveniente considerare la statistica $T_n^+ = b_n W_n^+$ con $b_n = 1/(n+1)$ che ha le medesime proprietà per grandi campioni della statistica W_n^+ . La funzione punteggio relativa alla statistica T_n^+ , data da $\phi(u) = u \mathbf{1}_{[0,1]}(u)$, è una funzione positiva e crescente. Inoltre, si ha

$$\int_0^1 \phi(u)^2 du = \int_0^1 u^2 du = \frac{1}{3} < \infty.$$

Le condizioni del Teorema 5.3.3 sono dunque soddisfatte. Tenendo presente l'Esempio 5.1.3 si deve concludere che

$$\frac{W_n^+ - \mathcal{E}(W_n^+)}{\sqrt{\text{Var}(W_n^+)}} = \frac{W_n^+ - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \xrightarrow{d} N(0,1) .$$

Tenendo presente i precedenti risultati, fissato un livello di significatività α , la regione critica per verificare $H_0: \lambda = 0, F \in \mathcal{S}$, contro l'alternativa $H_1: \lambda \neq 0, F \in \mathcal{S}$, può essere dunque approssimata dall'insieme

$$\{t^+: t^+ \leq \mathrm{E}(T_n^+) + z_{\alpha/2} \sqrt{\mathrm{Var}(T_n^+)}, t^+ \geq \mathrm{E}(T_n^+) + z_{1-\alpha/2} \sqrt{\mathrm{Var}(T_n^+)}\}.$$

Analogamente, la regione critica per verificare l'alternativa $H_1: \lambda > 0, F \in \mathcal{S}$, può essere approssimata dall'insieme

$$\{t^+: t^+ \geq \mathrm{E}(T_n^+) + z_{1-\alpha} \sqrt{\mathrm{Var}(T_n^+)}\},$$

mentre la regione critica per verificare l'alternativa $H_1: \lambda < 0, F \in \mathcal{S}$, può essere approssimata dall'insieme

$$\{t^+: t^+ \le \mathrm{E}(T_n^+) + z_\alpha \sqrt{\mathrm{Var}(T_n^+)}\}$$
.

Inoltre, mediante il Teorema 3.1.8 si può dimostrare che la successione di test basata su $(T_n^+)_{n\geq 1}$ è coerente. Il seguente teorema permette di ottenere l'efficacia di una statistica lineare dei ranghi con segno.

Teorema 5.3.4. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$ e si consideri il sistema di ipotesi $H_0: \lambda = 0, F \in \mathcal{S}$, contro $H_1: \lambda = \lambda_i, F \in \mathcal{S}$, dove $(\lambda_i)_{i \geq 1}$ è una successione di alternative tali che $\lambda_i = c/\sqrt{n_i}$ con c costante. Data una statistica lineare dei ranghi con segno

$$T^+ = T_n^+ = \sum_{i=1}^n Z_i \, a_n(R_i^+)$$
 ,

i cui punteggi $a_n(i)$ per $i=1,\ldots,n$ soddisfano le condizioni del Lemma 5.3.1, allora l'efficacia del test basato su T_n^+ risulta

$$ext{eff}_{T^+} = rac{\int_0^1 \phi(u) \phi_f(u) \, du}{(\int_0^1 \phi(u)^2 du)^{1/2}} \, ,$$

dove

$$\phi_f(u) = -\frac{f'(F^{-1}(1/2 + u/2))}{f(F^{-1}(1/2 + u/2))}.$$

Dimostrazione. Si veda Háyek e Šidák (1967).

• Esempio 5.3.2. Si consideri la statistica dei segni $B = B_n$. La relativa funzione punteggio $\phi(u) = \mathbf{1}_{[0,1]}(u)$, è una funzione positiva e non decrescente, per cui si ha

$$\int_0^1 \phi(u)^2 du = \int_0^1 du = 1 < \infty.$$

Le condizioni del Teorema 5.3.4 sono dunque soddisfatte. Inoltre, risulta

$$\int_0^1 \phi(u)\phi_f(u) du = \int_0^1 -\frac{f'(F^{-1}(1/2 + u/2))}{f(F^{-1}(1/2 + u/2))} du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(1/2 + u/2)$ con u = 2F(x) - 1, tenendo presente la simmetria di f, si ha

$$\int_0^1 \phi(u)\phi_f(u) \, du = -2 \int_0^\infty \frac{f'(x)}{f(x)} \, f(x) \, dx = 2f(0) \, .$$

Quindi, l'efficacia del test basato sulla statistica dei segni risulta

$$eff_B = 2f(0)$$
,

come era già noto dall'Esempio 3.2.2.

• Esempio 5.3.3. Si consideri la statistica $W^+ = W_n^+$ del test dei ranghi con segno di Wilcoxon. Dall'Esempio 5.3.1 è noto che le condizioni del Lemma 5.3.1 sono soddisfatte. Inoltre, risulta

$$\int_0^1 \phi(u)\phi_f(u) du = \int_0^1 -\frac{f'(F^{-1}(1/2+u/2))}{f(F^{-1}(1/2+u/2))} u du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(1/2 + u/2)$ con u = 2F(x) - 1, tenendo presente la simmetria di f, si ha

$$\int_0^1 \phi(u)\phi_f(u) \, du = -2 \int_0^\infty f'(x)(2F(x) - 1) \, dx = 2 \int_{-\infty}^\infty f(x)^2 \, dx \, .$$

Quindi, l'efficacia del test basato sulla statistica di Wilcoxon risulta

$$\operatorname{eff}_{W^+} = 2\sqrt{3} \int_{-\infty}^{\infty} f(x)^2 dx.$$

Utilizzando i risultati dell'Esempio 3.2.1, l'efficienza asintotica relativa del test basato sulla statistica W^+ rispetto al test basato sulla statistica T è data dunque da

$$\mathrm{EAR}_{W^+,T} = \frac{K_{W^+}^2}{K_T^2} = 12 \,\sigma^2 \, (\int_{-\infty}^{\infty} f(x)^2 \, dx)^2 \, .$$

Se X ha distribuzione Normale $N(\lambda, \sigma^2)$, allora dal momento che

$$\int_{-\infty}^{\infty} f(x)^2 dx = \frac{1}{2\sqrt{\pi}\sigma} ,$$

si ha $\mathrm{EAR}_{W^+,T}=3/\pi\simeq 0.9549$. Dunque, il test basato su W^+ è quasi equivalente al test basato su T dal punto di vista dell'efficienza asintotica relativa anche sotto assunzione di normalità.

Capitolo 6

I test per un parametro di posizione: un campione e due campioni appaiati

6.1. Il test dei segni. Sia $(X_1, ..., X_n)$ un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{\lambda,F}$. Il test dei segni è basato sulla statistica dei segni

$$B = \sum_{i=1}^{n} Z_i ,$$

descritta nell'Esempio 2.3.1. Mediante il test dei segni si può dunque verificare l'ipotesi di base H_0 : $\lambda = 0, F \in \mathcal{M}$. La statistica B è una statistica lineare dei ranghi con segno, con la scelta dei punteggi a(i) = 1 per $i = 1, \ldots, n$, come già evidenziato nell'Esempio 5.1.1. Tuttavia, il test dei segni può essere costruito anche senza ipotizzare la simmetria della variabile casuale dalla quale proviene il campione e quindi questa assunzione sarà evitata. Se l'ipotesi di base è vera, dall'Esempio 2.3.1 è noto che B ha distribuzione Binomiale Bi(n, 1/2). Dunque, se $p_n(b) = \Pr(B = b)$, allora

$$p_n(b) = \binom{n}{b} 2^{-n} \mathbf{1}_{\{0,1,\ldots,n\}}(b)$$
.

Risulta

$$E(B) = \frac{n}{2}$$
, $Var(B) = \frac{n}{4}$.

Inoltre, dal Corollario 2.3.3 la statistica B è "distribution-free" su $\mathcal{M}_{0,F}$ e dunque il test dei segni è "distribution-free". Dal momento che la distribuzione della statistica B sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §5.1.

• Esempio 6.1.1. Una fabbrica produce un tipo specifico di sfere di acciaio del diametro di 1 micron. Alla fine di una giornata di produzione è stato estratto un campione casuale di 10 sfere ed è stato misurato il loro diametro, ottenendo i dati della Tavola 6.1.1.

Tavola 6.1.1. Diametro delle sfere (in micron).

sfera	x_i	$x_i - 1$	z_i
1	1.18	0.18	1
2	1.42	0.42	1
3	0.69	-0.31	0
4	0.88	-0.12	0
5	1.62	0.62	1
6	1.09	0.09	1
7	1.53	0.53	1
8	1.02	0.02	1
9	1.19	0.19	1
10	1.32	0.32	1

Fonte: Romano (1977)

<

Per vedere se il livello medio della produzione si discosta dallo standard, si vuole verificare dunque il sistema di ipotesi H_0 : $\lambda = 1, F \in \mathcal{M}$, contro H_1 : $\lambda \neq 1, F \in \mathcal{M}$. Dal momento che per questi dati si ha b = 8, allora per n = 10 risulta $\Pr(B \geq 8) = 0.0547$ e quindi la significatività osservata è data da

$$\alpha_{oss} = 2 \times 0.0547 = 0.1094$$
.

Di conseguenza, si può accettare H_0 ad ogni livello di significatività $\alpha < 0.1094$.

Per quanto riguarda la distribuzione per grandi campioni della statistica $B = B_n$, dal Teorema Fondamentale Classico del Limite (Teorema A.3.6), se è vera l'ipotesi di base si ha

$$\frac{B_n - n/2}{\sqrt{n/4}} \stackrel{d}{\to} N(0,1) .$$

La convergenza della statistica B_n alla normalità è particolarmente rapida anche per campioni moderati, ovvero $n \ge 15$. Le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione fatta nella §5.3.

• Esempio 6.1.2. Gli antichi greci indicavano come rettangolo aureo un rettangolo con un rapporto fra i lati dato da $\rho=1\div(\sqrt{5}+1)/2\simeq0.618$. Questo tipo di rettangolo era spesso adoperato nella loro architettura, come ad esempio nella struttura del Partenone. I dati della Tavola 6.1.2 riguardano il rapporto fra i lati di rettangoli usati dai nativi americani Shoshoni per decorare le loro tende.

Tavola 6.1.2. Rapporto dei lati dei rettangoli.

rettangolo	x_i	$x_i - ho$	z_i
1	0.693	0.075	1
2	0.662	0.044	1
3	0.690	0.072	1
4	0.606	-0.012	0
5	0.570	-0.048	0
6	0.749	0.131	1
7	0.672	0.054	1
8	0.628	0.010	1
9	0.609	-0.009	0
10	0.844	0.226	1
11	0.654	0.036	1
12	0.615	-0.003	0
13	0.668	0.050	1
14	0.601	-0.017	0
15	0.576	-0.042	0
16	0.670	0.052	1
17	0.606	-0.012	0
18	0.611	-0.007	0
19	0.553	-0.065	0
20	0.933	0.315	1

Fonte: Dubois (1970)

Si vuole verificare se gli Shoshoni avessero conoscenza del rettangolo aureo, ovvero si vuole verificare il sistema di ipotesi H_0 : $\lambda = \rho, F \in \mathcal{M}$, contro H_1 : $\lambda \neq \rho, F \in \mathcal{M}$. Dal momento che per questi dati si verifica che b = 11, allora si ha

$$Pr(B \ge 11) \simeq 1 - \Phi((11 - 10)/\sqrt{5}) = 1 - \Phi(0.4472) = 0.3272$$

per cui la significatività osservata risulta $\alpha_{oss} \simeq 2 \times 0.3272 = 0.6544$. Dato che la significatività osservata è piuttosto elevata l'evidenza empirica porta a concludere che gli Shoshoni avevano conoscenza del rettangolo aureo. In effetti, si può accettare H_0 ad ogni livello di significatività $\alpha < 0.6544$.

6.2. Le prestazioni del test dei segni. Risulta interessante confrontare il test dei segni con la sua controparte classica, ovvero il test di Student. Sebbene sia possibile determinare analiticamente la funzione

potenza del test dei segni (vedi Esempio 3.1.3), questa operazione risulta proibitiva nel caso del test di Student quando il campione proviene da una variabile casuale che non ha distribuzione Normale. Di conseguenza, le potenze di questi test per varie distribuzioni simmetriche state calcolate mediante simulazione per le numerosità campionarie n=5,10,15. Le alternative scelte sono state $\lambda=0.0\,\sigma,0.2\,\sigma,0.4\,\sigma,0.6\,\sigma,0.8\,\sigma$, dove σ^2 rappresenta la varianza della distribuzione ipotizzata. Nel caso della distribuzione di Cauchy si noti che σ denota il valore per cui $\Pr(X \le \sigma) = \Phi(1)$. Inoltre, il test dei segni è stato casualizzato al fine di ottenere un livello di significatività esattamente pari a $\alpha=0.05$ per entrambi i test. I risultati della simulazione sono riportati nella Tavola 6.2.1.

Tavola 6.2.1. Potenza del test dei segni (potenza del test di Student).

	1.2.1. I Utchza	uci icsi uci si	egiii (potenza	der test di su	ident).
distribuzione	0.0σ	0.2σ	0.4σ	0.6σ	0.8σ
		n =	= 5		_
$U(\lambda-1/2,1)$	0.05(0.05)	0.08(0.10)	0.12(0.16)	0.18(0.25)	0.26(0.37)
$N(\lambda, 1)$	0.05(0.05)	0.09(0.11)	0.15(0.19)	0.26(0.30)	0.35(0.43)
$Lo(\lambda, 1)$	0.05(0.05)	0.10(0.11)	0.18(0.20)	0.28(0.33)	0.40(0.48)
$L(\lambda, 1)$	0.05(0.04)	0.13(0.12)	0.24(0.23)	0.35(0.38)	0.46(0.52)
$C(\lambda, 1)$	0.05(0.02)	0.12(0.07)	0.21(0.15)	0.31(0.24)	0.39(0.33)
		n =	= 10		
$U(\lambda-1/2,1)$	0.05(0.05)	0.10(0.13)	0.18(0.28)	0.29(0.52)	0.43(0.74)
$N(\lambda, 1)$	0.05(0.05)	0.13(0.15)	0.26(0.32)	0.42(0.55)	0.60(0.76)
$Lo(\lambda, 1)$	0.05(0.05)	0.14(0.15)	0.30(0.33)	0.49(0.56)	0.68(0.77)
$L(\lambda, 1)$	0.05(0.05)	0.19(0.16)	0.41(0.36)	0.60(0.59)	0.76(0.78)
$C(\lambda, 1)$	0.05(0.02)	0.17(0.09)	0.37(0.18)	0.53(0.29)	0.67(0.39)
		n =	= 15		
$U(\lambda-1/2,1)$	0.05(0.05)	0.12(0.17)	0.22(0.41)	0.38(0.70)	0.58(0.91)
$N(\lambda, 1)$	0.05(0.05)	0.15(0.18)	0.32(0.44)	0.55(0.71)	0.76(0.90)
$Lo(\lambda, 1)$	0.05(0.05)	0.17(0.18)	0.37(0.45)	0.63(0.72)	0.82(0.90)
$L(\lambda, 1)$	0.05(0.05)	0.25(0.20)	0.51(0.47)	0.75(0.73)	0.89(0.89)
$C(\lambda, 1)$	0.05(0.02)	0.22(0.09)	0.47(0.20)	0.69(0.30)	0.82(0.41)

Anche se il test dei segni dimostra scarse prestazioni per distribuzioni a code leggere come l'Uniforme, si osservi come diventi invece particolarmente efficiente per distribuzioni a code pesanti come la Laplace. Questo comportamento risulta in generale ancora più evidente con distribuzioni a code particolamente pesanti quali per esempio quelle che non posseggono varianza finita come la distribuzione di Cauchy. Per quest'ultima distribuzione, il test di Student non mantiene neppure il livello di significatività. Si può verificare inoltre che le prestazioni del test dei segni risultano generalmente superiori (talvolta in modo molto marcato) a quelle del test di Student quando si considerano distribuzioni asimmetriche. Per quanto riguarda le prestazioni per grandi campioni del test dei segni, dall'Esempio 3.2.2 si ha

$$eff_B = 2f(0)$$
.

Inoltre, ancora dall'Esempio 3.2.2, è noto che l'efficienza asintotica relativa del test dei segni rispetto al test di Student risulta

$$EAR_{B,T} = 4\sigma^2 f(0)^2.$$

La Tavola 6.2.2 fornisce i valori dell'efficienza asintotica relativa $EAR_{B,T}$ per alcune distribuzioni. Anche per grandi campioni il test dei segni dimostra scarse prestazioni per distribuzioni a code leggere, e ottime prestazioni per distribuzioni a code pesanti. In generale, Noether (1967) ha provato che $EAR_{B,T} \ge 1/3$ e il limite inferiore è raggiunto nel caso di una distribuzione Uniforme.

Tavola 6.2.2. EAR del test dei segni rispetto al test di Student.

distribuzione	$EAR_{B,T}$
$U(\lambda, \delta)$	$1/3 \simeq 0.3333$
$N(\mu,\sigma^2)$	$2/\pi \simeq 0.6366$
$Lo(\lambda, \delta)$	$\pi^2/12\simeq 0.8224$
$L(\mu, \delta)$	2
$C(\lambda, \delta)$	∞

- 6.3. Il test dei segni e gli intervalli di confidenza per la mediana. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{M}_{\lambda,F}$. Dall'Esempio 4.1.1 è noto che se $(X_{(1)}, \ldots, X_{(n)})$ è la statistica ordinata allora $(X_{(b_{n,\alpha/2}+1)}, X_{(n-b_{n,\alpha/2})})$ è un intervallo di confidenza della mediana "distribution-free" su $\mathcal{M}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.
- Esempio 6.3.1. Si considerino ancora i dati dell'Esempio 6.1.1. Dal momento che $\Pr(B \le 1) = 0.0107$ per n = 10, si può scegliere un livello di confidenza naturale pari a $1 \alpha = 1 2 \times 0.0107 = 0.9786$. Dunque, una volta ordinato il campione si ottiene che (0.88, 1.53) è un intervallo di confidenza della mediana "distribution-free" su $\mathcal{M}_{\lambda,F}$ al livello di confidenza del 97.86%.

Alternativamente, quando la numerosità campionaria è elevata, dall'Esempio 4.2.3 si ha che $(X_{(l+1)}, X_{(n-l)})$, dove $l = \lfloor n/2 - z_{1-\alpha/2} \sqrt{n/4} \rfloor$, è un intervallo di confidenza della mediana "distribution-free" per grandi campioni su $\mathcal{M}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.

• Esempio 6.3.2. I dati della Tavola 6.3.1 riguardano i tempi di sopravvivenza dal momento della diagnosi di 43 pazienti malati di leucemia.

T1- (2.1	т		•	1. 1	1.41	111	1	· .		
Tavola 6.3.1.	1 emp1 c	11 SO	pravvivenza	aeı	maiati	a1	ieucemia	(1n	giorni	l).

paziente	x_i	paziente	x_i
1	7	23	715
2	47	24	779
3	58	25	881
4	74	26	900
5	177	27	930
6	232	28	968
7	273	29	1077
8	285	30	1109
9	317	31	1314
10	429	32	1334
11	440	33	1367
12	445	34	1534
13	455	35	1712
14	468	36	1784
15	495	37	1877
16	497	38	1886
17	532	39	2045
18	571	40	2056
19	579	41	2260
20	581	42	2429
21	650	43	2509
22	702		

Fonte: Bryson e Siddiqui (1969)

Scelto un livello di confidenza pari a $1 - \alpha = 0.95$, si ha

$$l = \lfloor 43/2 - 1.9577\sqrt{43/4} \rfloor = \lfloor 15.08 \rfloor = 15$$
,

per cui (497, 968) è un intervallo di confidenza della mediana "distribution-free" per grandi campioni su $\mathcal{M}_{\lambda,F}$ al livello di confidenza del 95%.

6.4. Il test dei segni per due campioni appaiati. I campioni appaiati si ottengono quando sulle unità campionarie si effettuano misure ripetute. Ad esempio, le misure sulle unità campionarie potrebbero essere fatte prima e dopo un certo trattamento e l'obiettivo potrebbe essere quello di verificare se il trattamento stesso è efficace. Più formalmente, supponiamo che $(X_1, Y_1), \ldots, (X_n, Y_n)$ sia un campione casuale proveniente dal vettore di variabili casuali bivariato (X, Y), dove X è riferita al pre-trattamento ed Y è riferita al post-trattamento. Supponiamo inoltre che il campione casuale trasformato (D_1, \ldots, D_n) , dove $D_i = Y_i - X_i$ per $i = 1, \ldots, n$, abbia funzione di ripartizione congiunta $F_n \in \mathcal{M}_{\lambda,F}$. Basandosi sul

campione trasformato, la verifica dell'efficacia del trattamento si riduce di conseguenza alla verifica dell'ipotesi H_0 : $\lambda = 0, F \in \mathcal{M}$, contro una opportuna alternativa, e dunque il test dei segni può essere applicato in maniera analoga a quanto visto nella §6.1.

• Esempio 6.4.1. Su 8 pazienti con anemia cronica grave è stato misurato l'indice di infarto prima e dopo un trattamento medico e i relativi dati sono stati riportati nella Tavola 6.4.1.

Tavola 6.4.1. Indice di infarto dei pazienti con anemia (in ml/battito/m²).

paziente	prima	dopo	d_i	z_i
1	109	56	-53	0
2	57	44	-13	0
3	53	55	2	1
4	57	40	-17	0
5	68	62	-6	0
6	72	46	-26	0
7	51	49	-2	0
8	65	41	-24	0

Fonte: Bhatia, Manchanda e Roy (1969)

Per vedere se il trattamento è stato effettivo e quindi per determinare se l'indice di infarto è diminuito, si vuole verificare dunque il sistema di ipotesi H_0 : $\lambda=0, F\in\mathcal{M}$, contro H_1 : $\lambda<0, F\in\mathcal{M}$. Dal momento che per questi dati si ha b=1, per n=8 risulta $\Pr(B\leq 1)=0.0352$ e quindi la significatività osservata risulta $\alpha_{oss}=0.0352$. Sulla base dell'evidenza empirica si deve dunque concludere che il trattamento è efficace, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha>0.0352$.

6.5. Il test di Wilcoxon. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$. Il test di Wilcoxon è basato sulla statistica

$$W^{+} = \sum_{i=1}^{n} Z_{i} R_{i}^{+} ,$$

descritta nell'Esempio 2.5.1, con cui si può verificare l'ipotesi di base H_0 : $\lambda=0, F\in\mathcal{S}$. La statistica W^+ è una statistica lineare dei ranghi con segno con i punteggi scelti come a(i)=i per $i=1,\ldots,n$. Inoltre, dal Teorema 5.1.2 si verifica che

$$W^+ \stackrel{d}{=} \sum_{i=1}^n iZ_i \,,$$

ovvero la statistica W^+ è equivalente in distribuzione ad una combinazione lineare di variabili casuali indipendenti con distribuzione Binomiale Bi(1,1/2), i cui pesi sono dati da $\{1,\ldots,n\}$. Se l'ipotesi di base è vera, denotando la funzione di probabilità di W^+ con $p_n(w) = \Pr(W^+ = w)$, dall'Esempio 2.5.1 si ha

$$p_n(w) = 2^{-n} c_n(w) \mathbf{1}_{\{0,1,\dots,n(n+1)/2\}}(w)$$
,

dove $c_n(w)$ rappresenta il numero di sottoinsiemi di interi di $\{1, \ldots, n\}$ la cui somma è w. Sebbene esistano delle relazioni ricorrenti per il calcolo diretto della funzione di probabilità di W^+ , la distribuzione di questa statistica si ottiene più facilmente attraverso la funzione generatrice delle probabilità. Infatti, dal Teorema 5.1.5 risulta

$$L_{W^+}(t) = 2^{-n} \prod_{i=1}^n (1+t^i), |t| < 1.$$

• **Esempio 6.5.1.** Per n = 3 si ha

$$L_{W^+}(t) = 2^{-3}(1+t)(1+t^2)(1+t^3) = \frac{1}{8}(1+t+t^2+2t^3+t^4+t^5+t^6).$$

Poichè le probabilità $p_3(w)$ corrispondono ai coefficienti del polinomio $L_{W^+}(t)$, si ha la Tavola 6.5.1.

Se l'ipotesi di base è vera, dall'Esempio 5.1.3 si ha

$$E(W^+) = \frac{n(n+1)}{4}$$
, $Var(W^+) = \frac{n(n+1)(2n+1)}{24}$.

Inoltre, dal Teorema 5.1.4 W^+ è simmetrica rispetto a $\mathrm{E}(W^+)$. Infine, dal Corollario 2.5.5 la statistica W^+ è "distribution-free" su $\mathcal{S}_{0,F}$ e di conseguenza anche il test di Wilcoxon è "distribution-free". Dal momento che la distribuzione della statistica W^+ sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione fatta nella §5.1.

• Esempio 6.5.2. Il numero trascendente π può essere calcolato mediante simulazione alla seguente maniera. Si consideri un cerchio di raggio unitario ed il relativo quadrato circoscritto e si generi uniformemente un certo numero di punti casuali all'interno del quadrato. La probabilità che un punto cada all'interno del cerchio è data da $\pi/4$, per cui se p rappresenta la proporzione di punti casuali caduti all'interno del cerchio, allora 4p è una stima di π . Con questa procedura si sono ottenute 10 stime di π , ognuna basata sulla generazione di 10 000 punti pseudo-casuali, che sono state riportate nella Tavola 6.5.2.

	Tavola 6.5.2. Stime di π .				
stima	x_i	$x_i - \pi$	r_i^+	$z_i r_i^+$	
1	3.1348	-0.0068	3	0	
2	3.1520	0.0104	6	6	
3	3.1332	$-\ 0.0084$	5	0	
4	3.1540	0.0124	8	8	
5	3.1298	-0.0118	7	0	
6	3.1404	$-\ 0.0012$	1	0	
7	3.1400	-0.0016	2	0	
8	3.1240	$-\ 0.0176$	9	0	
9	3.1336	-0.0080	4	0	
10	3.1744	0.0328	10	10	

Al fine di verificare se si sono ottenute delle stime credibili di π , si deve dunque verificare il sistema di ipotesi H_0 : $\lambda = \pi \simeq 3.1416$, $F \in \mathcal{S}$, contro H_1 : $\lambda \neq \pi, F \in \mathcal{S}$. Dal momento che per questi dati si ha w = 24, per n = 10 si ottiene $\Pr(W^+ \le 24) = 0.3848$ e quindi la significatività osservata risulta $\alpha_{oss} = 2 \times 0.3848 = 0.7696$, un valore elevato che porta ad accettare l'ipotesi di base. In particolare si può accettare H_0 ad ogni livello di significatività $\alpha < 0.7696$.

Per quanto riguarda la distribuzione per grandi campioni della statistica $W^+=W_n^+$, se è vera l'ipotesi di base dall'Esempio 5.3.1 risulta

$$\frac{W_n^+ - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \stackrel{d}{\to} N(0,1) .$$

La convergenza della statistica di Wilcoxon è abbastanza rapida anche per campioni moderati, ovvero $n \ge 25$. Inoltre, le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione fatta nella §5.3.

• Esempio 6.5.3. Su un campione di 20 soggetti in sovrappeso (con un peso corporeo superiore a 100 chilogrammi) è stato misurato il livello di colesterolo ottenendo i dati della Tavola 6.5.3.

Tavola 6.5.3. Livello di colesterolo (in mg per 100 ml).

			(01
soggetto	x_i	$x_i - 190$	r_i^+	$z_i r_i^+$
1	334	144	20	20
2	185	-5	3	0
3	263	73	19	19
4	246	56	16	16
5	224	34	10	10
6	212	22	8	8
7	188	-2	1	0
8	250	60	17	17
9	148	-42	13	0
10	169	-21	7	0
11	226	36	11	11
12	175	-15	6	0
13	242	52	14	14
14	252	62	18	18
15	153	-37	12	0
16	183	-7	4	0
17	137	-53	15	0
18	202	12	5	5
19	194	4	2	2
20	213	23	9	9
	Conto	Salvin (100	11)	

Fonte: Selvin (1991)

Da numerose esperienze cliniche risulta che il livello di colesterolo in una persona sana è di circa 190 mg per 100 ml. Si sospetta che i soggetti in forte sovrappeso abbiano un livello del colesterolo più alto della norma e dunque si vuole verificare il sistema di ipotesi H_0 : $\lambda = 190, F \in \mathcal{S}$, contro H_1 : $\lambda > 190, F \in \mathcal{S}$. Dal momento che per questi dati si ha w = 149, allora

$$\Pr(W^+ \ge 149) \simeq \Phi((149 - 20 \times 21/4) / \sqrt{20 \times 21 \times 41/24}) = 1 - \Phi(1.6426) = 0.0501$$

per cui la significatività osservata risulta $\alpha_{oss} \simeq 0.0501$. L'evidenza empirica sembra confermare che i soggetti in sovrappeso hanno un livello del colesterolo più alto della norma, dal momento che si può respingere H_0 ad ogni livello di significatività $\alpha > 0.0501$. L'approssimazione normale è molto buona, in quanto il valore esatto risulta $\Pr(W^+ \ge 149) = 0.0527$.

Tavola 6.6.1. Potenza del test di Wilcoxon (potenza del test di Student).

	o.i. i otenza a		\2		
distribuzione	0.0σ	0.2σ	0.4σ	0.6σ	0.8σ
		n =	= 5		_
$U(\lambda-1/2,1)$	0.05(0.05)	0.09(0.10)	0.14(0.16)	0.22(0.25)	0.32(0.37)
$N(\lambda, 1)$	0.05(0.05)	0.10(0.11)	0.17(0.19)	0.29(0.30)	0.42(0.43)
$Lo(\lambda, 1)$	0.05(0.05)	0.11(0.11)	0.20(0.20)	0.32(0.33)	0.46(0.48)
$L(\lambda, 1)$	0.05(0.04)	0.13(0.12)	0.26(0.23)	0.39(0.38)	0.51(0.52)
$C(\lambda, 1)$	0.05(0.02)	0.12(0.07)	0.22(0.15)	0.33(0.24)	0.42(0.33)
		n =	= 10		
$U(\lambda-1/2,1)$	0.05(0.05)	0.13(0.13)	0.28(0.28)	0.46(0.52)	0.68(0.74)
$N(\lambda, 1)$	0.05(0.05)	0.14(0.15)	0.31(0.32)	0.52(0.55)	0.73(0.76)
$Lo(\lambda, 1)$	0.05(0.05)	0.16(0.15)	0.35(0.33)	0.56(0.56)	0.77(0.77)
$L(\lambda, 1)$	0.05(0.05)	0.19(0.16)	0.41(0.36)	0.62(0.59)	0.80(0.78)
$C(\lambda, 1)$	0.05(0.02)	0.16(0.09)	0.32(0.18)	0.46(0.29)	0.58(0.39)
		n =	= 15		
$U(\lambda-1/2,1)$	0.05(0.05)	0.17(0.17)	0.37(0.41)	0.64(0.70)	0.85(0.91)
$N(\lambda, 1)$	0.05(0.05)	0.18(0.18)	0.42(0.44)	0.70(0.71)	0.89(0.90)
$Lo(\lambda, 1)$	0.05(0.05)	0.20(0.18)	0.45(0.45)	0.73(0.72)	0.90(0.90)
$L(\lambda, 1)$	0.05(0.05)	0.24(0.20)	0.52(0.47)	0.78(0.73)	0.93(0.89)
$C(\lambda, 1)$	0.05(0.02)	0.19(0.09)	0.40(0.20)	0.60(0.30)	0.73(0.41)

6.6. Le prestazioni del test di Wilcoxon. Analogamente a quanto fatto nella $\S6.2$ per il test dei segni, è stato confrontato il test di Wilcoxon con il test di Student. Le potenze dei due test sono state calcolate mediante simulazione per le medesime distribuzioni e numerosità considerate nella $\S6.2$. Inoltre, il test di Wilcoxon è stato casualizzato al fine di ottenere un livello di significatività esattamente pari a $\alpha = 0.05$ per

entrambi i test. I risultati della simulazione sono riportati nella Tavola 6.6.1. Da questa tavola è evidente che il test di Wilcoxon dimostra ottime prestazioni rispetto al test di Student per tutte le distribuzioni, anche sotto ipotesi di normalità. Inoltre, confrontando la Tavola 6.6.1 con la Tavola 6.2.1, si nota che il test di Wilcoxon risulta generalmente superiore al test dei segni eccetto che per la distribuzione di Cauchy.

Per quanto riguarda le prestazioni per grandi campioni del test di Wilcoxon, dall'Esempio 5.3.3 si ha che

$$\operatorname{eff}_{W^+} = 2\sqrt{3} \int_{-\infty}^{\infty} f(x)^2 dx ,$$

per cui l'efficienza asintotica relativa del test di Wilcoxon rispetto al test di Student risulta

$$EAR_{W^+,T} = 12\sigma^2 \left(\int_{-\infty}^{\infty} f(x)^2 dx\right)^2.$$

La Tavola 6.6.2 fornisce i valori dell'efficienza asintotica relativa $EAR_{W^+,T}$ per alcune distribuzioni.

Tavola 6.6.2. EAR del test di Wilcoxon rispetto al test di Student.

distribuzione	$EAR_{W^+,T}$
$U(\lambda, \delta)$	1
$N(\mu,\sigma^2)$	$3/\pi \simeq 0.9549$
$Lo(\lambda, \delta)$	$\pi^2/9 \simeq 1.0966$
$L(\mu, \delta)$	3/2 = 1.5
$C(\lambda, \delta)$	∞

Anche per grandi campioni il test di Wilcoxon dimostra ottime prestazioni per tutte le distribuzioni considerate. In generale Noether (1967) ha provato che $\mathrm{EAR}_{W^+,T} \geq 105/125 \simeq 0.864$ quando la variabile casuale in oggetto di studio è distribuita in modo simmetrico. Infine, l'efficienza asintotica relativa del test di Wilcoxon rispetto al test dei segni risulta

$$EAR_{W^+,B} = \frac{3}{f(0)^2} \left(\int_{-\infty}^{\infty} f(x)^2 dx \right)^2.$$

La Tavola 6.6.3 fornisce i valori dell'efficienza asintotica relativa $EAR_{W^+,B}$ per alcune distribuzioni. Anche per grandi campioni il test dei segni fornisce prestazioni buone per distribuzioni a code pesanti, mentre risulta molto meno efficiente per distribuzionia code leggere.

Tavola 6.6.3. EAR del test di Wilcoxon rispetto al test dei segni.

distribuzione	$EAR_{W^+,B}$
$U(\lambda, \delta)$	3
$N(\mu, \sigma^2)$	3/2 = 1.5
$Lo(\lambda, \delta)$	$4/3 \simeq 1.3333$
$Ed(\mu, \delta)$	3/4 = 0.75
$Ch(\lambda, \delta)$	3/4 = 0.75

- 6.7. Il test di Wilcoxon e gli intervalli di confidenza per la mediana. Se (X_1,\ldots,X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$, è possibile costruire mediante il test dei segni un intervallo di confidenza per la mediana λ "distribution-free" su $\mathcal{S}_{\lambda,F}$. Analogamente all'Esempio 4.1.2, si denoti le medie di Walsh relative al campione casuale con (W_1,\ldots,W_k) , dove k=n(n+1)/2. Se $(W_{(1)},\ldots,W_{(k)})$ è la statistica ordinata relativa alle medie di Walsh, allora $(W_{(w_{n,\alpha/2}+1)},W_{(k-w_{n,\alpha/2})})$ è un intervallo di confidenza della mediana "distribution-free" su $\mathcal{S}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.
- Esempio 6.7.1. Su un campione di cinque regioni italiane è stata considerata l'età media delle donne alla nascita del primogenito e si sono ottenuti i dati della Tavola 6.7.1. Vi sono $5 \times 6/2 = 15$ medie di Walsh e il relativo vettore ordinato risulta

$$(25.1, 25.4, 25.7, 26.3, 26.4, 26.6, 26.7, 26.7, 27.0, 27.5, 27.6, 27.7, 27.9, 28.0, 28.3)$$
.

Dal momento che si ha $\Pr(W^+ \le 1) = 0.0625$ per n = 5, allora si può scegliere un livello di confidenza naturale pari a $1 - \alpha = 1 - 2 \times 0.0625 = 0.875$. Dunque, si deve concludere che (25.4, 28.0) è un intervallo di confidenza "distribution-free" su $\mathcal{S}_{\lambda,F}$ per la mediana al livello di confidenza del 87.5%.

Tavola 6.7.1. Età media della madre alla nascita del primogenito (in anni).

regione	x_i
Sicilia	25.1
Toscana	27.7
Liguria	28.3
Lombardia	27.5
Puglia	25.7

Fonte: "Repubblica" del 4 novembre 1995, inserto Salute

Quando la numerosità campionaria è elevata, con un procedimento analogo a quello dell'Esempio 4.2.3, si ha che $(W_{(l+1)},W_{(k-l)})$, dove $l=\lfloor n(n+1)/4-z_{1-\alpha/2}\sqrt{n(n+1)(2n+1)/24}\rfloor$, è un intervallo di confidenza della mediana "distribution-free" per grandi campioni su $\mathcal{S}_{\lambda,F}$ al livello di confidenza $(1-\alpha)$.

- **6.8. Il test di Wilcoxon per due campioni appaiati.** Analogamente a quanto fatto per il test dei segni, quando si dispone di un campione casuale di osservazioni appaiate $(X_1, Y_1), \ldots, (X_n, Y_n)$, si può considerare il campione casuale trasformato (D_1, \ldots, D_n) , dove $D_i = Y_i X_i$ per $i = 1, \ldots, n$, con funzione di ripartizione congiunta $F_n \in \mathcal{S}_{\lambda,F}$. Basandosi sul campione trasformato, si vuole verificare dunque l'ipotesi H_0 : $\lambda = 0, F \in \mathcal{S}$, contro una opportuna alternativa e di conseguenza il test di Wilcoxon può essere applicato in maniera analoga a quanto visto nella §6.4.
- Esempio 6.8.1. Sono stati considerati 15 coppie di semi della medesima età, di cui uno prodotto con fecondazione incrociata e l'altro con auto-fecondazione, e le piante relative ad ogni coppia sono state cresciute vicine nelle medesime condizioni ambientali. La Tavola 6.8.1 riporta le altezze finale delle coppie di piante ottenute in questo modo dopo un periodo fissato di tempo.

Tavola 6.8.1. Altezze delle piante (pollici).

Tavora 0.0.1. Anezze dene plante (pointer).					
coppia	incrociata	auto	d_{i}	r_i^+	$z_i r_i^+$
1	23.5	17.4	6.1	11	11
2	12.0	20.4	-8.4	14	0
3	21.0	20.0	1.0	2	2
4	22.0	20.0	2.0	4	4
5	19.1	18.4	0.7	1	1
6	21.5	18.6	2.9	5	5
7	22.1	18.6	3.5	7	7
8	20.4	15.3	5.1	9	9
9	18.3	16.5	1.8	3	3
10	21.6	18.0	3.6	8	8
11	23.3	16.3	7.0	12	12
12	21.0	18.0	3.0	6	6
13	22.1	12.8	9.3	15	15
14	23.0	15.5	7.5	13	13
15	12.0	18.0	-6.0	10	0
			(40-0)		

Fonte: Darwin (1876)

Al fine di determinare se la fecondazione incrociata risulta più efficace dell'auto-fecondazione, si vuole verificare dunque il sistema di ipotesi H_0 : $\lambda = 0, F \in \mathcal{S}$, contro H_1 : $\lambda > 0, F \in \mathcal{S}$. Dal momento che per questi dati si ottiene w = 96, allora per n = 15 si ha $\Pr(W^+ \ge 96) = 0.0206$ e quindi la significatività osservata risulta $\alpha_{oss} = 0.0206$. Si deve dunque concludere che la fecondazione incrociata è più efficace dell'auto-fecondazione, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha > 0.0206$.

Capitolo 7

I test basati su statistiche lineari dei ranghi

7.1. Le statistiche lineari dei ranghi. Una classe molto generale di statistiche "distribution-free" è definita come segue.

Definizione 7.1.1. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$ e sia (R_1, \ldots, R_n) il relativo vettore dei ranghi. Una statistica del tipo

$$T = \sum_{i=1}^{n} c(i)a(R_i)$$

è detta statistica lineare dei ranghi, mentre le costanti $a(1), \ldots, a(n)$ e $c(1), \ldots, c(n)$ sono dette rispettivamente punteggi e costanti di regressione.

In base al Corollario 2.4.6 la statistica T è "distribution-free" sulla classe C_F . Differenti scelte dei punteggi e delle costanti di regressione consentono di costruire statistiche test per una vasta gamma di sistemi di ipotesi, come sarà evidenziato nel seguito.

• Esempio 7.1.1. Se (X_1,\ldots,X_{n_1}) e (Y_1,\ldots,Y_{n_2}) sono campioni casuali indipendenti provenienti dalla stessa variabile casuale assolutamente continua e dove $n=n_1+n_2$, il campione misto $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ è un campione casuale con funzione di ripartizione congiunta $F_n\in\mathcal{C}_F$. Se (R_1,\ldots,R_{n_1}) sono i ranghi assegnati a (X_1,\ldots,X_{n_1}) e se (R_{n_1+1},\ldots,R_n) sono i ranghi assegnati a (Y_1,\ldots,Y_{n_2}) nel campione misto, con la scelta delle costanti di regressione

$$c(i) = \begin{cases} 1 & i = 1, \dots, n_1 \\ 0 & i = n_1 + 1, \dots, n \end{cases}$$

si ottiene la statistica

$$T = \sum_{i=1}^{n} c(i)a(R_i) = \sum_{i=1}^{n_1} a(R_i) ,$$

che rappresenta la somma dei punteggi assegnati a (X_1, \ldots, X_{n_1}) . In particolare, se i punteggi sono scelti come a(i) = i per $i = 1, \ldots, n$, allora si ottiene la cosiddetta statistica di Mann-Whitney-Wilcoxon, ovvero

$$W = \sum_{i=1}^{n_1} R_i ,$$

che fornisce la somma dei ranghi assegnati a (X_1, \ldots, X_{n_1}) . Se i punteggi sono scelti invece come

$$a(i) = \begin{cases} 1 & i > \lfloor n/2 \rfloor \\ 0 & i \leq \lfloor n/2 \rfloor \end{cases}, i = 1, \dots, n,$$

si ottiene la statistica

$$L = \sum_{i=1}^{n_1} a(R_i) ,$$

che fornisce il numero di (X_1, \dots, X_{n_1}) maggiori della mediana del campione misto. Per questo motivo L è detta statistica della mediana.

Il seguente risultato preliminare è utile nella determinazione della media e della varianza di una statistica lineare dei ranghi.

Lemma 7.1.2. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in C_F$, allora

$$\mathrm{E}(a(R_i)) = \overline{a} = \frac{1}{n} \sum_{r=1}^n a(r)$$
, $i = 1, \ldots, n$,

$$\operatorname{Var}(a(R_i)) = s_a^2 = \frac{1}{n} \sum_{r=1}^n \left(a(r) - \overline{a} \right)^2, \ i = 1, \dots, n$$
 ,

$$Cov(a(R_i), a(R_j)) = -\frac{s_a^2}{n-1}$$
, $i \neq j = 1, ..., n$.

Dimostrazione. Dal Corollario 2.4.4 si ottiene

$$E(a(R_i)) = \sum_{r=1}^n a(r) Pr(R_i = r) = \frac{1}{n} \sum_{r=1}^n a(r) = \overline{a}, i = 1, ..., n,$$

e

$$\operatorname{Var}(a(R_i)) = \sum_{r=1}^n (a(r) - \overline{a})^2 \Pr(R_i = r) = \frac{1}{n} \sum_{r=1}^n (a(r) - \overline{a})^2 = s_a^2, i = 1, \dots, n.$$

Dal Corollario 2.4.4 si ottiene anche

$$\begin{aligned} \operatorname{Cov}(a(R_i), a(R_j)) &= \sum_{r=1}^n \sum_{s \neq r=1}^n (a(r) - \overline{a})(a(s) - \overline{a}) \operatorname{Pr}(R_i = r, R_j = s) \\ &= \frac{1}{n(n-1)} \sum_{r=1}^n \sum_{s \neq r=1}^n (a(r) - \overline{a})(a(s) - \overline{a}) \\ &= \frac{1}{n(n-1)} \left(\left(\sum_{r=1}^n (a(r) - \overline{a}) \right)^2 - \sum_{r=1}^n (a(r) - \overline{a})^2 \right) \\ &= -\frac{1}{n(n-1)} \sum_{r=1}^n (a(r) - \overline{a})^2 = -\frac{s_a^2}{n-1} , i \neq j = 1, \dots, n , \end{aligned}$$

che completa la dimostrazione.

Il seguente teorema fornisce la media e la varianza di una statistica lineare dei ranghi.

Teorema 7.1.3. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in C_F$, per una statistica lineare dei ranghi T risulta

$$\mathrm{E}(T) = n \overline{a} \, \overline{c}$$
 , $\mathrm{Var}(T) = \frac{n^2}{n-1} \, s_a^2 s_c^2$,

dove

$$\overline{c} = \frac{1}{n} \sum_{i=1}^n c(i)$$
 , $s_c^2 = \frac{1}{n} \sum_{i=1}^n \left(c(i) - \overline{c} \right)^2$.

Dimostrazione. Tenendo presente il Lemma 7.1.2 si ha

$$E(T) = \sum_{i=1}^{n} c(i)E(a(R_i)) = \overline{a} \sum_{i=1}^{n} c(i) = n\overline{a} \, \overline{c}$$

e

$$\begin{aligned} \operatorname{Var}(T) &= \sum_{i=1}^n c(i)^2 \operatorname{Var}(a(R_i)) + \sum_{i=1}^n \sum_{j \neq i=1}^n c(i) c(j) \operatorname{Cov}(a(R_i), a(R_j)) \\ &= s_a^2 \sum_{i=1}^n c(i)^2 - \frac{s_a^2}{n-1} \sum_{i=1}^n \sum_{j \neq i=1}^n c(i) c(j) = \frac{s_a^2}{n-1} \left((n-1) \sum_{i=1}^n c(i)^2 - \sum_{i=1}^n \sum_{j \neq i=1}^n c(i) c(j) \right) \\ &= \frac{s_a^2}{n-1} \left(n \sum_{i=1}^n c(i)^2 - \left(\sum_{i=1}^n c(i) \right)^2 \right) = \frac{n^2 s_a^2}{n-1} \left(\frac{1}{n} \sum_{i=1}^n \left(c(i) - \overline{c} \right)^2 \right) = \frac{n^2}{n-1} s_a^2 s_c^2 \; . \end{aligned}$$

che completa la dimostrazione.

• Esempio 7.1.2. Si consideri la statistica W dell'Esempio 7.1.1. Dal momento che

$$\overline{a} = \frac{1}{n} \sum_{r=1}^{n} r = \frac{n+1}{2}, \overline{c} = \frac{1}{n} \sum_{i=1}^{n_1} 1 = \frac{n_1}{n},$$

dal Teorema 7.1.3 si ottiene

$$E(W) = n\overline{a}\,\overline{c} = \frac{n_1(n+1)}{2}$$
.

Inoltre, risulta

$$s_a^2 = \frac{1}{n} \sum_{n=1}^n r^2 - \frac{(n+1)^2}{4} = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{(n^2-1)}{12}$$

e

$$s_c^2 = \frac{1}{n} \sum_{i=1}^{n_1} 1 - \frac{n_1^2}{n^2} = \frac{n_1(n-n_1)}{n^2} = \frac{n_1 n_2}{n^2}$$
,

da cui

$$Var(W) = \frac{n^2}{n-1} s_a^2 s_c^2 = \frac{n_1 n_2 (n+1)}{12}.$$

• Esempio 7.1.3. Si consideri la statistica L dell'Esempio 7.1.1. Dal momento che

$$\overline{a} = \frac{1}{n} \sum_{r=1}^{\lfloor n/2 \rfloor} 1 = \frac{\lfloor n/2 \rfloor}{n}$$

e

$$s_a^2 = \frac{1}{n} \sum_{r=1}^{\lfloor n/2 \rfloor} 1 - \frac{\lfloor n/2 \rfloor^2}{n^2} = \frac{\lfloor n/2 \rfloor (n - \lfloor n/2 \rfloor)}{n^2},$$

mentre \overline{c} e s_c^2 sono stati ottenuti nell'Esempio 7.1.2, allora dal Teorema 7.1.3 si ha

$$E(L) = n\overline{a}\,\overline{c} = \frac{n_1 \lfloor n/2 \rfloor}{n}$$

e

$$\operatorname{Var}(L) = \frac{n^2}{n-1} s_a^2 s_c^2 = \frac{n_1 n_2 \lfloor n/2 \rfloor (n - \lfloor n/2 \rfloor)}{n^2 (n-1)}.$$

Nel caso particolare che n sia pari, allora risulta

$$E(L) = \frac{n_1}{2}, Var(L) = \frac{n_1 n_2}{4(n-1)}.$$

Il seguente risultato preliminare viene impiegato per ottenere importanti equivalenze in distribuzione per le statistiche lineari dei ranghi.

Lemma 7.1.4. Sia (X_1, \ldots, X_n) un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Se (R_1, \ldots, R_n) è il vettore dei ranghi e se $(U_1, \ldots, U_n) : \mathcal{R}_n \to \mathcal{R}_n$ è un vettore di trasformate biunivoche tali che $(U_1(R_1, \ldots, R_n), \ldots, U_n(R_1, \ldots, R_n))$, allora si ha

$$\Pr(U_1 = u_1, \dots, U_n = u_n) = \frac{1}{n!}, (u_1, \dots, u_n) \in \mathcal{R}_n.$$

Dimostrazione. Dal momento che ad ogni (u_1, \ldots, u_n) corrisponde un $(r_1, \ldots, r_n) \in \mathcal{R}_n$, dove $r_i = T_i^{-1}(u_1, \ldots, u_n)$ per $i = 1, \ldots, n$, allora

$$\Pr(U_1 = u_1, \dots, U_n = u_n) = \Pr(R_1 = r_1, \dots, R_n = r_n) = \frac{1}{n!}.$$

Questa relazione è valida per ogni $(u_1, \ldots, u_n) \in \mathcal{R}_n$ e il teorema è dimostrato.

Teorema 7.1.5. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in C_F$, per una statistica lineare dei ranghi T si ha

$$T = \sum_{i=1}^{n} c(i)a(R_i) \stackrel{d}{=} \sum_{i=1}^{n} a(i)c(R_i)$$
.

Dimostrazione. Si consideri il vettore di trasformate (U_1, \ldots, U_n) , tale che U_i rappresenta la posizione dell'intero i nel vettore (R_1, \ldots, R_n) . Per (U_1, \ldots, U_n) valgono le condizioni del Lemma 7.1.4 e quindi si ha $(U_1, \ldots, U_n) \stackrel{d}{=} (R_1, \ldots, R_n)$, da cui

$$T = \sum_{i=1}^{n} c(i)a(R_i) = \sum_{i=1}^{n} a(i)c(U_i) \stackrel{d}{=} \sum_{i=1}^{n} a(i)c(R_i).$$

Teorema 7.1.6. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in C_F$ e se inoltre $\{c'(1), \ldots, c'(n)\}$ e $\{a'(1), \ldots, a'(n)\}$ sono rispettivamente permutazioni di $\{c(1), \ldots, c(n)\}$ e $\{a(1), \ldots, a(n)\}$, per una statistica lineare dei ranghi T si ha

$$T = \sum_{i=1}^{n} c(i)a(R_i) \stackrel{d}{=} \sum_{i=1}^{n} c'(i)a'(R_i).$$

Dimostrazione. Sia α_i la posizione di c'(i) nella permutazione $\{c(1),\ldots,c(n)\}$ e sia β_i la posizione di a'(i) nella permutazione $\{a(1),\ldots,a(n)\}$. Si ha $\{c(\alpha_1),\ldots,c(\alpha_n)\}=\{c'(1),\ldots,c'(n)\}$ e $\{a(\beta_1),\ldots,a(\beta_n)\}=\{a'(1),\ldots,a'(n)\}$, per cui

$$\sum_{i=1}^{n} c'(i)a'(R_i) = \sum_{i=1}^{n} c(\alpha_i)a(\beta_{R_i}).$$

Dal momento che per il vettore casuale $(\beta_{R_1}, \dots, \beta_{R_n})$ valgono le condizioni del Lemma 7.1.4, allora si ottiene $(\beta_{R_1}, \dots, \beta_{R_n}) \stackrel{d}{=} (R_1, \dots, R_n)$, da cui

$$\sum_{i=1}^n c(\alpha_i) a(\beta_{R_i}) \stackrel{d}{=} \sum_{i=1}^n c(\alpha_i) a(R_i) .$$

Se γ_i rappresenta la posizione dell'intero i nella permutazione $(\alpha_1, \dots, \alpha_n)$, si ottiene inoltre

$$\sum_{i=1}^n c(\alpha_i)a(R_i) = \sum_{i=1}^n c(i)a(R_{\gamma_i}).$$

Dal momento che per $(R_{\gamma_1}, \dots, R_{\gamma_n})$ valgono le condizioni del Teorema 7.1.4, allora si ha $(R_{\gamma_1}, \dots, R_{\gamma_n}) \stackrel{d}{=} (R_1, \dots, R_n)$, da cui

$$\sum_{i=1}^n c(i)a(R_{\gamma_i}) \stackrel{d}{=} \sum_{i=1}^n c(i)a(R_i).$$

Si deve dunque concludere che

$$\sum_{i=1}^{n} c'(i)a'(R_i) \stackrel{d}{=} \sum_{i=1}^{n} c(\alpha_i)a(R_i) \stackrel{d}{=} \sum_{i=1}^{n} c(i)a(R_i) = T.$$

Il seguente teorema fornisce le condizioni per cui una statistica lineare dei ranghi possiede una distribuzione simmetrica rispetto alla media.

Teorema 7.1.7. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$ e se $c^*(1) \leq \ldots \leq c^*(n)$ e $a^*(1) \leq \ldots \leq a^*(n)$ rappresentano rispettivamente i valori ordinati di $c(1), \ldots, c(n)$ e $a(1), \ldots, a(n)$, allora una statistica lineare dei ranghi T è simmetrica rispetto a $E(T) = n\overline{a}\overline{c}$ se

$$a^*(i) + a^*(n+1-i) = k$$
, $i = 1, ..., n$,

0

$$c^*(i) + c^*(n+1-i) = k$$
 , $i = 1, \dots, n$,

con k costante.

Dimostrazione. Si dimostra il teorema per la prima condizione. Se si assumono vere le n relazioni, sommando e dividendo per n si ha

$$k = \frac{1}{n} \sum_{i=1}^{n} a^{*}(i) + \frac{1}{n} \sum_{i=1}^{n} a^{*}(n+1-i) = \frac{1}{n} \sum_{i=1}^{n} a(i) + \frac{1}{n} \sum_{i=1}^{n} a(n+1-i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} a(i) + \frac{1}{n} \sum_{i=1}^{n} a(i) = 2\overline{a}.$$

Sostituendo il valore ottenuto per k nelle relazioni originali si ha quindi

$$2\overline{a} = a^*(i) + a^*(n+1-i), i = 1, \dots, n,$$

ovvero

$$a^*(i) - \overline{a} = \overline{a} - a^*(n+1-i), i = 1, \ldots, n$$
.

◁

Data ora la statistica lineare dei ranghi

$$T^* = \sum_{i=1}^n c(i)a^*(R_i)$$
,

per il Teorema 7.1.6 si ha $T^*\stackrel{d}{=}T$. Tenendo presente questa equivalenza in distribuzione, allora è sufficiente dimostrare che T^* è simmetrica rispetto a $\mathrm{E}(T)=\mathrm{E}(T^*)=n\overline{a}\,\overline{c}$. Dalla relazione ottenuta in precedenza si ottiene

$$T^* - n\overline{a}\,\overline{c} = \sum_{i=1}^n c(i)(a^*(R_i) - \overline{a}) = \sum_{i=1}^n c(i)(\overline{a} - a^*(n+1-R_i)).$$

Dal momento che per il Lemma 7.1.4 si ha

$$(n+1-R_1,\ldots,n+1-R_n) \stackrel{d}{=} (R_1,\ldots,R_n)$$
,

allora

$$T^* - n\overline{a}\,\overline{c} = \sum_{i=1}^n c(i)(\overline{a} - a^*(n+1-R_i)) \stackrel{d}{=} \sum_{i=1}^n c(i)(\overline{a} - a^*(R_i)) = n\overline{a}\,\overline{c} - T^*,$$

ovvero per il Teorema 1.2.2 si ha che T^* è simmetrica rispetto a $n\overline{a}\,\overline{c}$. La dimostrazione della seconda condizione segue immediatamente dal Teorema 7.1.5 mediante la stessa dimostrazione della prima condizione.

• Esempio 7.1.4. Si consideri la scelta di costanti di regressione dell'Esempio 7.1.1 e si supponga $n_1 = n_2$. Dal momento si ha $c^*(i) = c(n+1-i)$ per i = 1, ..., n, allora risulta

$$c^*(i) + c^*(n+1-i) = 1, i = 1, ..., n,$$

ovvero dal Teorema 7.1.7 si ottiene che la relativa statistica lineare dei ranghi T è simmetrica.

• Esempio 7.1.5. Si consideri la statistica W dell'Esempio 7.1.1. Dal momento che $a^*(i) = a(i) = i$ per i = 1, ..., n, risulta

$$a^*(i) + a^*(n+1-i) = i+n+1-i = n+1, i = 1, ..., n$$

per cui dal Teorema 7.1.7 e tenendo presente l'Esempio 7.1.2, si ha che W è simmetrica rispetto a $\mathrm{E}(W) = n_1(n+1)/2$.

• Esempio 7.1.6. Si consideri la statistica L dell'Esempio 7.1.1 e si supponga che n sia pari. Dal momento che $a^*(i) = a(i)$ per $i = 1, \ldots, n$, risulta

$$a^*(i) + a^*(n+1-i) = 1, i = 1, ..., n,$$

per cui dal Teorema 7.1.7 e tenendo presente l'Esempio 7.1.3, si ha che L è simmetrica rispetto a $\mathrm{E}(L)=n_1/2.$

7.2. La distribuzione per grandi campioni delle statistiche lineari dei ranghi. In questa sezione vengono discusse le proprietà delle statistiche lineari dei ranghi per grandi campioni.

Definizione 7.2.1. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, data una statistica lineare dei ranghi

$$T = T_n = \sum_{i=1}^{n} c_n(i) a_n(R_i)$$
,

si dice che le costanti di regressione $c_n(1), \ldots, c_n(n)$ soddisfano alla condizione di Noether se

<

$$\lim_n rac{\sum_{i=1}^n (c_n(i) - \overline{c}_n)^2}{\displaystyle\max_{1 \leq i \leq n} (c_n(i) - \overline{c}_n)^2} = \infty \; ,$$

dove

$$\overline{c}_n = \frac{1}{n} \sum_{i=1}^n c_n(i) . \qquad \triangle$$

• Esempio 7.2.1. Si consideri le costanti di regressione definite nell'Esempio 7.1.1. Dal momento che $\overline{c}_n = n_1/n$, si ha

$$\sum_{i=1}^{n} (c_n(i) - \overline{c}_n)^2 = \sum_{i=1}^{n} c_n(i)^2 - n\overline{c}_n^2 = \frac{n_1 n_2}{n}.$$

Inoltre si ha

$$\max_{1 \leq i \leq n} (c_n(i) - \overline{c}_n)^2 = \max(\overline{c}_n^2, (1 - \overline{c}_n)^2) = \frac{1}{n^2} \max(n_1^2, n_2^2) = \frac{1}{n^2} \left(\max(n_1, n_2) \right)^2,$$

per cui

$$\frac{\sum_{i=1}^{n} (c_n(i) - \overline{c}_n)^2}{\max\limits_{1 \le i \le n} (c_n(i) - \overline{c}_n)^2} = \frac{n_1 n_2 n}{(\max(n_1, n_2))^2} = n \frac{\min(n_1, n_2)}{\max(n_1, n_2)},$$

ovvero la condizione di Noether è soddisfatta quando $n_1, n_2 \to \infty$ contemporaneamente.

Nel seguente teorema si ottiene la distribuzione per grandi campioni delle statistiche lineari dei ranghi.

Teorema 7.2.2. Si consideri punteggi tali che

$$a_n(i) = \phi(i/(n+1)), i = 1, ..., n,$$

dove ϕ è una funzione punteggio esprimibile come differenza di due funzioni non decrescenti che non dipende da n per cui

$$0<\int_0^1(\phi(u)-\overline{\phi})^2\,du<\infty$$
 ,

dove $\overline{\phi} = \int_0^1 \phi(u) du$. Se (X_1, \dots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, allora per una statistica lineare dei ranghi

$$T_n = \sum_{i=1}^n c_n(i) a_n(R_i) ,$$

le cui costanti di regressione soddisfano la condizione di Noether, si ha

$$rac{T_n - \mathrm{E}(T_n)}{\sqrt{\mathrm{Var}(T_n)}} \stackrel{d}{
ightarrow} N(0,1)$$
 ,

dove $E(T_n)$ e $Var(T_n)$ sono definite nel Teorema 7.1.3.

Dimostrazione. Vedi Hájek e Šidák (1967).

Se si considera la statistica T'_n i cui punteggi sono dati da

$$a'_n(i) = b_n \phi(i/(n+1)) + d_n = b_n a_n(i) + d_n, i = 1, \dots, n,$$

allora risulta $T'_n = b_n T_n + n \overline{c}_n d_n$ con

$$E(T_n') = b_n E(T_n) + n \overline{c}_n d_n$$

e

$$Var(T'_n) = b_n^2 Var(T_n) .$$

Di conseguenza, si ha

$$\frac{T_n' - \mathrm{E}(T_n')}{\sqrt{\mathrm{Var}(T_n')}} = \frac{b_n T_n + n \overline{c}_n d_n - b_n \mathrm{E}(T_n) - n \overline{c}_n d_n}{\sqrt{b_n^2 \mathrm{Var}(T_n)}} = \frac{T_n - \mathrm{E}(T_n)}{\sqrt{\mathrm{Var}(T_n)}} ,$$

da cui segue che T_n e T_n' hanno le medesime proprietà per grandi campioni. Dunque, le costanti b_n e d_n non influenzano il comportamento per grandi campioni della statistica dei ranghi, mentre la scelta della funzione punteggio ϕ è determinante sotto questo punto di vista.

• Esempio 7.2.2. Si consideri la statistica $W=W_n$ di Mann-Whitney-Wilcoxon. Dall'Esempio 7.2.1 è noto che le relative costanti di regressione soddisfano alla condizione di Noether. Inoltre, al fine di determinare la distribuzione per grandi campioni di W_n è conveniente considerare la statistica $T_n=b_nW_n$ con $b_n=1/(n+1)$ che ha le medesime proprietà per grandi campioni della statistica W_n . La funzione punteggio relativa alla statistica T_n , data da $\phi(u)=u\mathbf{1}_{[0,1]}(u)$, può essere espressa come differenza di due funzioni non decrescenti. Inoltre, risulta

$$\int_0^1 (\phi(u) - \overline{\phi})^2 du = \int_0^1 (u - 1/2)^2 du = \frac{1}{12} < \infty.$$

Dunque, tutte le condizioni del Teorema 7.2.2 sono soddisfatte. Quindi, tenendo presente anche l'Esempio 7.1.2, si ha

$$\frac{W_n - E(W_n)}{\sqrt{\text{Var}(W_n)}} = \frac{W_n - n_1(n+1)/2}{\sqrt{n_1 n_2(n+1)/12}} \stackrel{d}{\to} N(0,1) .$$

• Esempio 7.2.3. Si consideri la statistica $L=L_n$ della mediana. Dall'Esempio 7.2.1 è noto che le relative costanti di regressione soddisfano alla condizione di Noether. La funzione punteggio della statistica L_n , data da $\phi(u)=\mathbf{1}_{[1/2,1]}(u)$, può essere espressa come differenza di due funzioni non decrescenti. Inoltre, risulta

$$\int_0^1 (\phi(u) - \overline{\phi})^2 du = \int_0^{1/2} (1/2)^2 du + \int_{1/2}^1 (1 - 1/2)^2 du = \frac{1}{4} < \infty.$$

Dunque, tutte le condizioni del Teorema 7.2.2 sono soddisfatte. Quindi, tenendo presente anche l'Esempio 7.1.3, dal Teorema 7.2.2 si ottiene

$$\frac{L_n - \mathrm{E}(L_n)}{\sqrt{\mathrm{Var}(L_n)}} = \frac{L_n - n_1 \lfloor n/2 \rfloor / n}{\sqrt{n_1 n_2 \lfloor n/2 \rfloor (n - \lfloor n/2 \rfloor) / (n^2 (n-1))}} \xrightarrow{d} N(0,1).$$

Capitolo 8

I test per i parametri di posizione: due campioni indipendenti

8.1. Le statistiche lineari dei ranghi per i parametri di posizione. Consideriamo due campioni casuali indipendenti (X_1,\ldots,X_{n_1}) e (Y_1,\ldots,Y_{n_2}) e supponiamo che il campione misto $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ abbia funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$, dove $n=n_1+n_2$. Tenedo presente la definizione della classe $\mathcal{L}_{\Delta,F}$, il parametro Δ rappresenta in effetti la differenza fra i parametri di posizione relativi alle variabili casuali da cui provengono i due campioni. Si vuole verificare il sistema di ipotesi $H_0: \Delta=0, F\in\mathcal{C}$, ovvero l'omogeneità dei parametri di posizione, contro un'alternativa bilaterale $H_1: \Delta\neq 0, F\in\mathcal{C}$, o direzionale $H_1: \Delta>0$ ($\Delta<0$), $F\in\mathcal{C}$. Una classe di statistiche test "distribution-free" opportuna in questo sistema di ipotesi è definita di seguito.

Definizione 8.1.1. Siano (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) due campioni casuali indipendenti, tali che il campione misto abbia funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, dove $n = n_1 + n_2$. Siano inoltre (R_1, \ldots, R_{n_1}) i ranghi assegnati a (X_1, \ldots, X_{n_1}) e siano (R_{n_1+1}, \ldots, R_n) i ranghi assegnati a (Y_1, \ldots, Y_{n_2}) nel campione misto. Se le costanti di regressione nella Definizione 7.1.1 sono date da

$$c(i) = \begin{cases} 1 & i = 1, \dots, n_1 \\ 0 & i = n_1 + 1, \dots, n \end{cases}$$

e i punteggi a(i), per i = 1, ..., n, sono tali che

$$0 \le a(1) \le \dots \le a(n), a(1) \ne a(n),$$

una statistica del tipo

$$T = \sum_{i=1}^{n} c(i)a(R_i) = \sum_{i=1}^{n_1} a(R_i)$$

 \triangle

è detta statistica lineare dei ranghi per i parametri di posizione.

Per il Corollario 2.4.6, sotto ipotesi di base la statistica T è "distribution-free" sulla classe $\mathcal{L}_{0,F} = \mathcal{C}_F$. La statistica T è sensibile a variazioni nel parametro Δ , in quanto se non è vera l'ipotesi di base T tende ad assumere valori piccoli o elevati.

• Esempio 8.1.1. Dall'Esempio 7.1.1 si verifica che la statistica W di Mann-Whitney-Wilcoxon e la statistica L della mediana sono statistiche lineari dei ranghi per i parametri di posizione.

Il seguente teorema fornisce la media e la varianza di una statistica lineare dei ranghi per i parametri di posizione quando è vera l'ipotesi di base.

Teorema 8.1.2. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ ha funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, allora per una statistica lineare dei ranghi per i parametri di posizione T risulta

$$\mathrm{E}(T)=n_1\overline{a}$$
 , $\mathrm{Var}(T)=rac{n_1n_2}{n-1}\,s_a^2$,

dove \bar{a} e s_a^2 sono definite nel Lemma 7.1.2.

Dimostrazione. Con la stessa simbologia del Teorema 7.1.3 si ha

$$\overline{c} = \frac{1}{n} \sum_{i=1}^{n_1} 1 = \frac{n_1}{n}$$

e

$$s_c^2 = \frac{1}{n} \sum_{i=1}^{n_1} 1 - \frac{n_1^2}{n^2} = \frac{n_1}{n} - \frac{n_1^2}{n^2} = \frac{n_1(n-n_1)}{n^2} = \frac{n_1n_2}{n^2} ,$$

e quindi ancora dal Teorema 7.1.3 risulta

$$E(T) = n\overline{a} \, \frac{n_1}{n} = n_1 \overline{a}$$

e

$$Var(T) = \frac{n^2}{n-1} s_a^2 \frac{n_1 n_2}{n^2} = \frac{n_1 n_2}{n-1} s_a^2.$$

Il seguente teorema fornisce le condizioni per cui una statistica lineare dei ranghi per i parametri di posizione risulta simmetrica quando è vera l'ipotesi di base.

Teorema 8.1.3. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ ha funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, allora una statistica lineare dei ranghi per i parametri di posizione T è simmetrica rispetto a E(T) se si ha

$$n_1 = n_2$$
 ,

0

$$a(i) + a(n+1-i) = k$$
, $i = 1, ..., n$,

dove k è una costante.

Dimostrazione. Risulta immediata considerando il Teorema 7.1.7 e l'Esempio 7.1.4. □

Il seguente teorema consente di ottenere la funzione generatrice di probabilità di una statistica lineare dei ranghi per i parametri di posizione nel caso che i punteggi siano valori interi.

Teorema 8.1.4. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ ha funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, allora la funzione generatrice di probabilità di una statistica lineare dei ranghi per i parametri di posizione T è data da $\binom{n}{n_1}^{-1}$ volte il coefficiente di ordine n_1 del polinomio in u

$$\prod_{i=1}^n \left(1 + uv^{a(i)}\right).$$

Dimostrazione. In base al Teorema 7.1.5 risulta

$$T \stackrel{d}{=} \sum_{i=1}^{n} Z_i a(i) ,$$

dove $Z_i = c(R_i)$ per i = 1, ..., n. La variabile casuale Z_i vale 1 se $R_i \le n_1$ e 0 altrimenti, per i = 1, ..., n, ed inoltre risulta $\sum_{i=1}^n Z_i = n_1$. Supponiamo inoltre che n_1 sia la realizzazione di una variabile casuale N_1 con distribuzione Binomiale Bi(n, 1/2). Per un dato n_1 , dal momento che vi sono $\binom{n}{n_1}$ modi di assegnare gli n_1 ranghi più bassi al campione casuale, si ha

$$\Pr(Z_1 = z_1, \dots, Z_n = z_n \mid N_1 = n_1) = \binom{n}{n_1}^{-1} \mathbf{1}_A(z_1, \dots, z_n),$$

dove $A = \{(z_1, \dots, z_n) : z_i = 0, 1, i = 1, \dots, n, \sum_{i=1}^n z_i = n_1\}$, da cui

$$\Pr(Z_1 = z_1, \dots, Z_n = z_n, N_1 = n_1) = \Pr(Z_1 = z_1, \dots, Z_n = z_n \mid N_1 = n_1) \Pr(N_1 = n_1)$$
$$= 2^{-n} \mathbf{1}_A(z_1, \dots, z_n) \mathbf{1}_{\{0, 1, \dots, n\}}(n_1).$$

Dunque, risulta anche

$$\Pr(Z_1=z_1,\ldots,Z_n=z_n)=\sum_{n_1=0}^n\Pr(Z_1=z_1,\ldots,Z_n=z_n,N_1=n_1)=2^{-n}\prod_{i=1}^n\mathbf{1}_{\{0,1\}}(z_i)\ .$$

Le Z_i risultano quindi indipendenti ed ugualmente distribuite con distribuzione Binomiale Bi(1, 1/2), per i = 1, ..., n. Inoltre, dal momento che la funzione generatrice delle probabilità congiunta di Z_i e di $T_i = Z_i a(i)$ risulta

$$L_{Z_i,T_i}(u_i,v_i) = rac{1}{2} \sum_{z_i=0}^1 u_i^{z_i} v_i^{z_i a(i)} = rac{1}{2} \left(1 + u_i v_i^{a(i)}
ight), \, i = 1, \dots, n \; ,$$

e dal momento che $N_1 = \sum_{i=1}^n Z_i$ e $T = \sum_{i=1}^n T_i$ sono somme di n variabili casuali indipendenti, allora la funzione generatrice delle probabilità congiunta di N_1 e T è data da

$$L_{N_1,T}(u,v) = \prod_{i=1}^n L_{Z_i,T_i}(u,v) = 2^{-n} \prod_{i=1}^n (1 + uv^{a(i)}).$$

Inoltre, denotando con $L_T(v \mid n_1)$ la funzione generatrice delle probabilità di T condizionata al valore n_1 di N_1 , risulta anche

$$L_{N_1,T}(u,v) = \sum_{n_1=0}^n L_T(v \mid n_1) \Pr(N_1 = n_1) u^{n_1} = 2^{-n} \sum_{n_1=0}^n \binom{n}{n_1} L_T(v \mid n_1) u^{n_1},$$

ovvero $\binom{n}{n_1}L_T(v\mid n_1)$ è il coefficiente di ordine n_1 del polinomio in u dato da $\prod_{i=1}^n(1+uv^{a(i)})$. La distribuzione di N_1 è stata scelta semplicemente per convenienza.

Quando i punteggi non sono interi il precedente teorema può essere ancora impiegato determinando una trasformata biunivoca che discretizzi i punteggi originali. Dal momento che la distribuzione di una statistica lineare dei ranghi per i parametri di posizione sotto l'ipotesi di base $H_0: \Delta=0, F\in\mathcal{C}$, si può ottenere mediante il Teorema 8.1.4, allora si può determinare le appropriate regioni critiche del test. Se l'alternativa è bilaterale, ovvero $H_1: \Delta \neq 0, F\in\mathcal{C}$, allora il primo campione tende ad assumere i ranghi più bassi o elevati e quindi si respingere l'ipotesi di base per determinazioni sia troppo elevate che troppo piccole di T. Fissato quindi un livello di significatività α , allora si sceglie come regione critica l'insieme

$$\mathcal{T}_1 = \{t : t \le t_{n_1, n_2, \alpha/2}, t \ge t_{n_1, n_2, 1-\alpha/2}\},$$

dove $t_{n_1,n_2,\alpha}$ rappresenta il quantile di ordine α della distribuzione di T per numerosità campionarie pari a n_1 e n_2 . Se l'alternativa è direzionale del tipo $H_1: \Delta>0, F\in\mathcal{C}$, allora il secondo campione tende ad assumere i ranghi più elevati e quindi si respinge l'ipotesi di base per determinazioni basse di T. Fissato quindi un livello di significatività α , si ha la seguente regione critica

$$T_1 = \{t : t \leq t_{n_1, n_2, \alpha}\}$$
.

Al contrario se l'alternativa è direzionale del tipo $H_1: \Delta < 0, F \in \mathcal{C}$, allora si il primo campione tende ad assumere i ranghi più elevati e quindi si respinge l'ipotesi di base per determinazioni troppo elevate di T. Fissato quindi un livello di significatività α , si ha la seguente regione critica

 \triangle

$$T_1 = \{t : t \ge t_{n_1, n_2, 1-\alpha}\}.$$

Infine, il test basato sulla T per i precedenti sistemi di ipotesi è corretto al livello di significatività α . Infatti, dal momento che si può dimostrare che $P_T(\Delta,F)=\Pr_{\Delta,F}(T\in\mathcal{T}_1)$ è una funzione monotona crescente per $\Delta>0$ e monotona decrescente per $\Delta<0$ per ogni $F\in\mathcal{C}$, allora si ha $P_T(\Delta,F)>\alpha$, ovvero il test è corretto. Risulta interessante determinare la scelta dei punteggi che fornisce il test localmente più potente per verificare il sistema di ipotesi $H_0:\Delta=0, F=F_0$, contro $H_1:\Delta>0, F=F_0$. In questo caso, si ha la seguente definizione.

Definizione 8.1.5. Se il campione casuale misto $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ ha funzione di ripartizione congiunta $F_n\in\mathcal{L}_{\Delta,F}$, dove $n=n_1+n_2$, si consideri il sistema di ipotesi $H_0:\Delta=0, F=F_0$, contro $H_1:\Delta>0, F=F_0$, dove $F_0\in\mathcal{C}$. Il test basato sulla statistica lineare dei ranghi per i parametri di posizione T_* è detto localmente più potente se esiste un $\epsilon>0$ tale che per ogni livello di significatività naturale si ha

$$P_{T_*}(\Delta) \geq P_T(\Delta)$$
, $0 < \Delta < \epsilon$,

per ogni statistica lineare dei ranghi per i parametri di posizione T.

Il prossimo teorema fornisce la scelta ottima dei punteggi per la costruzione del test localmente più potente. L'utilità di questo teorema consiste solamente nell'evidenziare la struttura ottima dei punteggi al variare della funzione di ripartizione, dal momento che questa non è mai nota in pratica.

Teorema 8.1.6. Si consideri il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$, e sia f la funzione di densità corrispondente alla funzione di ripartizione F. Si assuma inoltre che f' esista, sia assolutamente continua e

$$\int_{\mathbb{R}} |f'(x)| \, dx < \infty \, .$$

Il test localmente più potente per verificare il sistema di ipotesi $H_0: \Delta=0, F=F_0$, contro $H_1: \Delta>0, F=F_0$, è basato sulla statistica lineare dei ranghi per i parametri di posizione

$$T_* = \sum_{i=1}^{n_1} a_*(R_i)$$
 ,

dove

$$a_*(i) = \mathrm{E}(-rac{f'(V_{(i)})}{f(V_{(i)})})$$
 , $i = 1, \ldots, n$,

 $e\left(V_{(1)},\ldots,V_{(n)}
ight)$ è la statistica ordinata relativa a $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$.

Dimostrazione. Si veda Hettmansperger e McKean (1998).

Analogamente a quanto visto per la scelta ottima dei punteggi nel caso di una statistica lineare dei ranghi con segno, anche in questo caso si può dimostrare che la scelta ottima dei punteggi non dipende dal parametro di posizione e di scala della distribuzione.

• Esempio 8.1.2. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$, dove F è la funzione di ripartizione di una variabile casuale Normale N(0,1) e f rappresenta la relativa funzione di densità. Le condizioni del Teorema 8.1.6 sono soddisfatte. Inoltre, analogamente all'Esempio 5.2.1, si ha -f'(x)/f(x) = x, per cui la scelta ottimale dei punteggi è data da

$$a^*(i) = E(V_{(i)}), i = 1, ..., n,$$

dove $(V_{(1)}, \ldots, V_{(n)})$ è la statistica ordinata relativa ad un campione casuale proveniente da una distribuzione Normale N(0, 1).

• Esempio 8.1.3. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$, dove F è la funzione di ripartizione di una variabile casuale Logistica Lo(0,1) e f rappresenta la relativa funzione di densità. Le condizioni del Teorema 8.1.6 sono soddisfatte. Inoltre, analogamente all'Esempio 5.2.2, si ha -f'(x)/f(x) = 2F(x) - 1, per cui la scelta ottimale dei punteggi è data da

$$a^*(i) = \mathrm{E}(2F(V_{(i)}) - 1) = 2\mathrm{E}(F(V_{(i)})) - 1$$
 , $i = 1, \dots, n$,

dove $(V_{(1)},\ldots,V_{(n)})$ è la statistica ordinata relativa ad un campione casuale proveniente da una distribuzione Logistica Lo(0,1). Tuttavia, dal momento che $F(V_{(i)})\stackrel{d}{=} U_{(i)}$, per $i=1,\ldots,n$, dove $(U_{(1)},\ldots,U_{(n)})$ rappresenta la statistica ordinata relativa ad una campione casuale proveniente da una distribuzione Uniforme U(0,1), si ottiene anche

$$a^*(i) = 2E(U_{(i)}) - 1 = \frac{2i}{n+1} - 1, i = 1, \dots, n.$$

La statistica lineare dei ranghi per i parametri di posizione costruita su questi punteggi è data da

$$T_* = \sum_{i=1}^{n_1} \frac{2R_i}{n+1} - n_1 = \frac{2}{n+1} W - n_1$$
,

dove W è la statistica lineare dei ranghi di Mann-Whitney-Wilcoxon. Quindi T_* e W forniscono test equivalenti, ovvero la scelta fatta per la statistica di Mann-Whitney-Wilcoxon risulta ottima per una variabile casuale Logistica.

8.2. La distribuzione per grandi campioni delle statistiche lineari dei ranghi per i parametri di posizione. In questa sezione vengono considerate le proprietà per grandi campioni delle statistiche lineari dei ranghi per i parametri di posizione.

Teorema 8.2.1. Se $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ è un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, allora per una statistica lineare dei ranghi per i parametri di posizione

$$T = T_n = \sum_{i=1}^{n_1} a_n(R_i)$$
 ,

i cui punteggi $a_n(i)$, per $i=1,\ldots,n$, soddisfano le condizioni del Teorema 7.2.2, risulta

$$\frac{T_n - \mathrm{E}(T_n)}{\sqrt{\mathrm{Var}(T_n)}} \stackrel{d}{ o} N(0,1)$$
 ,

dove $E(T_n)$ e $Var(T_n)$ sono definite nel Teorema 8.1.2.

Dimostrazione. Segue dall'Esempio 7.2.1 e dal Teorema 7.2.2.

Fissato un livello di significatività α , per $n \to \infty$ la regione critica per verificare il sistema di ipotesi $H_0: \Delta = 0, F \in \mathcal{C}$, contro l'alternativa $H_1: \Delta \neq 0, F \in \mathcal{C}$, può essere approssimata dall'insieme

$$\{t: t \leq \mathrm{E}(T_n) + z_{\alpha/2} \sqrt{\mathrm{Var}(T_n)}, t \geq \mathrm{E}(T_n) + z_{1-\alpha/2} \sqrt{\mathrm{Var}(T_n)}\} \ .$$

Analogamente, per $n \to \infty$ la regione critica per verificare l'alternativa $H_1: \Delta > 0, F \in \mathcal{C}$, può essere approssimata dall'insieme

$$\{t: t \leq \mathrm{E}(T_n) + z_{\alpha} \sqrt{\mathrm{Var}(T_n)}\}\ ,$$

mentre la regione critica per verificare l'alternativa $H_1: \Delta < 0, F \in \mathcal{C}$, può essere approssimata dall'insieme

$$\{t: t \ge \mathrm{E}(T_n) + z_{1-\alpha} \sqrt{\mathrm{Var}(T_n)}\}$$
.

Mediante il Teorema 3.1.8 si può dimostrare inoltre che la successione di test basata su $(T_n)_{n\geq 1}$ è coerente. Per quanto riguarda l'efficacia delle statistiche lineari dei ranghi per i parametri di posizione si ha il seguente teorema.

Teorema 8.2.2. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$, e si consideri il sistema di ipotesi $H_0: \Delta = 0, F \in \mathcal{C}$, contro $H_1: \Delta = \Delta_i, F \in \mathcal{C}$, dove $(\Delta_i)_{i \geq 1}$ è una successione di alternative tali che $\Delta_i = c/\sqrt{n_i}$ con c costante. Data una statistica lineare dei ranghi per i parametri di posizione

$$T = T_n = \sum_{i=1}^{n_1} a_n(R_i)$$
,

i cui punteggi $a_n(i)$, per $i=1,\ldots,n$, soddisfano le condizioni del Teorema 8.2.1, allora l'efficacia del test basato su T_n risulta

$${
m eff}_T = \sqrt{
u(1-
u)} \, rac{\int_0^1 \phi(u) \phi_f(u) du}{(\int_0^1 (\phi(u) - \overline{\phi})^2 du)^{1/2}} \, ,$$

dove $\nu = \lim_n n_1/n$, per $0 < \nu < 1$, e

$$\phi_f(u) = -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))}.$$

Dimostrazione. Vedi Háyek e Šidák (1967).

• Esempio 8.2.1. Si consideri la statistica $W=W_n$ del test di Mann-Whitney-Wilcoxon dell'Esempio 8.1.1. Dall'Esempio 7.2.2 risulta che le condizioni del Teorema 8.2.2 sono soddisfatte. Inoltre, si ha

$$\int_0^1 \phi(u)\phi_f(u) du = \int_0^1 -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))} u du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(u)$ con u = F(x), si ha

$$\int_0^1 \phi(u) \phi_f(u) du = \int_{-\infty}^\infty -\frac{f'(x)}{f(x)} F(x) f(x) dx = -\int_{-\infty}^\infty f'(x) F(x) dx = \int_{-\infty}^\infty f(x)^2 dx.$$

Quindi, tenendo presente l'Esempio 7.2.2, l'efficacia del test di Mann-Whitney-Wilcoxon risulta

$$\operatorname{eff}_W = \sqrt{12\nu(1-\nu)} \int_{-\infty}^{\infty} f(x)^2 dx.$$

• Esempio 8.2.2. Si consideri la statistica $L=L_n$ del test della mediana dell'Esempio 8.1.1. Dall'Esempio 7.2.3 risulta che le condizioni del Teorema 8.2.2 sono soddisfatte. Inoltre, si ha

$$\int_0^1 \phi(u)\phi_f(u) du = \int_{1/2}^1 -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))} du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(u)$ con u = F(x), se $F(x_{0.5}) = 1/2$, si ha

$$\int_0^1 \phi(u)\phi_f(u)du = \int_{x_{0.5}}^\infty -\frac{f'(x)}{f(x)}f(x)dx = -\int_{x_{0.5}}^\infty f'(x)dx = f(x_{0.5}).$$

Quindi, tenendo presente l'Esempio 7.2.3, l'efficacia del test della mediana risulta

$$\operatorname{eff}_{L} = \sqrt{\nu(1-\nu)} \, \frac{f(x_{0.5})}{\sqrt{1/4}} = \sqrt{4\nu(1-\nu)} \, f(x_{0.5}) \,.$$

8.3. Il test di Mann-Whitney-Wilcoxon. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\Delta,F}$. Il test di Mann-Whitney-Wilcoxon è basato sulla statistica

$$W = \sum_{i=1}^{n_1} R_i ,$$

descritta nell'Esempio 2.4.1. Con questo test si può verificare l'ipotesi di base $H_0: \Delta=0, F\in\mathcal{C}$. La statistica W è una statistica lineare dei ranghi per i parametri di posizione con i punteggi scelti come a(i)=i per $i=1,\ldots,n$. Se l'ipotesi di base è vera, dall'Esempio 2.4.1 la funzione di probabilità della statistica W risulta

$$p_{n_1,n_2}(w) = {n \choose n_1}^{-1} c_{n_1,n_2}(w) \mathbf{1}_{\{n_1(n_1+1)/2,\ldots,n_1(n+n_2+1)/2\}}(w) ,$$

dove $c_{n_1,n_2}(w)$ è il numero di sottoinsiemi di n_1 interi dell'insieme $\{1,\ldots,n\}$ la cui somma è w. Sebbene esistano delle relazioni ricorrenti per il calcolo della funzione di probabilità di W, la distribuzione di questa statistica si ottiene più facilmente attraverso la funzione generatrice di probabilità. Infatti, dal Teorema 8.1.4 la funzione generatrice di probabilità $L_W(v)$ di W è $\binom{n}{n_1}^{-1}$ volte il coefficiente di ordine n_1 del polinomio in u dato da $\prod_{i=1}^n (1+uv^i)$.

• Esempio 8.3.1. Per $n_1 = 2$ e $n_2 = 2$ si ha

$$\prod_{i=1}^{4} (1 + uv^{i}) = 1 + (v + v^{2} + v^{3} + v^{4})u + (v^{3} + v^{4} + 2v^{5} + v^{6} + v^{7})u^{2} + (v^{6} + v^{7} + v^{8} + v^{9})u^{3} + v^{10}u^{4}$$

da cui

$$L_W(v) = \frac{1}{6} (v^3 + v^4 + 2v^5 + v^6 + v^7).$$

Dal momento che le probabilità $p_{2,2}(w)$ corrispondono ai coefficienti del polinomio $L_W(v)$, si ha la Tavola 8.3.1.

Tavola 8.3.1. Funzione di probabilità di
$$W$$
 per $n_1 = 2$ e $n_2 = 2$.
$$\frac{w \quad 3 \quad 4 \quad 5 \quad 6 \quad 7}{p_{2,2}(w) \quad 1/6 \quad 1/6 \quad 2/6 \quad 1/6 \quad 1/6}$$

Se l'ipotesi di base è vera, dall'Esempio 7.1.2 si ha

$$E(W) = \frac{n_1(n+1)}{2}$$
, $Var(W) = \frac{n_1n_2(n+1)}{12}$.

Inoltre, dall'Esempio 7.1.5 si ha che W è simmetrica rispetto a E(W). Infine, dal Corollario 2.4.6 la statistica W è "distribution-free" su $\mathcal{L}_{0,F} = \mathcal{C}_F$ e di conseguenza anche il test di Mann-Whitney-Wilcoxon è "distribution-free". Dal momento che la distribuzione della statistica W sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione fatta nella §8.1.

• Esempio 8.3.2. In un esperimento due gruppi di piccioni sono stati presi dai loro nidi nella campagna a Siena e sono stati portati in una località vicino Roma. Il gruppo di controllo (composto da 8 piccioni) è stato trasportato in un container non coperto, dove passava aria naturale durante il trasporto. Un secondo gruppo (composto da 10 piccioni) invece è stato trasportato in un container coperto e riceveva solamente aria condizionata. I piccioni sono stati lasciati liberi dopo 172 km, in una località vicino Roma (Siena rimane rispetto a questa località in una direzione di 325°). Le direzioni (in gradi, dove il nord è 0) verso le quali i piccioni sono volati sono contenute nella Tavola 8.3.2.

Tavola 8.3.2. Direzioni di fuga (in gradi).

			$\mathcal{U} \setminus \mathcal{U}$, ,
	guppo co	ontrollo	gruppo esp	perimento
piccione	x_i	r_i	y_{i}	r_i
1	247	16	107	4
2	153	10	109	5
3	202	14	186	12
4	264	17	121	8
5	24	2	171	11
6	228	15	4	1
7	333	18	110	6
8	192	13	82	3
9			131	9
10			117	7
-				

Fonte: Batschelet (1981)

Si vuole verificare se le condizioni di viaggio hanno alterato la capacità di orientamento dei piccioni, ovvero si vuole verificare il sistema di ipotesi $H_0: \Delta=0, F\in\mathcal{C}$, contro $H_1: \Delta\neq 0, F\in\mathcal{C}$. Dal momento che per questi dati risulta w=105, per $n_1=8$ e $n_2=10$ si ha $\Pr(W\geq 105)=0.0043$ e quindi la significatività osservata risulta $\alpha_{oss}=2\times 0.0043=0.0086$. Questa è una significatività osservata piuttosto bassa che porta a respingere l'ipotesi di base. Si può concludere che le condizioni di trasporto hanno alterato le capacità di orientamento dei piccioni, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha>0.0086$.

Per quanto riguarda la distribuzione per grandi campioni della statistica $W=W_n$ sotto ipotesi di base, dall'Esempio 7.2.2 si ha

$$\frac{W_n - n_1(n+1)/2}{\sqrt{n_1 n_2(n+1)/12}} \stackrel{d}{\to} N(0,1) .$$

La convergenza della statistica di Mann-Whitney-Wilcoxon è abbastanza veloce anche per campioni moderati, posto che entrambe le numerosità siano abbastanza elevate, ovvero $n_1 \ge 10$ e $n_2 \ge 10$. Le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione nella §8.2.

8.4. Il test della mediana. Sia $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n\in\mathcal{L}_{\Delta,F}$. Il test della mediana è basato sulla statistica

$$L = \sum_{i=1}^{n_1} a(R_i) ,$$

descritta nell'Esempio 7.1.1, con cui si può verificare l'ipotesi di base $H_0: \Delta=0, F\in\mathcal{C}$. La statistica L è una statistica lineare dei ranghi per i parametri di posizione i cui punteggi sono definiti nell'Esempio 7.1.1. Come evidenziato nell'Esempio 7.1.1, la statistica L rappresenta il numero di (X_1,\ldots,X_{n_1}) maggiori della mediana del campione misto. Il seguente teorema fornisce la funzione di probabilità della statistica L quando è vera l'ipotesi di base.

Teorema 8.4.1. Se $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ è un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{0,F}$, la funzione di probabilità di L è data da

$$\Pr(L=l) = rac{inom{n_1}{l}inom{n_2}{\lfloor n/2
floor - l}}{inom{n}{\lfloor n/2
floor}} \, {f 1}_{\{\max(0, \lfloor n/2
floor + n_1 - n), \ldots, \min(\lfloor n/2
floor, n_1)\}} \, .$$

Dimostrazione. Sotto ipotesi di base ogni scelta di ranghi è ugualmente probabile. Quindi l'assegnazione di l degli $(n-\lfloor n/2\rfloor)$ ranghi più elevati ad (X_1,\ldots,X_{n_1}) è equivalente ad uno schema probabilistico Ipergeometrico, dove si estrae in blocco $\lfloor n/2\rfloor$ elementi da una popolazione di numerosità $n_1+n_2=n$ e gli elementi di interesse sono quelli provenienti dalla sottopopolazione di numerosità n_1 .

Se l'ipotesi di base è vera, dall'Esempio 7.1.3 si ha

$$\mathrm{E}(L) = \frac{n_1 \lfloor n/2 \rfloor}{n} \,, \, \mathrm{Var}(L) = \frac{n_1 n_2 \lfloor n/2 \rfloor (n - \lfloor n/2 \rfloor)}{n^2 (n-1)} \,.$$

Inoltre, dall'Esempio 7.1.4 e dall'Esempio 7.1.6 si ha che L è simmetrica rispetto a E(L) quando $n_1 = n_2$ o quando n è pari. Infine, dal Corollario 2.4.6 risulta che la statistica L è "distribution-free" su $\mathcal{L}_{0,F} = \mathcal{C}_F$ e di conseguenza anche il test della mediana è "distribution-free". Dal momento che la distribuzione della statistica L sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §8.1. Per quanto riguarda la distribuzione per grandi campioni della statistica $L = L_n$ sotto ipotesi di base, dall'Esempio 7.2.3 risulta

$$\frac{L_n - n_1 \lfloor n/2 \rfloor / n}{\sqrt{n_1 n_2 \lfloor n/2 \rfloor (n - \lfloor n/2 \rfloor) / (n^2 (n-1))}} \stackrel{d}{\to} N(0,1) .$$

La convergenza della statistica della mediana è abbastanza veloce anche per campioni moderati, posto che entrambe le numerosità siano abbastanza elevate, ovvero $n_1 \ge 10$ e $n_2 \ge 10$. Le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono ottenere tenendo presente la discussione fatta nella §8.2.

• Esempio 8.4.1. In un esperimento è stata misurata la secrezione di tromboglobulina urinaria in 12 pazienti sani e in 12 pazienti diabetici, ottenendo in questa maniera i dati della Tavola 8.4.1.

Tavola 8.4.1. Secrezione di tromboglobulina.

	sani		diabe	tici
paziente	x_i	r_i	y_{i}	r_i
1	4.1	1	11.6	8
2	6.3	2	12.1	10
3	7.8	3	16.1	12
4	8.5	4	17.8	14
5	8.9	5	24.0	15
6	10.4	6	28.8	17
7	11.5	7	33.9	18
8	12.0	9	40.7	20
9	13.8	11	51.3	21
10	17.6	13	56.2	22
11	24.3	16	61.7	23
12	37.2	19	69.2	24

Fonte: van Oost, Veldhayzen, Timmermans e Sixma (1983)

Si sospetta che i pazienti diabetici abbiano una secrezione di tromboglobulina più elevata dei pazienti sani, ovvero si vuole verificare il sistema di ipotesi $H_0: \Delta = 0, F \in \mathcal{C}$, contro $H_1: \Delta > 0, F \in \mathcal{C}$. La mediana del campione misto è compresa fra 16.1 e 17.6, per cui si ha l = 3. Dal momento che

$$\Pr(L \leq 3) \simeq \Phi((3-12 \times 12/24)/\sqrt{12^4/(24^2 \times 23)}) = \Phi(-2.3979) = 0.0080 \; ,$$

allora la significatività osservata risulta $\alpha_{oss} \simeq 0.0080$, un valore piuttosto basso che porta a respingere l'ipotesi di base. Sulla base dell'evidenza empirica si può concludere che i pazienti diabetici hanno una

secrezione di tromboglobulina più elevata dei pazienti sani, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha > 0.0080$. L'approssimazione normale è ragionevole, in quanto il valore esatto risulta $\Pr(L \leq 3) = 0.0196$.

8.5. Le prestazioni del test di Mann-Whitney-Wilcoxon e del test della mediana. La potenza del test di Mann-Whitney-Wilcoxon, del test della mediana e del test di Student per due campioni sono state calcolate mediante simulazione per alcune distribuzioni e per numerosità $n_1 = n_2 = 5, 10, 15$. Le alternative scelte sono state $\Delta = 0.0 \, \sigma, 0.3 \, \sigma, 0.6 \, \sigma, 0.9 \, \sigma$, dove σ^2 rappresenta la varianza della distribuzione ipotizzata. Per la distribuzione di Cauchy σ denota il valore per cui $\Pr(X \le \sigma) = \Phi(1)$. I test di Mann-Whitney-Wilcoxon e della mediana sono stati casualizzati al fine di ottenere un livello di significatività pari a $\alpha = 0.05$ per tutti i test. I risultati della simulazione sono riportati nella Tavola 8.5.1. Dalla Tavola 8.5.1 è evidente che il test di Mann-Whitney-Wilcoxon dimostra ottime prestazioni rispetto agli altri due test per tutte le distribuzioni. Il test della mediana dimostra buone prestazioni solo per una distribuzione a code particolamente pesante quale la distribuzione di Cauchy. Il test di Student per due campioni dimostra prestazioni quasi sempre inferiori al test di Mann-Whitney-Wilcoxon. Inoltre, per distribuzioni quali la Cauchy e l'Esponenziale, il test di Student per due campioni non mantiene neppure il livello di significatività.

Tavola 8.5.1. Potenza del test di Mann-Whitney-Wilcoxon, del test della mediana e del test di Student per due campioni

de	del test della mediana e del test di Student per due campioni.						
distribuzione	0.0σ	0.3σ	0.6σ	0.9σ			
		$n_1 = 5$	$n_2 = 5$				
$U(\lambda-1/2,1)$	0.05(0.05)0.05	0.11(0.09)0.10	0.20(0.13)0.19	0.33(0.19)0.33			
$N(\lambda, 1)$	0.05(0.05)0.05	0.11(0.10)0.11	0.21(0.16)0.22	0.36(0.24)0.35			
$Lo(\lambda, 1)$	0.05(0.05)0.05	0.12(0.11)0.11	0.23(0.17)0.22	0.38(0.27)0.38			
$L(\lambda, 1)$	0.05(0.05)0.05	0.13(0.12)0.12	0.27(0.22)0.25	0.43(0.33)0.42			
$C(\lambda, 1)$	0.05(0.05)0.03	0.12(0.11)0.06	0.21(0.19)0.13	0.30(0.29)0.20			
$E(\Delta-1,1)$	0.05(0.05)0.04	0.17(0.11)0.14	0.33(0.22)0.29	0.50(0.34)0.46			
		$n_1 = 10$	$n_2 = 10$				
$U(\lambda-1/2,1)$	0.05(0.05)0.05	0.15(0.10)0.16	0.32(0.17)0.35	0.55(0.29)0.61			
$N(\lambda,1)$	0.05(0.05)0.05	0.15(0.14)0.16	0.32(0.25)0.36	0.60(0.43)0.62			
$Lo(\lambda, 1)$	0.05(0.05)0.05	0.15(0.13)0.16	0.37(0.27)0.37	0.62(0.47)0.63			
$L(\lambda, 1)$	0.05(0.05)0.05	0.19(0.18)0.17	0.44(0.40)0.38	0.70(0.60)0.65			
$C(\lambda,1)$	0.05(0.05)0.03	0.15(0.16)0.07	0.32(0.33)0.14	0.53(0.54)0.22			
$E(\Delta-1,1)$	0.05(0.05)0.04	0.24(0.16)0.19	0.53(0.35)0.41	0.78(0.58)0.65			
		$n_1 = 15$	$n_2 = 15$				
$U(\lambda-1/2,1)$	0.05(0.05)0.05	0.19(0.11)0.19	0.47(0.26)0.48	0.72(0.40)0.78			
$N(\lambda, 1)$	0.05(0.05)0.05	0.19(0.15)0.20	0.48(0.36)0.47	0.78(0.60)0.77			
$Lo(\lambda, 1)$	0.05(0.05)0.05	0.20(0.17)0.20	0.49(0.39)0.50	0.81(0.67)0.78			
$L(\lambda, 1)$	0.05(0.05)0.05	0.29(0.27)0.21	0.58(0.54)0.51	0.85(0.78)0.78			
$C(\lambda, 1)$	0.05(0.05)0.03	0.21(0.22)0.08	0.44(0.48)0.15	0.69(0.74)0.24			
$E(\Delta-1,1)$	0.05(0.05)0.05	0.34(0.20)0.23	0.71(0.49)0.53	0.92(0.72)0.80			

Per quanto riguarda le prestazioni asintotiche del test di Mann-Whitney-Wilcoxon, dall'Esempio 8.2.1 si ha

$$\operatorname{eff}_W = \sqrt{12\nu(1-\nu)} \int_{-\infty}^{\infty} f(x)^2 dx$$
,

per cui l'efficienza asintotica relativa del test di Mann-Whitney-Wilcoxon rispetto al test di Student per due campioni risulta

$$\mathrm{EAR}_{W,T} = 12\sigma^2 (\int_{-\infty}^{\infty} f(x)^2 dx)^2.$$

Si è ottenuto la stessa efficienza asintotica del test di Wilcoxon rispetto al test di Student per un campione, per cui si può considerare la Tavola 6.6.2 dove sono tabulati i valori di $EAR_{W,T} = EAR_{W^+,T}$ per alcune distribuzioni simmetriche. Dunque, anche in questo caso, dal punto di vista asintotico il test di Mann-Whitney-Wilcoxon dimostra ottime prestazioni. Per una distribuzione non simmetrica quale l'Esponenziale

si verifica inoltre che $EAR_{W,T}=3$. Per quanto riguarda l'efficacia del test della mediana, dall'Esempio 8.2.2 si ha

$$\operatorname{eff}_{L} = \sqrt{4\nu(1-\nu)} f(x_{0.5}),$$

per cui l'efficienza asintotica relativa del test della mediana rispetto al test di Student per due campioni risulta

$$EAR_{L,T} = 4\sigma^2 f(x_{0.5})^2$$
.

Si è ottenuto la stessa efficienza asintotica del test dei segni rispetto al test di Student per un campione, per cui si può considerare la Tavola 6.2.2, dove sono tabulati i valori di $EAR_{L,T} = EAR_{B,T}$ per alcune distribuzioni simmetriche. Per una distribuzione non simmetrica quale l'Esponeziale risulta $EAR_{L,T} = 1$. Infine, l'efficienza asintotica relativa del test di Mann-Whitney-Wilcoxon rispetto al test della mediana risulta

$$\mathrm{EAR}_{W,L} = rac{3}{f(0)^2} \left(\int_{-\infty}^{\infty} f(x)^2 dx \right)^2.$$

Anche in questo caso si è ottenuto la stessa efficienza asintotica del test di Wilcoxon rispetto al test dei segni, per cui si può considerare la Tavola 6.6.3, dove sono tabulati i valori di $EAR_{W,L} = EAR_{W^+,B}$ per alcune distribuzioni simmetriche. Per una distribuzione non simmetrica quale l'Esponeziale si verifica inoltre che $EAR_{W,L} = 3$.

Capitolo 9

I test per i parametri di scala: due campioni indipendenti

9.1. Le statistiche lineari dei ranghi per i parametri di scala. Si considerino due campioni casuali indipendenti (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) , tali che il campione misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ abbia funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$, dove $n = n_1 + n_2$. Dalla definizione della classe $\mathcal{V}_{\eta,F}$, il parametro η rappresenta il rapporto fra i parametri di scala relativi alle variabili casuali da cui provengono i campioni. Inoltre, dalla definizione di $\mathcal{V}_{\eta,F}$ si suppone implicitamente che le due distribuzioni abbiano uguali parametri di posizione. Si verifica il sistema di ipotesi $H_0: \eta = 1, F \in \mathcal{C}$, contro l'alternativa bilaterale $H_1: \eta \neq 1, F \in \mathcal{C}$, o direzionale $H_1: \eta > 1$ $(\eta < 1), F \in \mathcal{C}$. Una classe di statistiche test "distribution-free" opportuna in questo sistema di ipotesi è definita di seguito.

Definizione 9.1.1. Si considerino due campioni casuali indipendenti (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) , tali che il campione misto abbia funzione di ripartizione congiunta $F_n \in \mathcal{V}_{1,F}$, dove $n = n_1 + n_2$ e siano (R_1, \ldots, R_{n_1}) i ranghi assegnati a (X_1, \ldots, X_{n_1}) e (R_{n_1+1}, \ldots, R_n) i ranghi assegnati a (Y_1, \ldots, Y_{n_2}) nel campione misto. Se le costanti di regressione nella Definizione 7.2.1 sono date da

$$c(i) = \begin{cases} 1 & i = 1, \dots, n_1 \\ 0 & i = n_1 + 1, \dots, n \end{cases}$$

e i punteggi a(i), per $i = 1, \dots, n$, sono tali che (tipo 1)

$$0 \le a(1) \le \ldots \le a(\lfloor (n+1)/2 \rfloor), \ a(\lfloor (n+1)/2 \rfloor) \ge \ldots \ge a(n) \ge 0,$$

o (tipo 2)

$$a(1) \geq \ldots \, \geq a(\lfloor (n+1)/2 \rfloor) \geq 0 \ , 0 \leq a(\lfloor (n+1)/2 \rfloor) \leq \ldots \, \leq a(n) \ ,$$

allora una statistica del tipo

$$T = \sum_{i=1}^{n} c(i)a(R_i) = \sum_{i=1}^{n_1} a(R_i)$$

 \triangle

è detta statistica lineare dei ranghi per i parametri di scala.

Per il Corollario 2.4.6, sotto ipotesi di base la statistica T è "distribution-free" sulla classe $\mathcal{V}_{1,F} = \mathcal{C}_F$. La statistica T è sensibile a variazioni del parametro η , in quanto se non è vera l'ipotesi di base T tende ad assumere valori piccoli o elevati.

• Esempio 9.1.1. I punteggi

$$a(i) = (i - (n+1)/2)^2, i = 1, ..., n,$$

soddisfano le condizioni della Definizione 9.1.1 (punteggi tipo 2). In questo caso, si ottiene la cosiddetta statistica di Mood data da

$$M = \sum_{i=1}^{n_1} (R_i - (n+1)/2)^2.$$

Anche i punteggi

$$a(i) = (n+1)/2 - |i - (n+1)/2|, i = 1, ..., n,$$

soddisfano le condizioni della Definizione 9.1.1 (punteggi tipo 1). In questo caso, si ha la cosiddetta statistica di Ansari-Bradley, data da

$$A = \sum_{i=1}^{n_1} \left((n+1)/2 - |R_i - (n+1)/2| \right).$$

Il seguente teorema fornisce la media e la varianza di una statistica lineare dei ranghi per i parametri di scala quando è vera l'ipotesi di base.

Teorema 9.1.2. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ ha funzione di ripartizione congiunta $F_n \in \mathcal{V}_{1,F}$, per una statistica lineare dei ranghi per i parametri di scala T risulta

$$\mathrm{E}(T)=n_1\overline{a}$$
 , $\mathrm{Var}(T)=rac{n_1n_2}{n-1}\,s_a^2$,

dove \overline{a} e s_a^2 sono definite nel Lemma 7.1.2.

Dimostrazione. E' analoga a quella del Teorema 8.1.2.

Il seguente teorema fornisce le condizioni per cui una statistica lineare dei ranghi per i parametri di scala è simmetrica quando è vera l'ipotesi di base.

Teorema 9.1.3. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ possiede funzione di ripartizione congiunta $F_n \in \mathcal{V}_{1,F}$, allora una statistica lineare dei ranghi per i parametri di scala T è simmetrica rispetto a E(T) se

$$n_1=n_2$$
 ,

0

$$a^*(i) + a^*(n+1-i) = k$$
, $i = 1, ..., n$,

dove k è una costante.

Dimostrazione. E' analoga a quella del Teorema 8.1.3.

• Esempio 9.1.2. Si consideri la statistica M dell'Esempio 9.1.1. Tenendo presente il Teorema A.2.1, è immediato verificare che

$$\overline{a} = \frac{1}{n} \sum_{r=1}^{n} \left(r - \frac{n+1}{2} \right)^2 = \frac{1}{n} \sum_{r=1}^{n} r^2 - \frac{(n+1)^2}{4} = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12} ,$$

da cui

$$E(M) = n_1 \overline{a} = \frac{n_1(n^2 - 1)}{12}$$
.

Inoltre, sempre tenendo presente il Teorema A.2.1,

◁

$$\begin{split} s_a^2 &= \frac{1}{n} \sum_{r=1}^n (r - \frac{n+1}{2})^4 - \frac{(n^2 - 1)^2}{144} \\ &= \frac{1}{n} \sum_{r=1}^n r^4 - \frac{2(n+1)}{n} \sum_{r=1}^n r^3 + \frac{3(n+1)^2}{2n} \sum_{r=1}^n r^2 - \frac{(n+1)^3}{2n} \sum_{r=1}^n r + \frac{(n+1)^4}{16} - \frac{(n^2 - 1)^2}{144} \\ &= \frac{(n^2 - 1)(n^2 - 4)}{180} \; , \end{split}$$

da cui

$$Var(M) = \frac{n_1 n_2}{n-1} s_a^2 = \frac{n_1 n_2 (n+1)(n^2 - 4)}{180}.$$

Dal momento che

$$a(i) + a(n+1-i) = (i - (n+1)/2)^2 + (n+1-i - (n+1)/2)^2 = 2(i - (n+1)/2)^2$$

allora dal Teorema 9.1.3 risulta che M è simmetrica solo se $n_1 = n_2$.

• Esempio 9.1.3. Si consideri la statistica A dell'Esempio 9.1.1. Tenendo presente il Teorema A.2.1, per n pari si ha

$$\overline{a} = \frac{1}{n} \sum_{r=1}^{n} \left(\frac{n+1}{2} - \left| r - \frac{n+1}{2} \right| \right) = \frac{n+1}{2} - \frac{2}{n} \sum_{r=1}^{n/2} \left(\frac{n+1}{2} - r \right)$$
$$= \frac{n+1}{2} - \frac{1}{n} \sum_{r=1}^{n/2} (n+1) + \frac{2}{n} \sum_{r=1}^{n/2} r = \frac{n+2}{4} ,$$

e inoltre, tenendo presente l'espressione di \overline{a} nell'Esempio 9.1.2, si ha

$$s_a^2 = \frac{1}{n} \sum_{r=1}^n \left(\frac{n+1}{2} - \left| r - \frac{n+1}{2} \right| - \frac{n+2}{4} \right)^2 = \frac{1}{n} \sum_{r=1}^n \left(r - \frac{n+1}{2} \right)^2 - \frac{n^2}{16}$$
$$= \frac{n^2 - 1}{12} - \frac{n^2}{16} = \frac{n^2 - 4}{48}.$$

Dunque, per n pari si ha

$$E(A) = n_1 \overline{a} = \frac{n_1(n+2)}{4}$$
, $Var(A) = \frac{n_1 n_2}{n-1} s_a^2 = \frac{n_1 n_2(n^2 - 4)}{48(n-1)}$.

Inoltre, per n dispari si ha

$$\overline{a} = \frac{1}{n} \sum_{r=1}^{n} \left(\frac{n+1}{2} - |r - \frac{n+1}{2}| \right) = \frac{n+1}{2} - \frac{2}{n} \sum_{r=1}^{(n-1)/2} \left(\frac{n+1}{2} - r \right) \\
= \frac{n+1}{2} - \frac{1}{n} \sum_{r=1}^{(n-1)/2} (n+1) + \frac{2}{n} \sum_{r=1}^{(n-1)/2} r \\
= \frac{n+1}{2} - \frac{n^2 - 1}{2n} + \frac{n^2 - 12}{4n} = \frac{(n+1)^2}{4n}$$

e inoltre, sempre tenendo presente l'espressione di \bar{a} nell'Esempio 9.1.2, si ha

◁

$$\begin{split} s_a^2 &= \frac{1}{n} \sum_{r=1}^n \big(\frac{n+1}{2} - |r - \frac{n+1}{2}| - \frac{(n+1)^2}{4n} \big)^2 = \frac{1}{n} \sum_{r=1}^n \big(r - \frac{n+1}{2} \big)^2 - \frac{(n^2-1)^2}{16n^2} \\ &= \frac{n^2-1}{12} - \frac{n^2-1}{16n^2} = \frac{(n^2-1)(n^2+3)}{48n^2} \,. \end{split}$$

Dunque, per n dispari si ha

$$E(A) = n_1 \overline{a} = \frac{n_1(n+1)^2}{4n}$$
, $Var(A) = \frac{n_1 n_2}{n-1} s_a^2 = \frac{n_1 n_2(n+1)(n^2+3)}{48n^2}$.

Inoltre, dal momento che

$$a(i) + a(n+1-i) = (n+1)/2 - |i - (n+1)/2| + (n+1)/2 - |n+1-i - (n+1)/2|$$

= $n+1-2|i - (n+1)/2|$, $i = 1, ..., n$,

allora dal Teorema 9.1.3 si ha che A è simmetrica solo se $n_1 = n_2$.

Il seguente teorema consente di ottenere la funzione generatrice di probabilità di una statistica lineare dei ranghi per i parametri di scala nel caso che i punteggi siano valori interi.

Teorema 9.1.4. Se il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ ha funzione di ripartizione congiunta $F_n \in \mathcal{V}_{1,F}$, allora la funzione generatrice di probabilità di una statistica lineare dei ranghi per i parametri di scala T è data da $\binom{n}{n_1}^{-1}$ volte il coefficiente di ordine n_1 del polinomio in u

$$\prod_{i=1}^{n} (1 + uv^{a(i)}).$$

Dimostrazione. E' identica a quella del Teorema 8.1.4.

Quando i punteggi non sono interi il precedente teorema può essere ancora impiegato determinando una trasformata biunivoca che discretizzi i punteggi originali. Dal momento che la distribuzione di una statistica lineare dei ranghi per i parametri di scala sotto l'ipotesi di base $H_0: \eta=1, F\in\mathcal{C}$, si può ottenere mediante il Teorema 9.1.4, allora si può determinare le appropriate regioni critiche del test. Se l'alternativa è bilaterale, ovvero $H_1: \eta \neq 1, F\in\mathcal{C}$, allora il primo campione tende ad assumere i ranghi più bassi o elevati e quindi si respinge l'ipotesi di base per determinazioni sia troppo elevate che troppo piccole di T. Fissato quindi un livello di significatività α , la regione critica è data dall'insieme

$$\mathcal{T}_1 = \{t: t \leq t_{n_1,n_2,\alpha/2}, t \geq t_{n_1,n_2,1-\alpha/2}\}$$
 ,

dove $t_{n_1,n_2,\alpha}$ rappresenta il quantile di ordine α della distribuzione di T per numerosità campionarie pari a n_1 e n_2 . Se l'alternativa è direzionale del tipo $H_1: \eta > 1, F \in \mathcal{C}$, il primo campione tende ad assumere i ranghi più bassi se il test è basato sui punteggi tipo 2 e quindi si respinge l'ipotesi di base per determinazioni troppo basse di T. Analogamente, il primo campione tende ad assumere i ranghi più elevati se il test è basato sui punteggi tipo 1 e quindi si respinge l'ipotesi di base per determinazioni troppo elevate di T. Fissato quindi un livello di significatività α , per i punteggi tipo 2 si ha la regione critica

$$T_1 = \{t : t \leq t_{n_1, n_2, \alpha}\},\,$$

mentre per i punteggi tipo 1 si ha la regione critica

$$T_1 = \{t : t \ge t_{n_1, n_2, 1-\alpha}\}.$$

Al contrario, se l'alternativa è direzionale del tipo $H_1: \eta < 1, F \in \mathcal{C}$, allora il primo campione tende ad assumere i ranghi più elevati se il test è basato sui punteggi tipo 2 e quindi si respinge l'ipotesi di base per determinazioni troppo elevate di T. Analogamente, il primo campione tende ad assumere i ranghi più bassi

 \triangle

se il test è basato sui punteggi tipo 1 e quindi si respinge l'ipotesi di base per determinazioni troppo basse di T. Fissato quindi un livello di significatività α , per i punteggi tipo 2 si ha la regione critica

$$T_1 = \{t : t \ge t_{n_1, n_2, 1-\alpha}\},$$

mentre per i punteggi tipo 1 si ha la regione critica

$$T_1 = \{t : t \leq t_{n_1, n_2, \alpha}\}$$
.

Infine, il test basato sulla T per i precedenti sistemi di ipotesi è corretto al livello di significatività α . Infatti, dal momento che si può dimostrare che $P_T(\eta,F)=\Pr_{\eta,F}(T\in\mathcal{T}_1)$ è una funzione monotona crescente per $\eta>1$ e monotona decrescente per $\eta<1$ per ogni $F\in\mathcal{C}$, allora risulta $P_T(\eta,F)>\alpha$, ovvero il test è corretto.

Risulta interessante determinare la scelta dei punteggi che fornisce il test localmente più potente per verificare il sistema di ipotesi $H_0: \eta = 1, F = F_0$, contro $H_1: \eta > 1, F = F_0$. In questo caso, si ha la seguente definizione di test localmente più potente.

Definizione 9.1.5. Se il campione casuale misto $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$ ha funzione di ripartizione congiunta $F_n\in\mathcal{V}_{\eta,F}$, dove $n=n_1+n_2$, si consideri il sistema di ipotesi $H_0:\eta=1,F=F_0$, contro $H_1:\eta>1,F=F_0$, dove $F_0\in\mathcal{C}$. Il test basato sulla statistica lineare dei ranghi per i parametri di scala T_* è detto localmente più potente se esiste un $\epsilon>0$ tale che per ogni livello di significatività naturale si ha

$$P_{T_*}(\eta) \ge P_T(\eta) , 1 < \eta < 1 + \epsilon ,$$

per ogni statistica lineare dei ranghi per i parametri di scala T.

Il prossimo teorema fornisce la scelta ottima dei punteggi per la costruzione del test localmente più potente. Al solito, l'utilità di questo teorema consiste solamente nell'evidenziare la struttura ottima dei punteggi al variare della funzione di ripartizione, dal momento che questa non è mai nota in pratica.

Teorema 9.1.6. Si consideri il campione casuale misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$, e sia f la funzione di densità corrispondente a F. Si assuma inoltre che f' esista, sia assolutamente continua e che

$$\int_{\mathbb{R}} |f'(x)| \, dx < \infty \, .$$

Il test localmente più potente per verificare il sistema di ipotesi $H_0: \eta = 1, F = F_0$, contro $H_1: \eta > 1, F = F_0$ è basato sulla statistica lineare dei ranghi per i parametri di scala

$$T_* = \sum_{i=1}^{n_1} a_*(R_i)$$
 ,

dove

$$a_*(i) = E(-V_{(i)} \, rac{f'(V_{(i)})}{f(V_{(i)})})$$
 , $i=1,\ldots,n$,

e $(V_{(1)},\ldots,V_{(n)})$ è la statistica ordinata relativa a $(X_1,\ldots,X_{n_1},Y_1,\ldots,Y_{n_2})$.

Dimostrazione. Si veda Hettmansperger e McKean (1998).

Analogamente a quanto visto per la scelta ottima dei punteggi nel caso di una statistica lineare dei ranghi con segno, anche in questo caso si può dimostrare che la scelta ottima dei punteggi non dipende dal parametro di posizione e di scala della distribuzione.

• Esempio 9.1.4. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$, dove F è la funzione di ripartizione di una variabile casuale con distribuzione Normale N(0,1) e f rappresenta la relativa funzione di densità. Le condizioni del Teorema 9.1.6 sono

soddisfatte. Inoltre, dall'Esempio 5.2.1 si ha -f'(x)/f(x)=x, per cui la scelta ottimale dei punteggi è data da

$$a^*(i) = \mathrm{E}(V_{(i)}^2), i = 1, \dots, n,$$

dove $(V_{(1)}, \ldots, V_{(n)})$ è la statistica ordinata relativa ad un campione casuale proveniente dalla distribuzione Normale N(0,1).

9.2. La distribuzione per grandi campioni delle statistiche lineari dei ranghi per i parametri di scala. In questa sezione vengono considerate le proprietà per grandi campioni delle statistiche lineari dei ranghi per i parametri di scala.

Teorema 9.2.1. Se $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ è un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{1,F}$, allora per una statistica lineare dei ranghi per i parametri di scala

$$T = T_n = \sum_{i=1}^{n_1} a_n(R_i)$$
,

i cui punteggi $a_n(i)$, per $i=1,\ldots,n$, soddisfano le condizioni del Teorema 7.2.2, risulta

$$rac{T_n - \mathrm{E}(T_n)}{\sqrt{\mathrm{Var}(T_n)}} \stackrel{d}{
ightarrow} N(0,1)$$
 ,

dove $E(T_n)$ e $Var(T_n)$ sono definite nel Teorema 9.1.2.

Dimostrazione. Segue dall'Esempio 7.2.1 e dal Teorema 7.2.2.

Fissato un livello di significatività α , per $n \to \infty$ la regione critica per verificare $H_0: \eta = 1, F \in \mathcal{C}$, contro l'alternativa $H_1: \eta \neq 1, F \in \mathcal{C}$, può essere approssimata dall'insieme

$$\{t: t \leq \mathrm{E}(T_n) + z_{\alpha/2}\sqrt{\mathrm{Var}(T_n)}, t \geq \mathrm{E}(T_n) + z_{1-\alpha/2}\sqrt{\mathrm{Var}(T_n)}\}.$$

Analogamente, per $n \to \infty$ la regione critica per verificare l'alternativa $H_1: \eta > 1, F \in \mathcal{C}$, per i punteggi tipo 2 può essere approssimata dall'insieme

$$\{t: t \leq \mathrm{E}(T_n) + z_{\alpha}\sqrt{\mathrm{Var}(T_n)}\}\$$
,

mentre per i punteggi tipo 1 può essere approssimata dall'insieme

$$\{t: t \geq \mathrm{E}(T_n) + z_{1-\alpha} \sqrt{\mathrm{Var}(T_n)}\}$$
.

Al contrario, la regione critica per verificare l'alternativa $H_1: \eta < 1, F \in \mathcal{C}$, per i punteggi tipo 2 può essere approssimata dall'insieme

$$\{t: t \geq \mathrm{E}(T_n) + z_{1-\alpha} \sqrt{\mathrm{Var}(T_n)}\},$$

mentre per i punteggi tipo 1 può essere approssimata dall'insieme

$$\{t: t \leq \mathrm{E}(T_n) + z_{\alpha}\sqrt{\mathrm{Var}(T_n)}\}\ .$$

Mediante il Teorema 3.1.8 si può dimostrare inoltre che la successione di test basata su $\{T_n\}$ è coerente. Per quanto riguarda l'efficacia delle statistiche lineari dei ranghi per i parametri di scala si ha il seguente teorema.

Teorema 9.2.2. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$, e si consideri il sistema di ipotesi $H_0: \eta = 1, F \in \mathcal{C}$, contro $H_1: \eta = \eta_i, F \in \mathcal{C}$, dove $(\eta_i)_{i\geq 1}$ è una successione di alternative tali che $\eta_i = 1 + c/\sqrt{n_i}$ con c costante. Data una statistica lineare dei ranghi per i parametri di scala

$$T = T_n = \sum_{i=1}^{n_1} a_n(R_i)$$
,

i cui punteggi $a_n(i)$ per $i=1,\ldots,n$, soddisfano le condizioni del Teorema 9.2.1, allora l'efficacia del test basato su T_n risulta

$$extit{eff}_T = \sqrt{
u(1-
u)} \, rac{\int_0^1 \! \phi(u) \phi_f(u) \, du}{(\int_0^1 \! (\phi(u) - \overline{\phi})^2 du)^{1/2}} \, ,$$

dove $\nu = \lim_n n_1/n \ con \ 0 < \nu < 1$, e

$$\phi_f(u) = -1 - F^{-1}(u) \frac{f'(F^{-1}(u))}{f(F^{-1}(u))}.$$

Dimostrazione. Vedi Háyek e Šidák (1967).

• Esempio 9.2.1. Si consideri la statistica $M=M_n$ del test di Mood introdotta nell'Esempio 9.1.1. Analogamente all'Esempio 7.2.2, al fine di determinare la distribuzione asintotica di M_n , è conveniente considerare la statistica $T_n=b_nM_n$ con $b_n=(n+1)^2$. La funzione punteggio relativa alla statistica T_n , data da $\phi(u)=(u-1/2)^2\mathbf{1}_{[0,1]}(u)$, è tale che

$$\int_0^1 (\phi(u) - \overline{\phi})^2 du = \int_0^1 ((u - 1/2)^2 - 1/12)^2 du = \frac{1}{180} < \infty$$

e dunque le condizioni del Teorema 7.2.2 sono soddisfatte. Inoltre, risulta

$$\int_0^1 \phi(u)\phi_f(u)du = -\frac{1}{12} - \int_0^1 F^{-1}(u) \frac{f'(F^{-1}(u))}{f(F^{-1}(u))} (u - 1/2)^2 du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(u)$ con u = F(x), e integrando successivamente per parti, si ha

$$\int_0^1 \phi(u)\phi_f(u)du = -\frac{1}{12} - \int_{-\infty}^\infty x \frac{f'(x)}{f(x)} (F(x) - 1/2)^2 f(x) dx = 2 \int_{-\infty}^\infty x (F(x) - 1/2) f(x)^2 dx.$$

Quindi l'efficacia del test di Mood risulta

$$\operatorname{eff}_{M} = \sqrt{720\nu(1-\nu)} \int_{-\infty}^{\infty} x(F(x) - 1/2)f(x)^{2} dx$$
.

• Esempio 9.2.2. Si consideri la statistica $A=A_n$ del test di Ansari-Bradley dell'Esempio 9.1.1. Analogamente all'Esempio 7.2.2 al fine di determinare la distribuzione asintotica di A_n è conveniente considerare la statistica $T_n=b_nA_n$ con $b_n=(n+1)$. La funzione punteggio relativa alla statistica T_n , data da $\phi(u)=|u-1/2|\mathbf{1}_{[0,1]}(u)$, è tale che

$$\int_0^1 (\phi(u) - \overline{\phi})^2 du = \int_0^1 (|u - 1/2| - 1/4)^2 du = \frac{1}{48} < \infty$$

e dunque le condizioni del Teorema 7.2.2 sono soddisfatte. Inoltre, risulta

$$\int_0^1 \phi(u)\phi_f(u)du = -\frac{1}{4} - \int_0^1 F^{-1}(u) \frac{f'(F^{-1}(u))}{f(F^{-1}(u))} |u - 1/2| du,$$

da cui, mediante la trasformazione di variabile $x = F^{-1}(u)$ con u = F(x), se $F(x_{0.5}) = 1/2$, e integrando successivamente per parti, si ha

$$\int_{0}^{1} \phi(u)\phi_{f}(u)du = -\frac{1}{4} - \int_{-\infty}^{x_{0.5}} x(1/2 - F(x))f'(x) dx - \int_{x_{0.5}}^{\infty} x(F(x) - 1/2)f'(x) dx$$
$$= \int_{x_{0.5}}^{\infty} xf(x)^{2} dx - \int_{-\infty}^{x_{0.5}} xf(x)^{2} dx.$$

Quindi l'efficacia del test di Ansari-Bradley risulta

$$\operatorname{eff}_{A} = \sqrt{48\nu(1-\nu)} \left(\int_{x_{0.5}}^{\infty} x f(x)^{2} dx - \int_{-\infty}^{x_{0.5}} x f(x)^{2} dx \right).$$

9.3. Il test di Mood. Sia $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$. Il test di Mood è basato sulla statistica

$$M = \sum_{i=1}^{n_1} (R_i - \frac{1}{2} (n+1))^2,$$

descritta nell'Esempio 9.1.1. Mediante questo test si può verificare l'ipotesi di base $H_0: \eta=1, F\in\mathcal{C}$. La statistica M è una statistica lineare dei ranghi per i parametri di scala con i punteggi di tipo 2 scelti come $a(i)=(i-(n+1)/2)^2$ per $i=1,\ldots,n$. Al fine di calcolare la funzione di probabilità $p_{n_1,n_2}(m)$ di M, è conveniente considerare i punteggi a'(i)=4a(i) al posto dei punteggi originali. In questa maniera la statistica M' basata sui nuovi punteggi prende valori solo sugli interi ed è equivalente alla statistica originale essendo M'=4M. Dunque, dal Teorema 9.1.4, la funzione generatrice di probabilità $L_{M'}(v)$ di M' è data da $\binom{n}{n_1}^{-1}$ volte il coefficiente di ordine n_1 del polinomio in u

$$\prod_{i=1}^{n} \left(1 + uv^{(2i-(n+1))^2}\right).$$

• Esempio 9.3.1. Per $n_1 = 2$ e $n_2 = 2$ si ha

$$\prod_{i=1}^{4} \left(1 + uv^{(2i-5)^2} \right) = 1 + (2v + 2v^9)u + (v^2 + 4v^{10} + v^{18})u^2 + (2v^{11} + 2v^{19})u^3 + v^{20}u^4 ,$$

da cui

$$L_{M'}(v) = \frac{1}{6} (v^2 + 4v^{10} + v^{18}).$$

Poichè le probabilità $p_{2,2}(m')$ corrispondono ai coefficienti del polinomio $L_{M'}(v)$, si ottiene la Tavola 9.3.1.

Tavola 9.3.1. Funzione di probabilità di
$$M'$$
 per $n_1=2$ e $n_2=2$.
$$\frac{m'}{p_{2,2}(m')} \frac{2}{1/6} \frac{10}{4/6} \frac{18}{1/6}$$

Inoltre, tenendo presente la relazione fra M e M', dalla Tavola 9.3.1 si ottiene anche la Tavola 9.3.2.

Tavola 9.3.2. Funzione di probabilità di
$$M$$
 per $n_1=2$ e $n_2=2$.
$$\frac{m}{p_{2,2}(m)} \frac{1/2}{1/6} \frac{5/2}{4/6} \frac{9/2}{1/6}$$

Se l'ipotesi di base è vera, dall'Esempio 9.1.2 si ha

$$E(M) = \frac{n_1(n^2 - 1)}{12}$$
, $Var(M) = \frac{n_1n_2(n+1)(n^2 - 4)}{180}$.

Inoltre, dall'Esempio 9.1.2, risulta che la distribuzione di M è simmetrica solo se $n_1 = n_2$. Infine, dal Corollario 2.4.6 si ha che M è "distribution-free" su $\mathcal{V}_{1,F} = \mathcal{C}_F$ e di conseguenza anche il test di Mood è "distribution-free". Dal momento che la distribuzione della statistica M sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §9.1.

• Esempio 9.3.2. Nella Tavola 9.3.3 sono riportati i tempi in anni dall'elezione alla morte per gli ultimi 8 presidenti degli Stati Uniti e degli ultimi 8 papi (dati aggiornati al 1991).

Tavola 9.3.3. Tempi di sopravvivenza dall'elezione (in anni).

								/
	presidente	x_i	r_i	$4a(r_i)$	papa	y_i	r_i	$4a(r_i)$
1	Harding	2	2	169	Leone XIII	25	14	121
2	Coolidge	10	7	9	Pio X	11	8	1
3	Hoover	36	16	225	Benedetto XV	8	5	49
4	Roosvelt	12	9	1	Pio XI	17	12	49
5	Truman	28	15	169	Pio XII	19	13	81
6	Kennedy	3	3	121	Giovanni XXIII	5	4	81
7	Eisenhower	16	11	25	Paolo VI	15	10	9
8	Johnson	9	6	25	Giovanni Paolo	0	1	225

Fonte: Lunn e McNeil (1991)

Si vuole verificare se esiste una differente dispersione fra i due gruppi, ovvero si vuole verificare il sistema di ipotesi $H_0: \eta = 1, F \in \mathcal{C}$, contro $H_1: \eta \neq 1, F \in \mathcal{C}$. Dal momento che per questi dati si verifica che m=186, per $n_1=8$ e $n_2=8$ si ha $\Pr(M \geq 186)=0.3525$ e quindi la significatività osservata risulta $\alpha_{oss}=2\times 0.3525=0.7050$. Questo è una significatività osservata piuttosto elevata che porta ad accettare l'ipotesi di base.

Per quanto riguarda la distribuzione per grandi campioni della statistica $M=M_n$ sotto ipotesi di base, dal Teorema 9.2.1 si ha

$$\frac{M_n - n_1(n^2 - 1)/12}{\sqrt{n_1 n_2(n+1)(n^2 - 4)/180}} \stackrel{d}{\to} N(0, 1) .$$

La convergenza della statistica di Mood è abbastanza rapida anche per campioni moderati, posto che entrambe le numerosità siano abbastanza elevate, ovvero $n_1 \ge 15$ e $n_2 \ge 15$. Le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §9.2.

9.4. Il test di Ansari-Bradley. Sia $(X_1, \dots, X_{n_1}, Y_1, \dots, Y_{n_2})$ un campione casuale misto con funzione di ripartizione congiunta $F_n \in \mathcal{V}_{\eta,F}$. Il test di Ansari-Bradley è basato sulla statistica

$$A = \sum_{i=1}^{n_1} \left(\frac{n+1}{2} - |R_i - \frac{n+1}{2}| \right)$$

descritta nell'Esempio 9.1.1. Mediante questo test si può verificare l'ipotesi di base $H_0: \eta=1, F\in\mathcal{C}$. La statistica A è una statistica lineare dei ranghi per i parametri di scala con i punteggi di tipo 1 scelti come a(i)=(n+1)/2-|i-(n+1)/2| per $i=1,\ldots,n$. Al fine di calcolare la funzione di probabilità $p_{n_1,n_2}(a)$ di A, è conveniente considerare i punteggi a'(i)=2a(i) al posto dei punteggi originali. In questa maniera la statistica A' basata sui nuovi punteggi prende valori solo sugli interi ed è equivalente alla statistica originale essendo A'=2A. Dunque, dal Teorema 9.1.4, la funzione generatrice di probabilità $L_{A'}(v)$ di A' è data da $\binom{n}{n_1}^{-1}$ volte il coefficiente di ordine n_1 del polinomio in u

$$\prod_{i=1}^{n} \left(1 + uv^{(n+1)-|2i-(n+1)|}\right).$$

• Esempio 9.4.1. Per $n_1 = 2$ e $n_2 = 2$ si ha

$$\prod_{i=1}^{4} \left(1 + uv^{5-|2i-5|} \right) = 1 + \left(2v^2 + 2v^4 \right) u + \left(v^4 + 4v^6 + v^8 \right) u^2 + \left(2v^8 + 2v^{10} \right) u^3 + v^{12} u^4 ,$$

da cui

$$L_{A'}(v) = \frac{1}{6} (v^4 + 4v^6 + v^8).$$

Poichè le probabilità $p_{2,2}(a')$ corrispondono ai coefficienti del polinomio $L_{A'}(v)$, si ottiene la Tavola 9.4.1.

Tavola 9.4.1. Funzione di probabilità di
$$A'$$
 per $n_1 = 2$ e $n_2 = 2$

$$a' \quad 4 \quad 6 \quad 8$$

$$n_{2,2}(a') \quad 1/6 \quad 4/6 \quad 1/6$$

Inoltre, tenendo presente la relazione fra A e A' dalla Tavola 9.4.1 si ottiene anche la Tavola 9.4.2.

Se l'ipotesi di base è vera, dall'Esempio 9.1.3 per n pari si ha

$$E(A) = \frac{n_1(n+2)}{4}$$
, $Var(A) = \frac{n_1n_2(n^2-4)}{48(n-1)}$,

mentre per n dispari si ha

$$E(A) = \frac{n_1(n+1)^2}{4n}$$
, $Var(A) = \frac{n_1n_2(n+1)(n^2+3)}{48n^2}$.

Inoltre, dall'Esempio 9.1.3, risulta che la distribuzione di A è simmetrica solo se $n_1 = n_2$. Infine, dal Corollario 2.4.6 la statistica A è "distribution-free" su $\mathcal{V}_{1,F} = \mathcal{C}_F$ e di conseguenza anche il test di Ansari-Bradley è "distribution-free". Dal momento che la distribuzione della statistica A sotto ipotesi di base è specificata, le appropriate regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §9.1.

• Esempio 9.4.2. Sebbene i dati dell'Esempio 6.1.1 siano relativi ad un solo campione casuale di sfere di acciaio prodotte da un macchinario, sono tuttavia disponibili anche i dati relativi ad un secondo campione casuale proveniente da un altro macchianario che produce ancora sfere di acciaio del diametro di 1 micron. Si dispone quindi di due campioni casuali indipendenti e si hanno quindi i dati della Tavola 9.4.3.

Tavola 9.4.3. Diametro delle sfere (in micron).

1 44 / 01	Tuvota > Biametro delle siere (in imeron).						
	mac	chiar	nario 1	mad	chin	ario 2	
sfera	x_i	r_i	$2a(r_i)$	y_i	r_i	$2a(r_i)$	
1	1.18	8	16	1.72	18	6	
2	1.42	12	18	1.63	16	10	
3	0.69	1	2	1.69	17	8	
4	0.88	4	8	0.79	3	6	
5	1.62	15	12	1.79	19	4	
6	1.09	7	14	0.77	2	4	
7	1.53	14	14	1.44	13	16	
8	1.02	6	12	1.29	10	20	
9	1.19	9	18	1.96	20	2	
10	1.32	11	20	0.99	5	10	

Fonte: Romano (1977)

Si sospetta che il secondo macchinario produca sfere con minore precisione del primo, ovvero si vuole verificare il sistema di ipotesi $H_0: \eta=1, F\in\mathcal{C}$, contro $H_1: \eta>1, F\in\mathcal{C}$. Dal momento che per questi dati è immediato verificare che a=67, per $n_1=10$ e $n_2=10$ si ha $\Pr(A\geq 67)=0.0403$ e quindi la significatività osservata risulta $\alpha_{oss}=0.0403$. Questa è una significatività osservata bassa che porta a respingere l'ipotesi di base, ovvero sulla base dell'evidenza empirica si deve ritenere che il secondo macchinario sia meno preciso del primo.

Per quanto riguarda la distribuzione per grandi campioni della statistica $A = A_n$ sotto ipotesi di base, dal Teorema 9.2.1, si ha

$$\frac{A_n - \mathrm{E}(A_n)}{\sqrt{\mathrm{Var}(A_n)}} \stackrel{d}{\to} N(0,1) .$$

La convergenza della statistica di Ansari-Bradley è abbastanza rapida anche per campioni moderati, posto che entrambe le numerosità siano abbastanza elevate, ovvero $n_1 \ge 15$ e $n_2 \ge 15$. Le approssimazioni per grandi campioni delle regioni critiche del test per alternative bilaterali o direzionali si possono facilmente ottenere tenendo presente la discussione fatta nella §9.2.

9.5. Le prestazioni del test di Mood e del test di Ansari-Bradley. Per quanto riguarda le prestazioni asintotiche del test di Mood, dall'Esempio 9.2.1 si ha

$${
m eff}_M = \sqrt{720
u(1-
u)} \int_{-\infty}^{\infty} \! x (F(x)-1/2) f(x)^2 \, dx \, ,$$

per cui, utilizzando i risultati dell'Esempio 3.2.4, l'efficienza asintotica relativa del test di Mood rispetto al test di Snedecor risulta

$$\mathrm{EAR}_{M,F} = \frac{180\gamma^2 (\int_{-\infty}^{\infty} x (F(x) - 1/2) f(x)^2 \, dx)^2}{\sigma^4} \; .$$

La Tavola 9.5.2 fornisce i valori dell'efficienza asintotica relativa $EAR_{M,F}$ per alcune distribuzioni. Risulta evidente che, anche dal punto di vista asintotico, il test di Mood dimostra buone prestazioni.

Tavola 9.5.2. EAR del test di Mood rispetto al test di Snedecor.

distribuzione	$EAR_{M,F}$
$U(\lambda, \delta)$	1
$N(\mu,\sigma^2)$	$15/(2\pi^2) = 0.7599$
$Lo(\lambda, \delta)$	1
$L(\mu, \delta)$	$625/576 \simeq 1.0851$
$C(\lambda, \delta)$	∞
$E(\lambda, \sigma)$	$115/144 \simeq 0.7986$

Per quanto riguarda le prestazioni asintotiche del test di Ansari-Bradley, dall'Esempio 9.2.2 si ha

$${
m eff}_A = \sqrt{48
u(1-
u)} \left(\int_{x_0 z}^{\infty} x f(x)^2 dx - \int_{-\infty}^{x_{0.5}} x f(x)^2 dx \right),$$

per cui utilizzando i risultati dell'Esempio 3.2.4, l'efficienza asintotica relativa del test di Ansari-Bradley rispetto al test di Snedecor risulta

$$\text{EAR}_{A,F} = \frac{12\gamma^2 (\int_{x_{0.5}}^{\infty} x f(x)^2 dx - \int_{-\infty}^{x_{0.5}} x f(x)^2 dx)^2}{\sigma^4} \ .$$

La Tavola 9.5.3 fornisce i valori dell'efficienza asintotica relativa $EAR_{A,F}$ per alcune distribuzioni. Le prestazioni del test di Ansari-Bradley sono relativamente scarse anche in questo caso, eccetto che per una distribuzione a code pesanti quale la Cauchy.

Tavola 9.5.3. EAR del test di Ansari-Bradley rispetto al test di Snedecor.

distribuzione	$EAR_{A,F}$
$U(\lambda, \delta)$	3/5 = 0.6
$N(\mu,\sigma^2)$	$6/\pi^2 \simeq 0.6079$
$Lo(\lambda, \delta)$	$4(4\log 2 - 1)^2/15 \simeq 0.8379$
$L(\mu, \delta)$	$15/16 \simeq 0.9375$
$C(\lambda, \delta)$	∞
$E(\lambda, \sigma)$	$69(2\log 2 - 1)^2/16 \simeq 0.6435$

Infine, l'efficienza asintotica relativa del test di Mood rispetto al test di Ansari-Bradley risulta

$$\mathrm{EAR}_{M,A} = \frac{15 \left(\int_{-\infty}^{\infty} x (F(x) - 1/2) f(x)^2 \, dx \right)^2}{\left(\int_{x_{0.5}}^{\infty} x f(x)^2 \, dx - \int_{-\infty}^{x_{0.5}} x f(x)^2 \, dx \right)^2} \; .$$

La Tavola 9.5.4 fornisce i valori dell'efficienza asintotica relativa $EAR_{M,A}$ per alcune distribuzioni. Dunque, dal punto di vista asintotico, il test di Mood risulta superiore al test di Ansari-Bradley.

Tavola 9.5.4. EAR del test di Mood rispetto al test di Ansari-Bradley.

distribuzione	$EAR_{M,A}$
$U(\lambda, \delta)$	5/3 = 1.6667
$N(\mu,\sigma^2)$	5/4 = 1.25
$Lo(\lambda, \delta)$	$15/(4(4\log 2 - 1)^2) \simeq 1.1935$
$L(\mu, \delta)$	$125/108 \simeq 1.1574$
$C(\lambda, \delta)$	15/16 = 0.9375
$E(\lambda, \sigma)$	$5/(27(2\log 2 - 1)^2) \simeq 1.2410$

Capitolo 10

I test per l'associazione

10.1. Verifica di ipotesi sull'associazione. Si consideri il seguente modello statistico "distribution-free"

$$C_F^2 = \{F_n : F_n(x_1, \dots, x_n, y_1, \dots, y_n) = \prod_{i=1}^n F(x_i, y_i), F \in C^2\},$$

dove C^2 rappresenta la classe delle funzioni di ripartizione di un vettore bivariato di variabili casuali assolutamente continue. Dunque, C_F^2 rappresenta il modello statistico relativo ad un campione casuale proveniente da un vettore bivariato di variabili casuali assolutamente continue. Una sottoclasse di C_F^2 è data dal modello statistico "distribution-free"

$$\mathcal{I}_{F_1,F_2}^2 = \{F_n : F_n(x_1,\ldots,x_n,y_1,\ldots,y_n) = \prod_{i=1}^n F_1(x_i)F_2(y_i), F_1, F_2 \in \mathcal{C}\}.$$

Quindi, \mathcal{I}_{F_1,F_2}^2 rappresenta il modello statistico relativo ad un campione casuale proveniente da un vettore bivariato di variabili casuali assolutamente continue a componenti indipendenti. Il sistema di ipotesi da verificare risulta $H_0: F_n \in \mathcal{I}_{F_1,F_2}^2$ contro l'ipotesi alternativa $H_1: F_n \in \mathcal{C}_F^2 - \mathcal{I}_{F_1,F_2}^2$, ovvero si vuole verificare l'indipendenza delle componenti del vettore bivariato di variabili casuali da cui proviene il campione casuale.

10.2. Il test di correlazione di Spearman. Se $(X_1,Y_1),\ldots,(X_n,Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n\in\mathcal{C}_F^2$, si vuole verificare il sistema di ipotesi considerato nella §10.1. Una statistica test conveniente in questo caso è il coefficiente di correlazione campionario di Spearman, che non è altro che l'ordinario coefficiente di correlazione calcolato sul vettore dei ranghi relativo a (X_1,\ldots,X_n) e sul vettore dei ranghi relativo a (Y_1,\ldots,Y_n) . Si indichi dunque con (R_1,\ldots,R_n) il vettore dei ranghi relativo a (Y_1,\ldots,Y_n) . Tenendo presente che

$$\frac{1}{n}\sum_{i=1}^{n}R_{i} = \frac{1}{n}\sum_{i=1}^{n}U_{i} = \frac{n+1}{2}$$

e che

$$\frac{1}{n}\sum_{i=1}^{n}\left(R_{i}-\frac{n+1}{2}\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}\left(U_{i}-\frac{n+1}{2}\right)^{2}=\frac{n^{2}-1}{12},$$

il coefficiente di correlazione campionario di Spearman è dunque dato da

$$R_S = \frac{\frac{1}{n} \sum_{i=1}^n U_i R_i - (n+1)^2 / 4}{(n^2 - 1) / 12} = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n U_i R_i - \frac{3(n+1)}{n-1}.$$

Il seguente teorema permette di ottenenre un'espressione più semplice per il coefficiente di correlazione di Spearman.

Teorema 10.2.1. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1, F_2}$, per il coefficiente di correlazione di Spearman si ha

$$R_S = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n U_i R_i - \frac{3(n+1)}{n-1} \stackrel{d}{=} \frac{12}{n(n^2 - 1)} \sum_{i=1}^n i R_i - \frac{3(n+1)}{n-1}.$$

Dimostrazione. Dal momento che i vettori dei ranghi (R_1, \ldots, R_n) e (U_1, \ldots, U_n) sono indipendenti in quanto trasformate di variabili casuali indipendenti, allora per ogni $(u_1, \ldots, u_n) \in \mathcal{R}_n$ si ha

$$(R_S \mid U_1 = u_1, \dots, U_n = u_n) \stackrel{d}{=} \frac{12}{n(n^2 - 1)} \sum_{i=1}^n u_i R_i - \frac{3(n+1)}{n-1}.$$

Se d_i è la posizione del numero i nel vettore (u_1, \ldots, u_n) , allora si ha

$$\frac{12}{n(n^2-1)}\sum_{i=1}^n u_i R_i - \frac{3(n+1)}{n-1} = \frac{12}{n(n^2-1)}\sum_{j=1}^n j R_{d_j} - \frac{3(n+1)}{n-1}.$$

Dal momento che per il Teorema 2.4.3 (R_1, \ldots, R_n) è distribuito uniformente su \mathcal{R}_n , essendo il vettore dei ranghi relativo ad un campione casuale, allora si ha $(R_1, \ldots, R_n) \stackrel{d}{=} (R_{d_1}, \ldots, R_{d_n})$ per qualsiasi permutazione (d_1, \ldots, d_n) di $(1, \ldots, n)$. Dunque, risulta

$$(R_S \mid U_1 = u_1, \dots, U_n = u_n) \stackrel{d}{=} \frac{12}{n(n^2 - 1)} \sum_{j=1}^n j R_{d_j} - \frac{3(n+1)}{n-1} \stackrel{d}{=} \frac{12}{n(n^2 - 1)} \sum_{i=1}^n i R_i - \frac{3(n+1)}{n-1}.$$

Questa equivalenza in distribuzione vale per ogni $(u_1, \ldots, u_n) \in \mathcal{R}_n$ e il teorema è dimostrato.

In base al precedente teorema, il coefficiente di correlazione di Spearman può essere calcolato semplicemente ordinando rispetto alle realizzazioni di (Y_1, \ldots, Y_n) e successivamente assegnando il vettore dei ranghi alle realizzazioni di (X_1, \ldots, X_n) . Se risulta $R_i = i$ per $i = 1, \ldots, n$, allora esiste associazione positiva perfetta fra i ranghi ed infatti si ha

$$R_S = rac{12}{n(n^2-1)} \sum_{i=1}^n i^2 - rac{3(n+1)}{n-1} = rac{12}{n(n^2-1)} rac{n(n+1)(2n+1)}{6} - rac{3(n+1)}{n-1} = 1$$

Al contrario, se $R_i = n + 1 - i$ per i = 1, ..., n, allora esiste associazione negativa perfetta fra i ranghi ed infatti

$$R_S = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n i(n+1-i) - \frac{3(n+1)}{n-1} = \frac{12}{n(n-1)} \sum_{i=1}^n i - \frac{12}{n(n^2 - 1)} \sum_{i=1}^n i^2 - \frac{3(n+1)}{n-1}$$
$$= \frac{12}{n(n-1)} \frac{n(n+1)}{2} - \frac{12}{n(n^2 - 1)} \frac{n(n+1)(2n+1)}{6} - \frac{3(n+1)}{n-1} = -1.$$

Posto $S=\sum_{i=1}^n iR_i,\ R_S$ è una trasformata lineare di S. Dunque, R_S e S forniscono test equivalenti. Tenendo presente la Definizione 7.1.1, S è dunque una statistica lineare dei ranghi con le costanti di regressione pari a c(i)=i e i punteggi pari a a(i)=i. Il supporto di S è dato da $\{n(n+1)(n+2)/6,\ldots,n(n+1)(2n+1)/6\}$. Tenendo presente il Teorema 2.4.3 e denotando la funzione di probabilità di S con $p_n(s)=\Pr(S=s)$, si ha

$$p_n(s) = \frac{1}{n!} c_n(s) \mathbf{1}_{\{n(n+1)(n+2)/6,...,n(n+1)(2n+1)/6\}}(s) ,$$

dove $c_n(s)$ rappresenta il numero di permutazioni di $(1,\ldots,n)$ per cui S assume valore s. La funzione di probabilità di S (e di conseguenza quella di R_S) è solitamente ottenuta mediante enumerazione, dal momento che non esistono metodi che ne facilitino il calcolo. Se l'ipotesi di base è vera, dal momento che in questo caso si ha $\overline{a} = \overline{c} = (n+1)/2$ e $s_a^2 = s_c^2 = (n^2-1)/12$, dal Teorema 7.1.3 risulta

$$\mathrm{E}(S) = \frac{n(n+1)^2}{4}$$
 , $\mathrm{Var}(S) = \frac{n^2(n-1)(n+1)^2}{144}$,

da cui

$$E(R_S) = \frac{12}{n(n^2 - 1)} E(S) - \frac{3(n+1)}{n-1} = 0$$

e

$$Var(R_S) = \frac{144}{n^2(n^2-1)^2} Var(S) = \frac{1}{n-1}.$$

Dal momento che a(i)=i, in modo analogo all'Esempio 7.1.5, si ottiene che S è simmetrica rispetto a $\mathrm{E}(S)=n(n^2+1)/4$. Di conseguenza, anche R_S è simmetrica rispetto a $\mathrm{E}(R_S)=0$. Inoltre, dal Corollario 2.4.4, la statistica S è "distribution-free" su \mathcal{C}_{F_1} e dunque anche su \mathcal{I}_{F_1,F_2}^2 , ovvero anche il test di Spearman è "distribution-free". Se l'ipotesi di base non è vera, S tende ad assumere valori bassi o elevati. Fissato quindi un livello di significatività α , allora si sceglie come regione critica l'insieme

$$T_1 = \{s : s \le s_{n,\alpha/2}, s \ge s_{n,1-\alpha/2}\}$$
,

dove $s_{n,\alpha}$ rappresenta il quantile di ordine α della distribuzione di S per una numerosità campionaria pari a n.

• Esempio 10.2.1. I dati della Tavola 10.2.1 si riferiscono alla mortalità per cirrosi e al consumo di maiale nell'anno 1978 nelle 10 provincie del Canada.

Tavola 10.2.1. Mortalità per cirrosi (per 100 000 abitanti)

e consumo di maiale (in kg per persona). Prince Edward Island 6.55.8 1 5 Newfoundland 10.26.8 Nova Scotia 10.6 3.6 Saskatchewan 13.4 4.3 New Brunswick 14.5 4.4 Alberta 16.4 5.7 Manitoba 6.9 16.6 7.2 Ontario 18.2 Ouebec 19.0 14.9 10 British Columbia 27.5 8.4

Si vuole verificare se esiste associazione fra la mortalità per cirrosi e il consumo di maiale. Dal momento che per questi dati si ha s=360, allora per n=10 risulta $\Pr(S\geq 360)=0.0153$ e quindi la significatività osservata è data da $\alpha_{oss}=2\times 0.0153=0.0306$. Dunque, esiste associazione fra la mortalità per cirrosi e il consumo di maiale, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha>0.0306$. In effetti, esiste una associazione positiva, dato che risulta $r_S=23/33\simeq 0.6969$.

Fonte: Nanji e French (1985)

Per quanto riguarda la distribuzione per grandi campioni della statistica $S=S_n$ sotto ipotesi di base, i relativi coefficienti di regressione verificano la condizione di Noether dal momento che

$$\lim_{n} \frac{\sum_{i=1}^{n} (c_{n}(i) - \overline{c}_{n})^{2}}{\max_{1 \leq i \leq n} (c_{n}(i) - \overline{c}_{n})^{2}} = \lim_{n} \frac{\sum_{i=1}^{n} (i - (n+1)/2)^{2}}{\max_{1 \leq i \leq n} (i - (n+1)/2)^{2}} = \lim_{n} \frac{n(n^{2} - 1)/12}{(n-1)^{2}/4} = \lim_{n} \frac{n(n+1)}{3(n-1)} = \infty.$$

In questo caso, dal momento che alla statistica S è associata la funzione punteggio $\phi(u) = u\mathbf{1}_{[0,1]}$ e tenendo presente l'Esempio 5.3.1, le condizioni del Teorema 7.2.2 sono soddifatte e quindi si ha

$$\frac{S_n - n(n+1)^2/4}{\sqrt{n^2(n-1)(n+1)^2/144}} \stackrel{d}{\to} N(0,1) .$$

Tenendo presente la discussione che segue il Teorema 7.2.2 si ha inoltre

$$\frac{R_{S,n}}{\sqrt{1/(n-1)}} = R_{S,n} \sqrt{n-1} \stackrel{d}{\to} N(0,1) .$$

Fissato un livello di significatività α , per $n \to \infty$ la regione critica può essere dunque approssimata dall'insieme

$$\{s: s \leq \mathrm{E}(S_n) + z_{\alpha/2}\sqrt{\mathrm{Var}(S_n)}, s \geq \mathrm{E}(S_n) + z_{1-\alpha/2}\sqrt{\mathrm{Var}(S_n)}\}.$$

• Esempio 10.2.2. I dati della Tavola 10.2.2 si riferiscono alle misure (in m) fatte nel lancio del peso e del giavellotto dalle 25 atlete partecipanti alla gara di eptathlon femminile alle Olimpiadi del 1988.

Tavola 10.2.2. Misure nel lancio del peso e del giavellotto (in m).

atleta	y_i	x_i	i	r_i
Joyner-Kersee - USA	15.80	45.66	24	22
John - GDR	16.23	42.56	25	16
Behmer - GDR	14.20	44.54	19	19
Sablovskaite - URS	15.23	42.78	23	17
Choubenkova - URS	14.76	47.64	22	24
Schultz - GDR	13.50	42.82	17	15
Fleming - AUS	12.88	40.28	12	13
Greiner - USA	14.13	38.00	18	5
Lajbnerova - CZE	14.28	42.20	21	14
Bouraga - URS	12.62	39.06	8	7
Wijnsma - HOL	13.01	37.86	15	4
Dimitrova - BUL	12.89	40.27	13	12
Schneider - SWI	11.58	47.50	3	25
Braun - FRG	13.16	44.58	16	20
Ruotsalainen - FIN	12.32	45.44	7	21
Yuping - CHN	14.21	38.60	20	6
Hagger - GB	12.75	35.76	11	2
Brown - USA	12.69	44.34	10	18
Mulliner - GB	12.68	37.76	9	3
Hautenauve - BEL	11.81	35.68	6	1
Kytola - FIN	11.66	39.48	4	10
Geremias - BRA	12.95	39.64	14	11
Hui-Ing - TAI	10.00	39.14	1	8
Jeong-Me - KOR	10.83	39.26	2	9
Launa - PNG	11.78	46.38	5	23

Fonte: Lunn e McNeil (1991)

I dati sono ordinati in base alla posizione finale dell'atleta nella gara. Si è interessati a conoscere se vi è associazione fra il risultato ottenuto dalle atlete nella gara del lancio del peso e quello ottenuto dalle atlete nella gara del lancio del giavellotto. Dal momento che per questi dati si ha s=4493, allora

$$\Pr(S \geq 4493) \simeq 1 - \Phi((4493 - 25 \times 676/4)/\sqrt{625 \times 24 \times 676/144}) = 1 - \Phi(1.0080) = 0.1566 \; ,$$

e la significatività osservata risulta $\alpha_{oss}=2\times0.1566=0.3132$. Dunque, non esiste associazione fra i risultati ottenuti nel lancio del peso e del giavellotto nella gara di epthatlon, dal momento che si può accettare H_0 ad ogni livello di significatività $\alpha<0.3132$. Il coefficiente di correlazione di Spearman risulta $r_S=67/325\simeq0.2061$, un valore relativamente basso che conferma la mancanza di associazione.

10.3. Il test di correlazione di Kendall. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{C}^2_F$, si vuole verificare il sistema di ipotesi considerato nella §10.1. Una statistica test opportuna in questo sistema di ipotesi è data dalla statistica di Kendall, data da

$$\tau = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{segn}(X_j - X_i) \operatorname{segn}(Y_j - Y_i),$$

dove $\operatorname{segn}(x) = 2\mathbf{1}_{(0,\infty)}(x) - 1$. La statistica τ può essere scritta come

$$\tau = \frac{2}{n(n-1)} \left(C - D \right),\,$$

dove

$$C = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(X_j - X_i) \operatorname{segn}(Y_j - Y_i))$$

rappresenta il numero di coppie (X_i, Y_i) e (X_j, Y_j) concordanti, mentre

$$D = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (-\operatorname{segn}(X_j - X_i) \operatorname{segn}(Y_j - Y_i))$$

rappresenta il numero di coppie (X_i, Y_i) e (X_j, Y_j) discordanti. Dal momento che si ha C + D = n(n-1)/2, allora

$$\tau = \frac{4C}{n(n-1)} - 1.$$

In caso di perfetta associazione positiva tutte le coppie sono concordanti, per cui risulta C=n(n-1)/2 e di conseguenza $\tau=1$. Al contrario, in caso di perfetta associazione negativa tutte le coppie sono discordanti, per cui risulta C=0 e di conseguenza $\tau=-1$. Infine, se il numero delle coppie concordanti è uguale al numero delle coppie discordanti, ovvero se non vi è associazione, allora risulta C=n(n-1)/4 per cui $\tau=0$. Dunque, τ è a tutti gli effetti una valida misura di associazione. La statistica τ è una trasformata lineare della statistica C. Dunque, τ e C forniscono test equivalenti. Il seguente teorema fornisce una utile equivalenza in distribuzione per la statistica C.

Teorema 10.3.1. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1,F_2}$, per la statistica C risulta

$$C = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(X_j - X_i) \operatorname{segn}(Y_j - Y_i)) \stackrel{d}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (R_j - R_i) ,$$

dove (R_1, \ldots, R_n) è il vettore dei ranghi relativo a (X_1, \ldots, X_n) .

Dimostrazione. Si ha

$$\operatorname{segn}(X_j - X_i) \stackrel{d}{=} \operatorname{segn}(R_j - R_i)$$
, $i = 1, \ldots, n-1$, $j = i+1, \ldots, n$,

e

$$\operatorname{segn}(Y_i - Y_i) \stackrel{d}{=} \operatorname{segn}(U_i - U_i), i = 1, \dots, n - 1, j = i + 1, \dots, n$$

dove (U_1, \ldots, U_n) è il vettore dei ranghi relativo a (Y_1, \ldots, Y_n) . Dunque, risulta

$$C = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(X_j - X_i) \operatorname{segn}(Y_j - Y_i)) \stackrel{d}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_j - R_i) \operatorname{segn}(U_j - U_i)).$$

Dal momento che (R_1, \ldots, R_n) e (U_1, \ldots, U_n) sono indipendenti in quanto trasformate di variabili casuali indipendenti, allora per ogni $(u_1, \ldots, u_n) \in \mathcal{R}_n$ si ha

$$(C \mid U_1 = u_1, \dots, U_n = u_n) \stackrel{d}{=} (\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_j - R_i) \operatorname{segn}(U_j - U_i)) \mid U_1 = u_1, \dots, U_n = u_n)$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_j - R_i) \operatorname{segn}(u_j - u_i)).$$

Se d_i è la posizione del numero i nel vettore (u_1, \ldots, u_n) , allora si ha

$$\begin{split} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_j - R_i) \operatorname{segn}(u_j - u_i)) &= \sum_{l=1}^{n-1} \sum_{m=l+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_{d_m} - R_{d_l}) \operatorname{segn}(m - l)) \\ &= \sum_{l=1}^{n-1} \sum_{m=l+1}^{n} \mathbf{1}_{[0,\infty)} (\operatorname{segn}(R_{d_m} - R_{d_l})) \; . \end{split}$$

Dal momento che per il Teorema 2.4.3 (R_1, \ldots, R_n) è distribuito uniformente su \mathcal{R}_n , essendo il vettore dei ranghi relativo ad un campione casuale, si ha $(R_1, \ldots, R_n) \stackrel{d}{=} (R_{d_1}, \ldots, R_{d_n})$ per qualsiasi permutazione (d_1, \ldots, d_n) di $(1, \ldots, n)$. Dunque, risulta

$$(C \mid U_1 = u_1, \dots, U_n = u_n) \stackrel{d}{=} \sum_{l=1}^{n-1} \sum_{m=l+1}^{n} \mathbf{1}_{[0,\infty)}(\operatorname{segn}(R_{d_l} - R_{d_m})) \stackrel{d}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)}(\operatorname{segn}(R_j - R_i)).$$

Dal momento che questa equivalenza in distribuzione vale per ogni $(u_1, \ldots, u_n) \in \mathcal{R}_n$, allora il teorema è dimostrato.

Nel prossimo teorema si ottiene una importante equivalenza in distribuzione per la statistica C.

Teorema 10.3.2. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1, F_2}$, allora

$$C \stackrel{d}{=} \sum_{i=2}^{n} V_i$$
 ,

dove V_i , per $i=2,3,\ldots,n$, sono (n-1) variabili casuali indipendenti con funzione di probabilità data da

$$p_i(v) = rac{1}{i} \mathbf{1}_{\{0,1,\ldots,i-1\}}(v)$$
 , $i = 2,3,\ldots,n$.

Dimostrazione. Dal Teorema 10.3.1, si ha

$$C \stackrel{d}{=} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{1}_{[0,\infty)}(R_j - R_i) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n-1} \mathbf{1}_{[0,\infty)}(R_j - R_i) + \sum_{i=1}^{n-1} \mathbf{1}_{[0,\infty)}(R_n - R_i)$$

$$\stackrel{d}{=} \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \mathbf{1}_{[0,\infty)}(X_j - X_i) + V_n,$$

dove $V_n = \sum_{j=1}^{n-1} \mathbf{1}_{[0,\infty)}(X_n - X_j)$. Dalla Definizione 2.4.1 si ha dunque che $V_n \stackrel{d}{=} R_n - 1$, ovvero V_n ha funzione di probabilità

$$p_n(v) = \frac{1}{n} \mathbf{1}_{\{0,1,\ldots,n-1\}}(v) .$$

Inoltre, si noti che $\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \mathbf{1}_{[0,\infty)}(X_j - X_i)$ è indipendente da V_n in quanto eliminando l'ultima osservazione l'ordinamento rimane comunque invariato. Questa variabile casuale è in effetti la statistica C calcolata sul campione casuale (X_1, \dots, X_{n-1}) . Iterando, si ha dunque

$$C \stackrel{d}{=} \sum_{i=2}^{n} V_i ,$$

dove $V_i = \sum_{j=1}^{i-1} I_{[0,\infty)}(R_i - R_j)$, per i = 2, 3, ..., n, sono (n-1) variabili casuali indipendenti con funzione di probabilità data da

$$p_i(v) = \frac{1}{i} \mathbf{1}_{\{0,1,\dots,i-1\}}(v), i = 2, 3, \dots, n.$$

Il supporto di C è dunque dato da $\{0, 1, \dots, n(n-1)/2\}$. Tenendo presente il Teorema 2.4.3 e denotando la funzione di probabilità di C con $p_n(c) = \Pr(C = c)$, se l'ipotesi di base è vera si ha

$$p_n(c) = rac{1}{n!} \, c_n(c) \, {f 1}_{\{0,1,\ldots,n(n-1)/2\}}(c) \; ,$$

dove $c_n(c)$ rappresenta il numero di permutazioni di (1, ..., n) per cui C assume valore c. Sebbene esistano delle relazioni ricorrenti per il calcolo diretto della funzione di probabilità di C, la distribuzione della statistica si ottiene più facilmente mediante la funzione generatrice delle probabilità.

Teorema 10.3.3. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1, F_2}$, la funzione generatrice delle probabilità di C risulta

$$L_C(t) = \prod_{i=2}^n \frac{1-t^i}{i(1-t)}$$
 , $|t| < 1$.

Dimostrazione. Con la notazione del Teorema 10.3.2, la funzione generatrice delle probabilità di V_i risulta

$$L_{V_i}(t) = rac{1}{i} \sum_{j=0}^{i-1} t^j$$
 , $|t| < 1$, $i = 2, 3, \ldots, n$.

Dall'indipendenza delle V_i si ottiene dunque

$$L_C(t) = \prod_{i=2}^n \frac{1}{i} \sum_{j=0}^{i-1} t^i = \prod_{i=2}^n \frac{1-t^i}{i(1-t)}, |t| < 1.$$

• **Esempio 10.3.1.** Per n = 4 si ha

$$L_C(t) = \frac{1}{24} (1+t)(1+t+t^2)(1+t+t^2+t^4) = \frac{1}{24} (1+3t+5t^2+6t^3+5t^4+3t^5+t^6).$$

Poichè le probabilità $p_4(c)$ corrispondono ai coefficienti del polinomio $L_C(t)$, si otteniene la Tavola 10.3.1.

Nei seguenti teoremi si ottiene la media e la varianza di C e la sua simmetria rispetto alla media.

Teorema 10.3.4. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1, F_2}$, allora

$$E(C) = \frac{n(n-1)}{4}$$
, $Var(C) = \frac{n(n-1)(2n+5)}{72}$.

Dimostrazione. Per le variabili casuali V_i , per $i=2,3,\ldots,n$, definite nel Teorema 10.3.2, si ha

$$E(V_i) = \sum_{v=0}^{i-1} v p_i(v) = \frac{1}{i} \sum_{v=0}^{i-1} v = \frac{i-1}{2}$$

e

$$\operatorname{Var}(V_i) = \sum_{v=0}^{i-1} v^2 p_i(v) - \operatorname{E}(V_i)^2 = \frac{1}{i} \sum_{v=0}^{i-1} v^2 - \frac{(i-1)^2}{4} = \frac{i^2 - 1}{12} .$$

Di conseguenza, tenendo presente il Teorema 10.3.2, si ha

$$E(C) = \sum_{i=2}^{n} E(V_i) = \frac{1}{2} \sum_{i=2}^{n} (i-1) = \frac{1}{2} \sum_{i=1}^{n-1} i = \frac{n(n-1)}{4}$$

e

$$\operatorname{Var}(C) = \sum_{i=2}^{n} \operatorname{Var}(V_i) = \frac{1}{12} \sum_{i=2}^{n} (i^2 - 1) = \frac{1}{12} \sum_{i=1}^{n} (i^2 - 1) = \frac{n(n-1)(2n+5)}{72}.$$

Dal precedente teorema si ha inoltre

$$E(\tau) = \frac{4}{n(n-1)} E(C) - 1 = 0$$

e

$$\operatorname{Var}(\tau) = \frac{16}{n^2(n-1)^2} \operatorname{Var}(C) = \frac{2(2n+5)}{9n(n-1)}$$
.

Teorema 10.3.5. Se $(X_1, Y_1), \ldots, (X_n, Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1, F_2}$, allora C è simmetrica rispetto a E(C) = n(n-1)/4.

Dimostrazione. Dal momento che ogni V_i definita nel Teorema 10.3.2 è simmetrica rispetto a $\mathrm{E}(V_i) = (i-1)/2$ per $i=2,3,\ldots,n$, tenendo presente il Teorema 1.2.3, si ha

$$C - E(C) \stackrel{d}{=} \sum_{i=2}^{n} (V_i - E(V_i)) \stackrel{d}{=} \sum_{i=2}^{n} (E(V_i) - V_i) \stackrel{d}{=} E(C) - C$$

per cui dal Teorema 1.2.2 si deve concludere che C è simmetrica rispetto a E(C).

Dal Teorema 10.3.5 si ha che anche τ è simmetrica rispetto a $E(\tau)=0$. Dal Teorema 10.3.1, tenendo presente il Corollario 2.4.4, risulta che la statistica C è "distribution-free" su \mathcal{C}_{F_1} e dunque anche su $\mathcal{I}^2_{F_1,F_2}$, ovvero anche il test di Kendall è "distribution-free". Se l'ipotesi di base non è vera, C tende ad assumere valori bassi o elevati. Fissato quindi un livello di significatività α , allora si sceglie come regione critica l'insieme

$$T_1 = \{c : c \le c_{n,\alpha/2}, c \ge c_{n,1-\alpha/2}\},$$

dove $c_{n,\alpha}$ rappresenta il quantile di ordine α della distribuzione di C per una numerosità campionaria pari a n.

• Esempio 10.3.2. I dati della Tavola 10.3.2 si riferiscono ai tempi fatti nei 100m piani dai primi 10 atleti classificati nella gara di decathlon alle Olimpiadi del 1988.

Tavola 10.3.2. Tempi nei 100*m* piani (in *sec*).

atleta	y_i	x_i	r_i	$\frac{\sum_{j=i+1}^{n} I_{[0,\infty)}(R_j - R_i)}{\sum_{j=i+1}^{n} I_{[0,\infty)}(R_j - R_i)}$
Schenk - GDR	1	11.25	10	0
Voss - GDR	2	10.87	3	6
Steen - CAN	3	11.19	8	1
Thompson - GB	4	10.62	1	6
Blondel - FRA	5	11.02	4	4
Plaziat - FRA	6	10.83	2	4
Bright - USA	7	11.18	7	1
DeWit - HOL	8	11.05	5	2
Johnson - USA	9	11.15	6	1
Tarnovetsky - URS	10	11.23	9	0

Fonte: Lunn e McNeil (1991)

Si è interessati a conoscere se vi è associazione fra la posizione finale dell'atleta e il risultato fatto nella gara dei 100m. Dal momento che è immediato ottenere che c=25, per n=10 si ha $\Pr(C \geq 25) = 0.364$ e quindi la significatività osservata risulta $\alpha_{oss} = 2 \times 0.364 = 0.718$. Dunque, la sola gara dei 100m non condiziona la posizione finale dell'atleta, dal momento che si può accettare H_0 ad ogni livello di significatività $\alpha < 0.718$. Si noti che in questo caso si ha $\tau = 1/9 \simeq 0.1111$, un valore basso del coefficiente di Kendall che conferma la mancanza di associazione.

Per quanto riguarda la distribuzione per grandi campioni di C_n , si ha il seguente teorema.

Teorema 10.3.6. Se $(X_1,Y_1),\ldots,(X_n,Y_n)$ è un campione casuale bivariato con funzione di ripartizione congiunta $F_n \in \mathcal{I}^2_{F_1,F_2}$, allora per $n \to \infty$

$$\frac{C_n - n(n-1)/4}{\sqrt{n(n-1)(2n+5)/72}} \stackrel{d}{\to} N(0,1).$$

Dimostrazione. Per il Teorema 10.3.2, C_n è data dalla somma di variabili casuali indipendenti, ma non ugualmente distribuite, ed è opportuno applicare il Teorema Fondamentale del Limite di Lindberg (Teorema A.3.7). Si ha

$$\sigma^2 = \sum_{i=2}^n \mathrm{Var}(V_i) = \frac{1}{12} \sum_{i=2}^n (i^2 - 1) \sim n^3$$
.

Inoltre, tenendo presente che il supporto di V_i è dato da $\{0,1,\ldots,i-1\}$ per $i=2,3,\ldots,n$, dalla disugualianza di Chebicheff si ha

$$E((V_{i} - \frac{i-1}{2})^{2} \mathbf{1}_{(-\infty,(i-1)/2 - \epsilon\sigma) \cup ((i-1)/2 + \epsilon\sigma,\infty)}(V_{i})) \leq \frac{(i-1)^{2}}{4} E(\mathbf{1}_{(-\infty,(i-1)/2 - \epsilon\sigma) \cup ((i-1)/2 + \epsilon\sigma,\infty)}(V_{i}))$$

$$= \frac{(i-1)^{2}}{4} \Pr(|V_{i} - \frac{i-1}{2}| > \epsilon\sigma)) \leq \frac{(i-1)^{2}}{4} \frac{i^{2} - 1}{12\epsilon^{2}\sigma^{2}} = \frac{(i-1)^{2}(i^{2} - 1)}{48\epsilon^{2}\sigma^{2}}.$$

Dunque, si ha

$$\frac{1}{\sigma^2} \sum_{i=2}^n \mathbb{E}((V_i - \frac{i-1}{2})^2 \mathbf{1}_{(-\infty,(i-1)/2 - \epsilon \sigma) \cup ((i-1)/2 + \epsilon \sigma,\infty)}(V_i)) \le \frac{1}{48\epsilon^2 \sigma^4} \sum_{i=2}^n (i-1)^2 (i^2 - 1) \sim \frac{n^5}{\epsilon^2 n^6} = \frac{1}{\epsilon^2 n^6} = \frac{1}{\epsilon^2$$

da cui

$$\lim_{n} \frac{1}{\sigma^{2}} \sum_{i=2}^{n} \mathrm{E}((V_{i} - \frac{i-1}{2})^{2} \mathbf{1}_{(-\infty,(i-1)/2 - \epsilon\sigma) \cup ((i-1)/2 + \epsilon\sigma,\infty)}(V_{i})) = 0.$$

Dal momento che la precedente relazione è soddisfatta per ogni $\epsilon > 0$, allora le condizioni del Teorema Fondamentale del Limite di Lindberg sono soddisfatte e il teorema è dimostrato.

Dal Teorema 10.3.6, segue inoltre che

$$\frac{\tau_n}{\sqrt{2(2n+5)/(9n(n-1))}} \stackrel{d}{\to} N(0,1)$$
.

Fissato un livello di significatività α , per $n \to \infty$ la regione critica può essere dunque approssimata dall'insieme

$$\{c:c\leq \mathrm{E}(C_n)+z_{\alpha/2}\sqrt{\mathrm{Var}(C_n)},c\geq \mathrm{E}(C_n)+z_{1-\alpha/2}\sqrt{\mathrm{Var}(C_n)}\}\;.$$

• Esempio 10.3.3. I dati della Tavola 10.3.3 si riferiscono alle misurazioni relative al contenuto totale di acqua corporea e alla stime della massa magra corporea fornite dallo spessore della pliche cutanea misurato mediante il plicometro in 23 bambini.

Tavola 10.3.3. Acqua (in l) e massa magra (in kg)

1 avoia	10.5.5.	Acqua	$(m \iota)$	e massa magra (in κg).
soggetto	y_i	x_i	r_i	$\sum_{j=i+1}^{n} 1_{[0,\infty)} (R_j - R_i)$
1	7.35	11.0	2	21
2	7.56	11.5	3	20
3	7.65	10.7	1	20
4	9.03	12.9	5	18
5	9.91	12.3	4	18
6	10.12	14.4	7	16
7	10.22	14.0	6	16
8	10.52	15.1	8	15
9	10.59	17.4	11	12
10	11.73	18.0	12	11
11	11.86	15.3	9	12
12	12.33	16.6	10	11
13	12.62	19.7	14	9
14	13.52	19.2	13	9
15	14.43	21.6	15	8
16	15.83	22.9	17	6
17	15.97	21.7	16	6
18	17.49	25.7	18	5
19	18.96	31.4	20	3
20	22.75	29.0	19	3
21	27.18	40.0	21	2
22	27.20	43.4	22	1
23	30.24	44.3	23	0

Fonte: Brook (1971)

Si vuole verificare se esiste associazione fra il contenuto di acqua corporea e la pliche cutanea, ovvero si vuole verificare che le stime della massa magra corporea ottenute mediante il plicometro sono credibili. Dal momento che c=242, allora

$$\Pr(C \geq 242) \simeq 1 - \Phi[(242 - 23 \times 22/4)/\sqrt{23 \times 22 \times 51/72}] = 1 - \Phi(6.1008) < 0.0005 \; ,$$

e quindi la significatività osservata risulta $\alpha_{oss} < 2 \times 0.0005 = 0.001$. In questo caso, si può respingere H_0 ad ogni livello di significatività $\alpha > 0.001$. Il coefficiente di Kendall risulta $\tau = 21/23 \simeq 0.9130$, un valore elevato che conferma la presenza di una forte associazione positiva.

Il test classico per la verifica di ipotesi sull'indipendenza è basato sulla statistica test

$$F = \sqrt{n-2} \, \frac{R}{\sqrt{1-R^2}} \,,$$

dove R è il coefficiente di correlazione campionario di Pearson. La Tavola 10.3.4 fornisce i valori dell'efficienza asintotica relativa $\mathrm{EAR}_{C,F}$ per alcune distribuzioni. Il test di Kendall presenta buone prestazioni per grandi campioni anche sotto ipotesi di normalità bivariata.

Tavola 10.3.4. EAR del test di Kendall rispetto al test di Pearson.

distribuzione	$EAR_{C,F}$
$U(\lambda, \delta)$	1
$N(\mu,\sigma^2)$	$9/\pi^2 = 0.9119$
$L(\mu, \delta)$	81/64 = 1.2666

Capitolo 11

L'analisi della varianza

11.1. Ulteriori risultati per le statistiche rango. Si consideri il modello statistico "distribution-free"

$$\mathcal{L}_{\lambda_1,...,\lambda_k,F} = \{F_n : F_n(x_{11},...,x_{1n_1},...,x_{k1},...,x_{kn_k}) = \prod_{j=1}^k \prod_{i=1}^{n_j} F(x_{ji} - \lambda_j), F \in \mathcal{C}, \lambda_1,...,\lambda_k \in \mathbb{R}\},$$

dove $n = \sum_{j=1}^k n_j$. Si noti che $\mathcal{L}_{\lambda_1,\dots,\lambda_k,F}$ rappresenta il modello statistico relativo a k campioni casuali indipendenti provenienti da k variabili casuali assolutamente continue, che sono equivalenti in distribuzione a meno di un parametro di posizione. Inoltre, risulta $\mathcal{L}_{0,\dots,0,F} = \mathcal{C}_F$. In questa struttura, è conveniente ampliare la definizione di variabile casuale rango.

Definizione 11.1.1. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Si definiscono statistiche rango le seguenti trasformate

$$R_{ji} = \sum_{l=1}^{n_j} \sum_{h=1}^k \mathbf{1}_{[0,\infty)} (X_{ji} - X_{hl}) , j = 1, \ldots, k , i = 1, \ldots, n_j .$$

Inoltre, si dice somma dei ranghi del j-esimo campione la trasformata

$$R_{j+}=\sum_{i=1}^{n_j}R_{ji}\ ,\,j=1,\ldots,k\ .$$

La statistica R_{ji} rappresenta la posizione di X_{ji} all'interno del campione misto ordinato. Dunque, le statistiche R_{ji} , per $i=1,\ldots,n_j, j=1,\ldots,k$, sono a tutti gli effetti statistiche rango, anche se con una differente indicizzazione. Quindi, tutte le proprietà discusse nella §2.4 sono valide anche in questo caso. Per quanto riguarda le statistiche somma dei ranghi si ha il seguente teorema.

Teorema 11.1.1. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Si ha

$$E(R_{j+}) = \frac{n_j(n+1)}{2}$$
, $Var(R_{j+}) = \frac{n_j(n-n_j)(n+1)}{12}$, $j = 1, ..., k$,

e

$$\operatorname{Cov}(R_{j+},R_{h+}) = -\frac{n_j n_h (n+1)}{12}$$
 , $j \neq h = 1,\ldots,k$.

Dimostrazione. Tenendo presente il Corollario 2.4.5, si ha

$$E(R_{j+}) = \sum_{i=1}^{n_j} E(R_{ji}) = \sum_{i=1}^{n_j} \frac{n+1}{2} = \frac{n_j(n+1)}{2}, j = 1, \dots, k,$$

$$\operatorname{Var}(R_{j+}) = \sum_{i=1}^{n_j} \operatorname{Var}(R_{ji}) + \sum_{i=1}^{n_j} \sum_{l \neq i=1}^{n_j} \operatorname{Cov}(R_{ji}, R_{jl}) = \sum_{i=1}^{n_j} \frac{n^2 - 1}{12} - \sum_{i=1}^{n_j} \sum_{l \neq i=1}^{n_j} \frac{n + 1}{12}$$
$$= \frac{n_j(n^2 - 1)}{12} - \frac{n_j(n_j - 1)(n + 1)}{12} = \frac{n_j(n - n_j)(n + 1)}{12}, j = 1, \dots, k.$$

Inoltre, ancora dal Corollario 2.4.5 risulta

$$Cov(R_{j+}, R_{h+}) = \sum_{i=1}^{n_j} \sum_{l=1}^{n_h} Cov(R_{ji}, R_{hl}) = -\frac{n_j n_h (n+1)}{12}, j \neq h = 1, ..., k.$$

Il seguente Teorema è un'estenione del Corollario 2.4.7 e sarà utile nel seguito.

Teorema 11.1.2. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti con funzione di ripartizione congiunta $F_n \in C_F$. Se $(R_{j(1)}, \ldots, R_{j(n_j)})$ denota il vettore ordinato dei ranghi relativo a $(R_{j1}, \ldots, R_{jn_j})$, per $j = 1, \ldots, k$, allora

$$\begin{split} \Pr(R_{1(1)} = r_{1(1)}, \dots, R_{1(n_1)} = r_{1(n_1)}, \dots, R_{k(1)} = r_{k(1)}, \dots, R_{k(n_k)} = r_{k(n_k)}) = \\ &= \left(\begin{matrix} n \\ n_1 \dots n_k \end{matrix} \right)^{-1} \text{, } 1 \leq r_{j(1)} < \dots < r_{j(n_j)} \leq n \text{ , } j = 1, \dots, k \text{ .} \end{split}$$

Dimostrazione. Dal Corollario 2.4.7 si ha

$$\Pr(R_{1(1)} = r_{1(1)}, \dots, R_{1(n_1)} = r_{1(n_1)}) = \binom{n}{n_1}^{-1}.$$

Dal momento che si ha

$$\Pr(R_{2(1)} = r_{2(1)}, \dots, R_{2(n_2)} = r_{2(n_2)} \mid R_{1(1)} = r_{1(1)}, \dots, R_{1(n_1)} = r_{1(n_1)}) = \binom{n - n_1}{n_2}^{-1}$$

allora

$$\Pr(R_{1(1)} = r_{1(1)}, \dots, R_{1(n_1)} = r_{1(n_1)}, R_{2(1)} = r_{2(1)}, \dots, R_{2(n_2)} = r_{2(n_2)}) = \begin{pmatrix} n - n_1 \\ n_2 \end{pmatrix}^{-1} \begin{pmatrix} n \\ n_1 \end{pmatrix}^{-1} = \begin{pmatrix} n \\ n_1 n_2 \end{pmatrix}^{-1}.$$

Procedendo iterativamente si ha la dimostrazione.

11.2. Il test di Kruskal-Wallis. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\lambda_1, \ldots, \lambda_k, F}$. Il test di Kruskal-Wallis è basato sulla statistica

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} n_j (R_{j+}/n_j - (n+1)/2)^2.$$

La statistica H è in effetti una misura della differenza fra le somme dei ranghi attesi e le somme dei ranghi osservati. Con il test di Kruskal-Wallis si può verificare l'ipotesi $H_0: \lambda_1 = \ldots = \lambda_k, F \in \mathcal{C}$, contro $H_1: \lambda_j \neq \lambda_h, \exists j \neq h = 1, \ldots, k, F \in \mathcal{C}$. Questa struttura di ipotesi caratterizza la cosiddetta analisi della varianza ad un criterio. La statistica H è opportuna in questo sistema di ipotesi, in quanto se non è vera l'ipotesi di base tende ad assumere valori elevati. La statistica H può essere espressa alternativamente come

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} n_j (R_{j+}^2/n_j^2 - (n+1)R_{j+}/n_j + (n+1)^2/4)$$

$$= \frac{12}{n(n+1)} \sum_{j=1}^{k} R_{j+}^2/n_j - \frac{12}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_j} R_{ji} + 3(n+1) = \frac{12}{n(n+1)} \sum_{j=1}^{k} R_{j+}^2/n_j - 3(n+1).$$

Tenendo presente il Teorema 11.1.2, la funzione di probabilità della statistica H risulta

$$p_{n_1,\ldots,n_k}(h)=\left(egin{array}{c} n \ n_1\ldots\,n_k \end{array}
ight)^{-1}c_{n_1,\ldots,n_k}(h) \ ,$$

dove $c_{n_1,...,n_k}(h)$ è il numero di k sottoinsiemi di $(n_1,...,n_k)$ interi dell'insieme (1,...,n) per cui la statistica vale h. Dal momento che è molto laborioso tabulare la distribuzione esatta di H, dal momento che questa operazione dovrebbe essere fatto per ogni numerosità campionaria e per ogni k, è conveniente impiegare il seguente risultato per grandi campioni.

Teorema 11.2.1. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Se $\nu_j = \lim_n n_j/n$, dove $0 < \nu_j < 1, \ j = 1, \ldots, k$, allora per $n \to \infty$ si ha

$$H_n \stackrel{d}{\to} \chi^2_{k-1}$$
.

Dimostrazione. Si veda Hettmansperger (1984).

Un'approssimazione per grandi campioni della regione critica del test è quindi data dall'insieme

$$\{h: h \geq \chi^2_{k-1,1-\alpha}\}$$
.

• Esempio 11.2.1. I dati della Tavola 11.2.1 forniscono i coefficienti di salinità per alcuni saggi di acque prelevati in tre zone nei pressi di Bimini Lagoon nelle Bahamas.

Tavola 11.2.1. Coefficienti di salinità (numero di parti per mille).

	sito 1		sito	2	sito 3		
saggio	x_{1i}	r_{1i}	x_{2i}	r_{2i}	x_{3i}	r_{3i}	
1	37.54	10	40.17	27	39.04	19	
2	37.02	4	40.80	30	39.21	21	
3	36.71	1	39.76	24	39.05	20	
4	37.04	6	39.70	23	38.24	12	
5	37.32	7	40.79	29	38.53	13	
6	37.01	3	40.44	28	38.71	16	
7	37.03	5	39.75	25	38.89	18	
8	37.70	11	39.38	22	38.66	15	
9	37.36	8			38.51	14	
10	36.75	2			40.08	26	
11	37.45	9					
12	38.85	17					

Fonte: Till (1974)

Si è interessati a determinare se la salinità è identica nelle tre zone considerate, ovvero si vuole verificare il sistema di ipotesi $H_0: \lambda_1 = \lambda_2 = \lambda_3, F \in \mathcal{C}$, contro $H_1: \lambda_j \neq \lambda_h, \exists j \neq h = 1, 2, 3, F \in \mathcal{C}$. Dal momento che $r_{1+} = 83, r_{2+} = 208$ e $r_{3+} = 174$, da cui $h \simeq 23.2539$, allora

$$\Pr(H \ge 23.2539) \simeq \Pr(\chi_2^2 \ge 23.2539) < 0.001$$
,

per cui la significatività osservata risulta $\alpha_{oss} < 0.001$. Dato che si può respingere H_0 ad ogni livello di significatività $\alpha \ge 0.001$, l'evidenza empirica porta a concludere che vi è una differente salinità nei tre siti considerati.

• Esempio 11.2.2. I dati della Tavola 11.2.2 forniscono i tempi di sopravvivenza di una serie di pazienti con cancro avanzato (allo stomaco, ai bronchi, al colon, alle ovarie e al seno) che sono stati trattati con ascorbato.

Tavola 11.2.2. Tempi di sopravvivenza (in giorni).

	1 avoia	11.2	.z. rei	прт а	i soprav	/VIVEI	nza (m	giorn	1).	
	stom	aco	bron	chi	colo	n	ovai	ie	sen	0
paziente	x_{1i}	r_{1i}	x_{2i}	r_{2i}	x_{3i}	r_{3i}	x_{4i}	r_{4i}	x_{5i}	r_{5i}
1	124	18	81	14	248	32	1234	57	1235	58
2	42	7	461	45	377	38	89	15	24	3
3	25	4	21	2	189	27	201	28	1581	59
4	45	8	450	42	1843	61	356	35	1166	56
5	412	41	246	31	180	26	2970	62	40	6
6	51	10	167	25	537	47	456	44	727	49
7	1112	55	63	11	519	46			3808	64
8	46	9	64	12	455	43			791	51
9	103	17	155	22	406	40			1804	60
10	876	53	859	52	365	36			3460	63
11	146	20	151	21	942	54				
12	340	34	166	24	776	50				
13	396	39	37	5	372	37				
14			223	29	163	23				
15			138	19	101	16				
16			72	13	20	1				
17			245	30	283	33				
		-			ъ.	1. /	1054			

Fonte: Cameron e Pauling (1974)

Si è interessati a determinare se i tempi di sopravvivenza sono differenti a secondo degli organi malati, ovvero si vuole verificare il sistema di ipotesi $H_0: \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5, F \in \mathcal{C}$, contro $H_1: \lambda_j \neq \lambda_h, \exists j \neq h=1,2,3,4,5, F \in \mathcal{C}$. Dal momento che $r_{1+}=315$, $r_{2+}=397$, $r_{3+}=610$, $r_{4+}=241$ e $r_{5+}=517$, da cui $h\simeq 14.9169$, allora si ha

$$0.001 < \Pr(H \geq 14.9169) \simeq \Pr(\chi_4^2 \geq 14.9169) < 0.005$$
 ,

ovveero la significatività osservata risulta $0.001 < \alpha_{oss} < 0.005$. Dunque, l'evidenza empirica porta a concludere che i tempi di sopravvivenza differiscono a secondo dell'organo colpito dal cancro, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha \ge 0.005$.

Infine, per quanto riguarda le prestazioni per grandi campioni del test di Kruskal-Wallis, si può dimostrare che l'efficienza asintotica relativa del test basato sulla statistica H rispetto al test basato sulla classica statistica F dell'analisi della varianza a un criterio risulta (Hájek e Šidák, 1967)

$$\mathrm{EAR}_{H,F} = 12\sigma^2 (\int_{-\infty}^{\infty} f(x)^2 \, dx)^2 \, .$$

Questa efficienza asintotica relativa è identica a quella ottenuta per il test W^+ di Wilcoxon rispetto al test T di Student per un campione e per il test W di Mann-Whitney-Wilcoxon rispetto al test T di Student per due campioni, per cui si può considerare ancora la Tavola 6.6.2, dove si hanno i valori di $EAR_{H,F} = EAR_{W^+,T}$ per alcune distribuzioni.

11.3. Il test di Friedman. Questo test viene utilizzato per la verifica di ipotesi nell'analisi della varianza a due criteri nel cosiddetto disegno campionario con blocchi casualizzati con una osservazione per cella. Più esattamente, in questo disegno si hanno nk soggetti che vengono divisi in n blocchi, in maniera tale che in ogni blocco i soggetti sono assegnati casualmente ai k trattamenti. Il modello statistico "distribution-free" opportuno in questo caso è quindi dato da

$$\mathcal{L}_{\lambda_{1},...,\lambda_{k},F_{1},...,F_{n}} = \{F_{n} : F_{n}(x_{11},...,x_{k1},...,x_{1n},...,x_{kn}) = \prod_{j=1}^{k} \prod_{i=1}^{n} F_{i}(x_{ji} - \lambda_{j}), F_{1},...,F_{n} \in \mathcal{C}, \lambda_{1},...,\lambda_{k} \in \mathbb{R}\}.$$

Si noti che $\mathcal{L}_{\lambda_1,\dots,\lambda_k,F_1,\dots,F_n}$ rappresenta il modello statistico relativo a nk campioni casuali indipendenti di una osservazione provenienti da nk variabili casuali assolutamente continue, che in ogni blocco sono equivalenti in distribuzione a meno di un parametro di posizione. Inoltre, $\mathcal{L}_{0,\dots,0,F_1,\dots,F_n}$ rappresenta il modello statistico relativo a n campioni casuali indipendenti di k osservazioni provenienti da n variabili casuali assolutamente continue. Siano dunque X_{ji} , per $j=1,\dots,k,$ $i=1,\dots,n,$ nk variabili casuali da cui si dispone di una sola osservazione, con funzione di ripartizione congiunta $F_n \in \mathcal{L}_{\lambda_1,\dots,\lambda_k,F_1,\dots,F_n}$. Si vuole verificare l'ipotesi di base del tipo $H_0: \lambda_1 = \dots = \lambda_k, F_1,\dots, F_n \in \mathcal{C}$, contro l'alternativa $H_1: \lambda_j \neq \lambda_h, \exists j \neq h = 1,\dots,k, F_1,\dots,F_n \in \mathcal{C}$, ovvero si vuole verificare se i trattamenti hanno effetto differente. Se è vera l'ipotesi di base, allora (X_{1i},\dots,X_{ki}) , per $i=1,\dots,n$, è un campione casuale e sia $(R_{1(i)},\dots,R_{k(i)})$, per $i=1,\dots,n$, il relativo vettore dei ranghi. La statistica del test di Friedman è quindi data da

$$G = \frac{12}{nk(k+1)} \sum_{j=1}^{k} (R_{j(+)} - n(k+1)/2)^2$$
,

dove in questo caso $R_{j(+)} = \sum_{i=1}^{n} R_{j(i)}$ rappresenta la somma dei ranghi associati al j-esimo trattamento in ogni blocco. Se è vera l'ipotesi di base, il rango associato ad un dato trattamento per un blocco è uniformente distribuito (vedi Corollario 2.4.4), per cui in conseguenza del Corollario 2.4.5 si ha $E(R_{j(+)}) = \sum_{i=1}^{n} E(R_{j(i)}) = n(k+1)/2$. Dunque, la statistica G, che è una misura della differenza fra le somme attese dei ranghi e le somme osservate dei ranghi per un trattamento, è una statistica opportuna per verificare l'ipotesi di base. La statistica G può essere espressa alternativamente come

$$G = \frac{12}{nk(k+1)} \sum_{j=1}^{k} (R_{j(+)}^2 - n(k+1)R_{j(+)} + n^2(k+1)^2/4)$$

$$= \frac{12}{nk(k+1)} \sum_{j=1}^{k} R_{j(+)}^2 - \frac{12}{k} \sum_{j=1}^{k} \sum_{i=1}^{n} R_{j(i)} + 3n(k+1) \frac{12}{nk(k+1)} \sum_{j=1}^{k} R_{j(+)}^2 - 3n(k+1).$$

Dal momento che è molto laborioso tabulare la distribuzione esatta di G, è conveniente adoperare il seguente risultato per grandi campioni.

Teorema 11.3.1. Siano X_{ji} , per $j=1,\ldots,k$, $i=1,\ldots,n$, nk variabili casuali da cui si ha a disposizione una osservazione, con funzione di ripartizione congiunta data da $F_n \in \mathcal{L}_{0,\ldots,0,F_1,\ldots,F_n}$. Per $n \to \infty$ si ha

$$G_n \stackrel{d}{\to} \chi^2_{k-1}$$
.

Dimostrazione. Si veda Hettmansperger (1984).

Un'approssimazione per grandi campioni della regione critica del test è quindi data dall'insieme

$$\{g:g\geq\chi^2_{k-1,1-\alpha}\}\;.$$

• Esempio 11.3.1. In un esperimento si vuole verificare l'efficacia delle scorie degli altoforni come materiale fertilizzante in agricoltura su tre tipi di suolo, ovvero fertile sabbioso, fertile argilloso e sabbia fertile. Vari tipi di fertilizzante per acro sono stati applicati e i dati della Tavola 11.3.1 si riferiscono al granturco prodotto. In questo caso, i vari tipi di fertilizzanti rappresentano i trattamenti, mentre i tipi di suolo sono i blocchi. Si è quindi interessati a verificare se i trattamenti sono equivalenti, ovvero l'ipotesi di base $H_0: \lambda_1 = \ldots = \lambda_7, F_1, F_2, F_3 \in \mathcal{C}$, contro l'alternativa $H_1: \lambda_j \neq \lambda_h, \exists j \neq h = 1, \ldots, 7, F_1, F_2, F_3 \in \mathcal{C}$. Si

ha $r_{1(+)}=7, r_{2(+)}=10, r_{3(+)}=8, r_{4(+)}=12, r_{5(+)}=13, r_{6(+)}=20$ e $r_{7(+)}=14$, da cui $g\simeq 8.1428$, e risulta

$$0.10 < \Pr(G \geq 8.1428) \simeq \Pr(\chi_6^2 \geq 8.1428) < 0.25 \; .$$

Quindi, la significatività osservata risulta $0.10 < \alpha_{oss} < 0.25$. L'evidenza empirica porta dunque a concludere che i fertilizzanti sono equivalenti, dal momento che si può accettare H_0 ad ogni livello di significatività $\alpha \le 0.10$.

Tavola 11.3.1. Granturco prodotto (in staio per acro).

	fertile sabbioso		fertile a	rgilloso	sabbia fertile	
Fertilizzante	x_{j1}	$r_{j(1)}$	x_{j2}	$r_{j(2)}$	x_{j2}	$r_{j(2)}$
Nessuno	11.1	1	32.6	1	63.3	5
Scorie grezze	15.3	2	40.8	2	65.0	6
Scorie medie	22.7	3	52.1	3	58.8	2
Scorie per agricoltura	23.8	4	52.8	4	61.4	4
Calcare per agricoltura	25.6	5	63.1	7	41.1	1
Scorie per agricoltura+additivi	31.2	7	59.5	6	78.1	7
Calcare per agricoltura+additivi	25.8	6	55.3	5	60.2	3

Fonte: Johnson e Graybill (1972)

• Esempio 11.3.2. In un esperimento si vuole verificare l'aumento di peso di alcuni topi sottoposti a 4 tipi di dieta. Ogni dieta è caratterizzata da differenti apporti proteici (1 - moderato apporto proteico animale, 2 - elevato apporto proteico animale, 3 - moderato apporto proteico vegetale, 4 - elevato apporto proteico vegetale). I dati della Tavola 11.3.2 forniscono gli aumenti di peso in 10 gruppi di 4 topi ciascuno che sono stati assegnati casualmente alle diete.

Tavola 11.3.2. Aumenti di peso dei topi (in grammi).

j	x_{j1}	$r_{j(1)}$	x_{j2}	$r_{j(2)}$	x_{j3}	$r_{j(3)}$	x_{j4}	$r_{j(4)}$	x_{j5}	$r_{j(5)}$	x_{j6}	$r_{j(6)}$	x_{j7}	$r_{j(7)}$	x_{j8}	$r_{j(8)}$	x_{j9}	$r_{j(9)}$	x_{j10}	$r_{j(10)}$
1	90	2	76	2	90	2	64	1	86	2	51	1	72	1	90	4	95	3	78	2
2	73	1	102	4	118	4	104	3	81	1	107	4	100	4	87	3	117	4	111	4
3	107	4	95	3	97	3	80	2	98	4	74	2	74	2	67	1	89	2	58	1
4	98	3	74	1	56	1	111	4	95	3	88	3	82	3	77	2	86	1	92	3

Fonte: Snedecor e Cochran (1967)

In questo caso, i vari tipi di dieta rappresentano i trattamenti, mentre i gruppi di topi assegnati casualmete ai 4 trattamenti sono i blocchi. Si è quindi interessati a verificare se le diete sono equivalenti, ovvero l'ipotesi di base $H_0: \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4, F_1, \dots, F_{10} \in \mathcal{C}$, contro $H_1: \lambda_j \neq \lambda_h, \exists j \neq h = 1, 2, 3, 4, F_1, \dots, F_{10} \in \mathcal{C}$. Dal momento che $r_{1(+)} = 20, r_{2(+)} = 32, r_{3(+)} = 24$ e $r_{4(+)} = 24$, da cui $g \simeq 4.56$, allora si ha

$$0.10 < \Pr(G \geq 4.56) \simeq \Pr(\chi_3^2 \geq 4.56) < 0.25$$
 ,

e quindi la significatività osservata risulta $0.10 < \alpha_{oss} < 0.25$. L'evidenza empirica porta dunque a concludere che le diete sono equivalenti, in quanto si può accettare H_0 ad ogni livello di significatività $\alpha \le 0.10$.

Per quanto riguarda l'efficacia del test di Friedman, si può dimostrare che l'efficienza asintotica relativa del test basato sulla statistica G rispetto al test basato sulla classica statistica F dell'analisi della varianza a due criteri risulta (Hájek e Šidák, 1967),

$$EAR_{G,F} = \frac{12\sigma^2 k}{k+1} \left(\int_{-\infty}^{\infty} f(x)^2 dx \right)^2.$$

Questa efficienza asintotica relativa è identica a quella ottenuta per il test H di Kruskal-Wallis rispetto al test per l'analisi della varianza a un criterio solo per $k \to \infty$. In particolare, se è vera l'assunzione di normalità, allora per k=2 si ottiene $\mathrm{EAR}_{G,F}=2/\pi$, ovvero l'efficienza asintotica relativa del test dei segni rispetto al test T di Student per un campione. Questa perdita di efficienza è dovuta all'ordinamento all'interno dei blocchi, specie per un piccolo numero di trattamenti. Tenendo presente la relazione

 $EAR_{G,F} = (k/(k+1))EAR_{W^+,T}$, si può ottenere i valori di $EAR_{G,F}$ per alcune distribuzioni mediante la Tavola 6.6.2.

11.4. Il test di concordanza di Kendall. La statistica del test di Friedman può essere adoperata anche nel problema dell'associazione quando si hanno a disposizione campioni da variabili casuali k dimensionate. Ad esempio, questo problema sorge quando si hanno k oggetti su cui viene misurato un certo attributo da n persone in maniera indipendente e si vuole avere una conferma della credibilità delle n misurazioni fatte, ovvero si vuole verificare l'associazione tra le misurazioni. Questa struttura dei dati è dunque analoga a quella relativa a k trattamenti fatti su n blocchi. Si consideri il modello statistico "distribution-free"

$$C_F^k = \{F_n : F_n(x_{11}, \dots, x_{k1}, \dots, x_{1n}, \dots, x_{kn} = \prod_{i=1}^n F(x_{1i}, \dots, x_{ki}), F \in C^k\},$$

dove \mathcal{C}^k rappresenta la classe delle funzioni di ripartizione di un vettore k-variato di variabili casuali assolutamente continue. Si noti che \mathcal{C}^k_F rappresenta il modello statistico relativo ad un campione casuale proveniente da un vettore k-variato di variabili casuali assolutamente continue. Una sottoclasse di \mathcal{C}^k_F è data dal modello statistico "distribution-free"

$$\mathcal{I}_{F_1,\ldots,F_k}^k = \{F_n : F_n(x_{11},\ldots,x_{k1},\ldots,x_{1n},\ldots,x_{kn}) = \prod_{j=1}^k \prod_{i=1}^n F_j(x_{ji}), F_1,\ldots,F_k \in \mathcal{C}\}.$$

Dunque, $\mathcal{I}^k_{F_1,\ldots,F_k}$ rappresenta il modello statistico relativo ad un campione casuale proveniente da un vettore k-variato di variabili casuali assolutamente continue a componenti indipendenti. Il sistema di ipotesi d'interesse è quindi $H_0: F_n \in \mathcal{I}^k_{F_1,\ldots,F_k}$ contro $H_1: F_n \in \mathcal{C}^k_F - \mathcal{I}^k_{F_1,\ldots,F_k}$, ovvero si vuole verificare l'indipendenza delle componenti del vettore k-variato di variabili casuali da cui proviene il campione casuale. Se è vera l'ipotesi di base allora $\mathcal{L}_{0,\ldots,0,F_1,\ldots,F_n} = \mathcal{I}^k_{F_1,\ldots,F_k}$ e quindi una statistica test opportuna è data dalla statistica di Kendall

$$K = \frac{G}{n(k-1)} \ .$$

Questa statistica è equivalente alla statistica di Friedman ed è stata standardizzata in modo che $0 \le K \le 1$, ovvero in modo che possa essere interpretata come coefficiente di associazione. Infatti, se non esiste associazione, allora $R_{j(+)} = n(k+1)/2$, per $j=1,\ldots,k$, e quindi K=0. In caso contrario, si ha $R_{j(+)} = nj$, per $j=1,\ldots,k$, e quindi K=1. Sotto ipotesi di base per $n\to\infty$ si ha

$$n(k-1)K \xrightarrow{d} \chi_{k-1}^2$$
.

Dunque, un'approssimazione per grandi campioni della regione critica del test è data dall'insieme

$$\{k: k \geq \chi^2_{k-1,1-\alpha}\}$$
.

Capitolo 12

I test funzionali

13.1. Il test Chi-quadrato per la bontà di adattamento. Sia (X_1, \ldots, X_n) un campione casuale da una variabile casuale discreta X. Supponiamo che il supporto di X sia finito e che la relativa funzione di probabilità sia data da

$$p(x_i) = \Pr(X = x_i) = \pi_i, i = 1, ..., r,$$

Sia inoltre f_i , per $i=1,\ldots,r$, la frequenza osservata di determinazioni del valore x_i nel campione. Si ha $\sum_{i=1}^r f_i = n$. Le quantità (f_1,\ldots,f_r) sono dette frequenze osservate, mentre $(n\pi_1,\ldots,n\pi_r)$ sono dette frequenze attese. In questo caso, il sistema di ipotesi è dato da $H_0: \pi_i = \pi_{i0}(\boldsymbol{\theta}), i=1,\ldots,r$, contro $H_1: \pi_i \neq \pi_{i0}(\boldsymbol{\theta}), \exists i=1,\ldots,r$, dove $\boldsymbol{\theta}$ è un vettore di parametri tale che $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^q$. Con questo sistema di ipotesi si vuole dunque verificare che la distribuzione di X appartiene ad una famiglia di distribuzioni specificata (eventualmente) a meno di un vettore di parametri. Dal momento che le probabilità π_i , per $i=1,\ldots,r$, specificano completamente la funzione di ripartizione di X, la precedente ipotesi è a tutti gli effetti una ipotesi funzionale. Una statistica test conveniente in questo caso è la statistica Chi-quadrato per la bontà d'adattamento data da

$$Q = \sum_{i=1}^{r} \frac{(f_i - n\pi_{i0}(\widehat{\boldsymbol{\Theta}}))^2}{n\pi_{i0}(\widehat{\boldsymbol{\Theta}})},$$

dove $\widehat{\Theta}$ è uno stimatore di θ coerente, efficiente per grandi campioni e che converge in distribuzione alla distribuzione Normale. La statistica Q può essere alternativamente espressa come

$$Q = \frac{1}{n} \sum_{i=1}^{r} \frac{f_i^2}{\pi_{i0}(\widehat{\boldsymbol{\Theta}})} - n.$$

Se le frequenze osservate si discostano molto da quelle attese stimate, si ottengono determinazioni elevate di Q che conseguentemente portano a respingere l'ipotesi di base. La distribuzione esatta di Q è proibitiva da calcolare e quindi è conveniente impiegare il seguente risultato per grandi campioni.

Teorema 12.1.1. Sia $(X_1, ..., X_n)$ un campione casuale da una variabile casuale discreta X con funzione di probabilità data da $p(x_i) = \pi_{i0}(\boldsymbol{\theta})$, per i = 1, ..., r, dove $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^q$, e siano $(f_1, ..., f_r)$ le relative frequenze osservate. Se $\pi_{i0}(\boldsymbol{\theta})$ ammette derivate del primo e secondo ordine rispetto ad ogni $\boldsymbol{\theta} \in \Theta$ e se $\widehat{\boldsymbol{\Theta}}$ è uno stimatore di $\boldsymbol{\theta}$ coerente, efficiente per grandi campioni e che converge in distribuzione alla distribuzione Normale, allora per $n \to \infty$

$$Q = \sum_{i=1}^{r} \frac{(f_i - n\pi_{i0}(\widehat{\boldsymbol{\Theta}}))^2}{n\pi_{i0}(\widehat{\boldsymbol{\Theta}})} \stackrel{d}{\to} \chi^2_{r-1-q}.$$

Dimostrazione. Si veda Serfling (1980).

Un'approssimazione per grandi campioni della regione critica del test è quindi data dall'insieme

$${q: q \ge \chi^2_{r-1-q,1-\alpha}}$$
.

• Esempio 12.1.1. I dati della Tavola 12.1.1 si riferiscono al numero di maschi nei primi sette figli di 1334 pastori prostestanti svedesi. Si vuole verificare che questi dati provengono da una distribuzione Binomiale $Bi(7,\theta)$, ovvero si vuole verificare l'ipotesi di base $H_0: \pi_i = \binom{7}{i-1}\theta^{i-1}(1-\theta)^{7-i+1}, i=1,\ldots,8$, contro l'alternativa $H_1: \pi_i \neq \binom{7}{i-1}\theta^{i-1}(1-\theta)^{7-i+1}, \exists i=1,\ldots,8$, dove $\theta \in (0,1)$.

Tavola 12.1.1. Numero dei figli maschi.

Tavola 12:1:1: I valliero del figli masem.							
Numero figli maschi	Frequenze osservate						
0	6						
1	57						
2	206						
3	362						
4	365						
5	256						
6	69						
7	13						

Fonte: Edwards e Fraccaro (1960)

Il parametro θ può essere stimato col metodo della massima verosimiglianza, che fornisce stimatori coerenti, efficienti per grandi campioni e che convergono in distribuzione alla distribuzione Normale. La funzione di log-verosimiglianza risulta

$$\log L(\theta) = c + \sum_{i=1}^{8} f_i \log \pi_i(\theta) = c + \sum_{i=1}^{8} f_i \log(\theta^{i-1} (1-\theta)^{7-i+1})$$
$$= c + \log \theta \sum_{i=1}^{8} (i-1)f_i + \ln(1-\theta) \sum_{i=1}^{8} (7-i+1)f_i, \theta \in (0,1).$$

La funzione di log-verosimiglianza è massimizzata per

$$\widehat{\theta} = \frac{1}{7n} \sum_{i=1}^{8} (i-1) f_i ,$$

ovvero per $\widehat{\theta} \simeq 0.5140$. Dunque, si ha $\pi_1(\widehat{\theta}) \simeq 0.0064$, $\pi_2(\widehat{\theta}) \simeq 0.0474$, $\pi_3(\widehat{\theta}) \simeq 0.1504$, $\pi_4(\widehat{\theta}) \simeq 0.2652$, $\pi_5(\widehat{\theta}) \simeq 0.2804$, $\pi_6(\widehat{\theta}) \simeq 0.1780$, $\pi_7(\widehat{\theta}) \simeq 0.0627$, $\pi_8(\widehat{\theta}) \simeq 0.0095$, da cui $q \simeq 5.9426$. Di conseguenza, si ha

$$0.25 < \Pr(Q \ge 5.9426) \simeq \Pr(\chi_6^2 \ge 5.9426) < 0.50$$
,

e quindi la significatività osservata risulta $0.25 < \alpha_{oss} < 0.50$. In questo caso, si può accettare H_0 , ovvero che il campione proviene da una distribuzione Binomiale $Bi(7,\theta)$, ad ogni livello di significatività $\alpha \leq 0.25$.

• Esempio 12.1.2 I dati della Tavola 12.1.2 forniscono la distribuzione della prima cifra dei numeri contenuti in un volume della rivista Reader's Digest scelto casualmente. Un modello teorico per questi dati è la cosiddetta distribuzione anomala (vedi Feller, 1971). La funzione di probabilità di una variabile casuale anomala è data da

$$p(x) = \log_{10}(1 + 1/x)\mathbf{1}_{\{1,\dots,9\}}(x)$$
.

Si vuole verificare che i dati provengono da una variabile casuale anomala, ovvero si vuole verificare l'ipotesi $H_0: \pi_i = \log_{10}(1+1/i), i=1,\ldots,9$, contro $H_1: \pi_i \neq \log_{10}(1+1/i), \exists i=1,\ldots,9$. Non vi sono parametri da stimare, e dunque si ha $q \simeq 3.2776$, da cui

$$0.90 < \Pr(Q \geq 3.2776) \simeq \Pr(\chi^2_8 \geq 3.2776) < 0.95$$
 ,

e quindi la significatività osservata risulta $0.90 < \alpha_{oss} < 0.95$. In questo caso, vi è una forte evidenza empirica ad accettare H_0 , ovvero che il campione proviene da una distribuzione anomala, in quanto si potrebbe accettare questa ipotesi ad ogni livello di significatività $\alpha \le 0.90$.

Prima cifra	Frequenze osservate			
1	103			
2	57			
3	38			
4	23			
5	22			
6	20			
7	17			
8	15			
9	13			
- D (2. 1 E (1020)			

Tavola 12.1.2. Prime cifre dei numeri contenuti in un volume.

Benford, F. (1938)

Sia (X_1,\ldots,X_n) un campione casuale proveniente da una variabile casuale X discreta con supporto numerabile, con relativa funzione di probabilità $p(x_i) = \Pr(X = x_i) = \pi_i$, per $i = 1, 2, \ldots$ In questo caso, per rendere applicabile il test Chi-quadrato si deve considerare un raggruppamento di valori. Più esattamente, si considera solamente i primi (r-1) valori x_i con relative probabilità $\pi_i = \Pr(X = x_i)$, per $i = 1, \ldots, r-1$, e l'insieme di valori x_r, x_{r+1}, \ldots con relativa probabilità $\pi_r = \sum_{i=r}^{\infty} \Pr(X = x_i)$. Dunque, in questo caso f_r rappresenta la frequenza osservata dei valori x_r, x_{r+1}, \ldots

• Esempio 12.1.3. I dati della Tavola 12.1.3 si riferiscono al numero di taxi arrivati in intervalli di un minuto alla stazione di Euston a Londra fra le 9.00 e le 10.00 in una mattina del 1950. Se gli arrivi sono casuali allora è noto dalla teoria dei processi stocastici di punto che i dati provengono da una distribuzione di Poisson $Po(\theta)$. Raggruppando opportunamente i valori, si vuole verificare l'ipotesi di base $H_0: \pi_i = e^{-\theta}\theta^{i-1}/(i-1)!, i=1,\ldots,5, \pi_6 = 1-\sum_{i=1}^5 e^{-\theta}\theta^{i-1}/(i-1)!,$ dove $\theta \in \mathbb{R}^+$.

Tavola 12.1.3. Numero dei taxi arrivati alla stazione in un ora.

numero di taxi per minuto	frequenza
0	18
1	18
2	14
3	7
4	3
più di 5	0

Fonte: Kendall (1951)

Il parametro θ può essere stimato col metodo della massima verosimiglianza. Tenendo presente che $f_6 = 0$, la funzione di log-verosimiglianza risulta

$$\log L(\theta) = c + \sum_{i=1}^{6} f_i \log \pi_i(\theta) = c + \sum_{i=1}^{5} f_i \log(e^{-\theta}\theta^{i-1}/(i-1)!) + f_6 \log(1 - \sum_{i=1}^{5} e^{-\theta}\theta^{i-1}/(i-1)!)$$

$$= c + \sum_{i=1}^{5} f_i(-\theta + (i-1)\log\theta) = c + \log\theta \sum_{i=1}^{5} (i-1)f_i - n\theta, \theta > 0.$$

La funzione di log-verosimiglianza viene massimizzata per

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{5} (i-1) f_i ,$$

ovvero $\widehat{\theta} \simeq 1.3167$. Dunque, si ha $\pi_1(\widehat{\theta}) = 0.2680$, $\pi_2(\widehat{\theta}) = 0.3529$, $\pi_3(\widehat{\theta}) = 0.2323$, $\pi_4(\widehat{\theta}) = 0.1020$, $\pi_5(\widehat{\theta}) = 0.0336$, $\pi_6(\widehat{\theta}) = 0.0112$, da cui $q \simeq 1.9841$. Di conseguenza

$$0.50 < \Pr(Q \geq 1.9841) \simeq \Pr(\chi_4^2 \geq 1.9841) < 0.90$$
 ,

quindi la significatività osservata risulta $0.50 < \alpha_{oss} < 0.90$. In questo caso, si può accettare H_0 , ovvero che il campione proviene da una variabile casuale di Poisson, ad ogni livello di significatività $\alpha \le 0.50$.

• Esempio 12.1.4 I dati della Tavola 12.1.4 si riferiscono al numero di scintillazioni in intervalli di 72 secondi causate dal decadimento radioattivo del polonio. Se le scintillazioni avvengono casualmente, allora è noto dalla teoria dei processi stocastici di punto che i dati provengono da una distribuzione di Poisson $Po(\theta)$. Raggruppando i valori, si vuole dunque verificare l'ipotesi $H_0: \pi_i = e^{-\theta}\theta^{i-1}/(i-1)!,$ $i=1,\ldots,12,\ \pi_{13}=1-\sum_{i=1}^{12}e^{-\theta}\theta^{i-1}/(i-1)!,$ dove $\theta\in\mathbb{R}^+$.

Tavola 12.1.4. Numero di scintillazioni (in intervalli di 72sec) del polonio.

Numero scintillazioni	Frequenze osservate
0	57
1	203
2	383
3	525
4	532
5	408
6	273
7	139
8	45
9	27
10	10
11	4
≥ 12	2

Fonte: Rutheford e Geiger (1910)

Analogamente all'Esempio 12.1.3, il parametro θ può essere stimato col metodo della massima verosimiglianza. Tuttavia, in questo caso f_{13} non è nullo, per cui la funzione di log-verosimiglianza risulta

$$\log L(\theta) = c + \sum_{i=1}^{13} f_i \log \pi_i = c + \log \theta \sum_{i=1}^{12} \left(i-1\right) f_i - n\theta + f_{13} \log (1 - \sum_{i=1}^{12} e^{-\theta} \theta^{i-1} / (i-1)!) \;, \; \theta > 0 \;,$$

che può essere massimizzata solo numericamente. Per via numerica si ottiene che il massimo è raggiunto per $\widehat{\theta} = 3.8678$. Sostituendo, si ha $\pi_1(\widehat{\theta}) = 0.0209$, $\pi_2(\widehat{\theta}) = 0.0808$, $\pi_3(\widehat{\theta}) = 0.1563$, $\pi_4(\widehat{\theta}) = 0.2016$, $\pi_5(\widehat{\theta}) = 0.1950$, $\pi_6(\widehat{\theta}) = 0.1508$, $\pi_7(\widehat{\theta}) = 0.0972$, $\pi_8(\widehat{\theta}) = 0.0537$, $\pi_9(\widehat{\theta}) = 0.0260$, $\pi_{10}(\widehat{\theta}) = 0.0112$, $\pi_{11}(\widehat{\theta}) = 0.0043$, $\pi_{12}(\widehat{\theta}) = 0.0015$, $\pi_{13}(\widehat{\theta}) = 0.0004$, da cui $q \simeq 14.6580$. Di conseguenza, si ha

$$0.10 < \Pr(Q \geq 14.6580) \simeq \Pr(\chi^2_{11} \geq 14.6580) < 0.25$$
 ,

quindi la significatività osservata risulta $0.10 < \alpha_{oss} < 0.25$. In questo caso si può accettare H_0 , ovvero che il campione proviene da una variabile casuale di Poisson, ad ogni livello di significatività $\alpha \le 0.10$.

• Esempio 12.1.5. In un indagine sono state contate le bombe cadute in un area di $36km^2$ nella parte sud di Londra durante la Seconda Guerra Mondiale. L'area è stata suddivisa in sottoaree ognuna delle quali misurava 1/16 di km^2 , per un totale di 576 sottoaree in cui è stato contato il numero di bombe cadute. I dati relativi sono forniti nella Tavola 12.1.5. Si vuole verificare se le bombe sono cadute casualmente o se sono state lanciate su precisi obiettivi. Se le bombe sono cadute casualmente, allora dalla teoria dei processi stocastici di punto sul piano è noto che i dati provengono da una $Po(\theta)$. Si vuole verificare l'ipotesi $H_0: \pi_i = e^{-\theta}\theta^{i-1}/(i-1)!, i=1,\ldots,5, \pi_6 = 1-\sum_{i=1}^5 e^{-\theta}\theta^{i-1}/(i-1)!,$ dove $\theta \in \mathbb{R}^+$.

Tavola 12.1.5. Numero di bombe (in aree di 1/4 di km^2).

Numero bombe	Frequenze osservate
0	229
1	211
2	93
3	35
4	7
≥ 5	1
ъ	1 1 (10.16)

Fonte: Clarke (1946)

Analogamente all'Esempio 13.1.4, lo stimatore di massima verosimiglianza di θ viene ottenuto massimizzando numericamente la log-verosimiglianza, da cui si ha $\widehat{\theta}=0.9275$. Sostituendo si ha $\pi_1(\widehat{\theta})=0.3955,\ \pi_2(\widehat{\theta})=0.3669,\ \pi_3(\widehat{\theta})=0.1701,\ \pi_4(\widehat{\theta})=0.0526,\ \pi_5(\widehat{\theta})=0.0122,\ \pi_6(\widehat{\theta})=0.0027,$ da cui $q\simeq 1.1878$. Di conseguenza, si ha

$$0.50 < \Pr(Q \ge 1.1878) \simeq \Pr(\chi_4^2 \ge 1.1878) < 0.90$$
,

e quindi la significatività osservata risulta $0.50 < \alpha_{oss} < 0.90$. In questo caso, si può accettare H_0 , ovvero che il campione proviene da una variabile casuale di Poisson, ad ogni livello di significatività $\alpha \le 0.50$.

13.2. Il test Chi-quadrato per la bontà di adattamento con k campioni. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j = 1, \ldots, k$, k campioni casuali indipendenti, ognuno dei quali proviene rispettivamente da una variabile casuale discreta X_j , per $j = 1, \ldots, k$. Sia inoltre $n = \sum_{j=1}^k n_j$. Supponiamo che le X_j abbiano identico supporto finito e che la relativa funzione di probabilità sia data da

$$p(x_i) = \Pr(X_i = x_i) = \pi_{ii}, i = 1, ..., r,$$

Sia inoltre f_{ji} la frequenza osservata di determinazioni del valore x_i nel j-esimo campione, per $i=1,\ldots,r$, $j=1,\ldots,k$. Si ha $\sum_{i=1}^r f_{ji} = n_j$ per $j=1,\ldots,k$. Inoltre, si indica con $f_{+i} = \sum_{j=1}^k f_{ji}$, per $i=1,\ldots,r$. In questo caso, il sistema di ipotesi è dato da $H_0:\pi_{1i}=\ldots=\pi_{ki}=\pi_i, i=1,\ldots,r$, contro $H_1:\pi_{ji}=\pi_{li},\exists j\neq l=1,\ldots,k, i=1,\ldots,r$. Si vuole dunque verificare l'omogeneità delle distribuzioni delle X_j , per $j=1,\ldots,k$. Dal momento che le probabilità π_{ji} , per $i=1,\ldots,r,j=1,\ldots,k$, specificano completamente le funzioni di ripartizione delle X_j , la precedente ipotesi è a tutti gli effetti una ipotesi funzionale. Una statistica test conveniente in questo caso è la statistica Chi-quadrato per la bontà d'adattamento con k campioni data da

$$Q = \sum_{i=1}^{k} \sum_{i=1}^{r} \frac{(f_{ji} - n_{j} \widehat{\pi}_{i})^{2}}{n_{j} \widehat{\pi}_{i}},$$

dove $\widehat{\pi}_i = f_{+i}/n$, per $i=1,\ldots,r$. La statistica Q può essere alternativamente espressa come

$$Q = n \sum_{j=1}^{k} \sum_{i=1}^{r} \frac{f_{ji}^{2}}{n_{j} f_{+i}} - n.$$

Se le frequenze osservate si discostano molto dalle frequenze attese stimate si ottengono realizzazioni elevate di Q, che conseguentemente portano a respingere l'ipotesi di base. La distribuzione esatta di Q è proibitiva da calcolare e quindi è conveniente impiegare il seguente risultato per grandi campioni.

Teorema 12.2.1. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j=1,\ldots,k$, k campioni casuali indipendenti, ognuno dei quali proviene rispettivamente da una variabile casuale discreta X_j con funzione di probabilità $p(x_i)=\pi_i$ per $i=1,\ldots,r, j=1,\ldots,k$. Allora, per $n\to\infty$

$$Q=\sum_{i=1}^k\sum_{i=1}^rrac{(f_{ji}-n_j\widehat{\pi}_i)^2}{n_j\widehat{\pi}_i}\stackrel{d}{
ightarrow}\chi^2_{rk-k-r+1}$$
 ,

dove $\widehat{\pi}_i = f_{+i}/n$, per $i = 1, \dots, r$.

Dimostrazione. Si veda Serfling (1980).

Un'approssimazione per grandi campioni della regione critica del test è quindi data dall'insieme

$${q: q \ge \chi^2_{rk-k-r+1,1-\alpha}}$$
.

• Esempio 12.2.1. Quando i dati vengono raccolti, il rilevatore frequentemente arrotonda l'ultima cifra del dato a certe cifre convenienti, quali ad esempio 0 e 5. Questo fenomeno di "accatastamento" di cifre è stato

osservato nella rilevazione dei dati più disparati. Si considerino ad esempio i dati della Tavola 12.2.1, che si riferiscono alle frequenze della cifra finale delle misurazioni delle temperature massime e minime giornaliere ufficiali negli Stati Uniti negli anni 1922-1924.

Tavola 12.2.1. Cifra finale delle temperature minime e massime.

Cifra	max	min
0	194	177
1	148	149
2	108	113
3	72	70
4	29	35
5	51	50
6	32	27
7	54	68
8	102	98
9	210	213
	_	

Fonte: Preece (1981)

Si vuole determinare se i dati provengono dalla stessa distribuzione, ovvero si vuole verificare $H_0: \pi_i = \pi_{1i} = \pi_{2i}, i = 1, \dots, 10$. Si ha dunque $q \simeq 3.6276$, da cui

$$0.90 < \Pr(q \ge 3.6276) \simeq \Pr(\chi_q^2 \ge 3.6276) < 0.95$$
,

quindi la significatività osservata risulta $0.90 < \alpha_{oss} < 0.95$. Quindi, si deve accettare che i dati provengono dalla stessa distribuzione, in quanto si può accettare H_0 ad ogni livello di significatività $\alpha \le 0.90$.

• Esempio 12.2.2. Nel 1861 il periodico New Orleans Crescent pubblicò 10 lettere a firma Quinto Curzio Snodgrass. Sebbene gli eventi discussi in queste lettere sembrano essere accaduti realmente, non esiste alcuna traccia di uno scrittore con questo nome. Si è supposto che il vero autore delle lettere sia stato Mark Twain. Un modo per verificare statisticamente la paternità degli scritti è quella di comparare le distribuzioni delle lunghezze delle parole. I dati della Tavola 12.2.2 si riferiscono alle distribuzioni del numero di lettere delle parole di due brani scelti casualmente dagli scritti di Mark Twain e Quinto Curzio Snodgrass.

Tavola 12.2.2. Lunghezza delle parole di due brani.

Lunghezza	Twain	Q.C.S.
1	312	424
2	1146	2685
3	1394	2752
4	1177	2302
5	661	1431
6	442	992
7	367	896
8	231	638
9	181	465
10	109	276
11	50	152
12	24	101
> 13	12	61

Fonte: Brinegar (1963)

Si vuole determinare se i due brani sono stati scritti dalla medesima persona, ovvero si vuole verificare $H_0: \pi_i = \pi_{1i} = \pi_{2i}, i = 1, \dots, 13$. Si ha $q \simeq 101.4938$, da cui

$$\Pr(Q \ge 101.4938) \simeq \Pr(\chi_{12}^2 \ge 101.4938) < 0.001$$
,

e quindi la significatività osservata risulta $\alpha_{oss} < 0.001$. Dunque, si deve respingere l'ipotesi che Twain e Snodgrass siano la stessa persona, in quanto si può respingere H_0 ad ogni livello di significatività $\alpha \ge 0.001$.

Quando le probabilità π_i , per $i=1,\ldots,r$, sono note il test si basa sulla statistica

$$Q = \sum_{j=1}^{k} \sum_{i=1}^{r} \frac{(f_{ji} - n_{j}\pi_{i})^{2}}{n_{j}\pi_{i}}.$$

La distribuzione esatta di Q è proibitiva da calcolare e quindi è conveniente impiegare il seguente risultato per grandi campioni.

Teorema 12.2.2. Siano $(X_{j1}, \ldots, X_{jn_j})$, per $j=1,\ldots,k$, k campioni casuali indipendenti, ognuno dei quali proviene rispettivamente da una variabile casuale discreta X_j con funzione di probabilità $p(x_i)=\pi_i$, per $i=1,\ldots,r,\ j=1,\ldots,k$. Allora, per $n\to\infty$

$$Q = \sum_{j=1}^{k} \sum_{i=1}^{r} \frac{(f_{ji} - n_{j}\pi_{i})^{2}}{n_{j}\pi_{i}} \stackrel{d}{ o} \chi_{rk-k}^{2} .$$

Dimostrazione. Si veda Serfling (1980).

Un'approssimazione per grandi campioni della regione critica del test è quindi data dall'insieme

$$\{q: q \ge \chi^2_{rk-k,1-\alpha}\}.$$

• Esempio 12.2.3. Mediante un elaborazione con un sistema di calcolo simbolico sono state determinate le prime 10000 cifre nell'espansione decimale dei numeri trascendenti π ed e. Per ognuno di questi numeri è stata contata la frequenza di ogni cifra $\{0, 1, \dots, 9\}$ e si sono ottenuti i dati di Tavola 12.2.3.

Tavola 12.2.3. Cifre dei numeri trascendenti π ed e.

Cifra	π	e
0	968	974
1	1026	989
2	1021	1004
3	974	1008
4	1012	982
5	1046	992
6	1021	1079
7	970	1008
8	948	996
9	1014	968

Dalla teoria dei numeri è noto che π ed e sono normali con probabilità 1 (un numero è detto normale se ogni cifra si presenta con la medesima frequenza nella sua espansione decimale). Si vuole ottenere una conferma statistica dell'uniformità della distribuzione delle cifre di π ed e, ovvero si vuole verificare $H_0: \pi_i = 1/10, i = 1, \ldots, 10$. Si ha $q \simeq 17.928$, da cui

$$0.25 < \Pr(Q \geq 17.928) \simeq \Pr(\chi^2_{18} \geq 17.928) < 0.50$$
 ,

quindi la significatività osservata risulta $0.25 < \alpha_{oss} < 0.50$. Si può dunque accettare l'ipotesi di uniformità della distribuzione delle cifre dell'espansione decimale di π e di e ad ogni livello di significatività $\alpha \le 0.25$

12.3. La statistica di Kolmogorov. In questo paragrafo viene considerata la principale statistica per costruire test per la verifica di ipotesi funzionali quando la variabile casuale d'interesse è assolutamente continua.

Definizione 12.3.1. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, allora si definisce come funzione di ripartizione empirica

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(-\infty,x]}(X_i), x \in \mathbb{R}.$$

Se $(X_{(1)}, \ldots, X_{(n)})$ è la statistica ordinata relativa a (X_1, \ldots, X_n) , allora una rappresentazione alternativa della funzione di ripartizione empirica è data da

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} i \mathbf{1}_{[X_{(i)}, X_{(i+1)})}(x),$$

dove con abuso di notazione si è assunto che $X_{(0)}=-\infty$ e $X_{(n+1)}=\infty$.

Definizione 12.3.2. Se (X_1, \ldots, X_n) è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, la statistica di Kolmogorov è data da

$$D = \sup_{x} |\widehat{F}(x) - F(x)|. \qquad \triangle$$

◁

La statistica di Kolmogorov è una misura della discrepanza fra la funzione di ripartizione e la funzione di ripartizione empirica. Questa statistica è "distribution-free", nel senso che non dipende dalla struttura funzionale di F, come viene dimostrato nel seguente teorema.

Teorema 12.3.3. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, allora la statistica D di Kolmogorov è "distribution-free" su \mathcal{C}_F .

Dimostrazione. Si ha

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(-\infty,x]}(X_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(0,F(x)]}(F(X_i)), x \in \mathbb{R},$$

essendo F una funzione monotona crescente. Inoltre, tenendo presente la trasformata dell'Integrale di Probabilità si ha $F(X_i) \stackrel{d}{=} Y_i$, dove Y_i ha distribuzione Uniforme U(0,1) per $i=1,\ldots,n$. Se $H(y)=y\mathbf{1}_{(0,1]}(y)+\mathbf{1}_{(1,\infty)}(y)$ rappresenta la funzione di ripartizione di una variabile casuale Uniforme U(0,1) e se $\widehat{H}(y)$ rappresenta la funzione di ripartizione empirica relativa al campione casuale trasformato (Y_1,\ldots,Y_n) , tenendo presente il Teorema 1.1.2, si ha

$$D = \sup_{x} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(0,F(x)]}(F(X_i)) - F(x) \right| \stackrel{d}{=} \sup_{0 \le y \le 1} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(0,y]}(Y_i) - y \right| = \sup_{y} \left| \widehat{H}(y) - H(y) \right|,$$

ovvero D è distribuito come una variabile casuale che non dipende da F.

Il Teorema di Glivenko-Cantelli (vedi Serfling, 1980) implica $D \xrightarrow{p} 0$ per $n \to \infty$. Per quanto riguarda la distribuzione di D si ha il seguente teorema.

Teorema 12.3.4. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, la funzione di ripartizione della statistica D di Kolmogorov è data da

$$G(d) = n! (\int_{1/n-d}^d \int_{2/n-d}^{1/n+d} \dots \int_{1-d}^{(n-1)/n+d} \mathbf{1}_A(x_1,\dots,x_n) \, dx_1 dx_2 \dots dx_n) \, \mathbf{1}_{(1/(2n),1)}(d) + \mathbf{1}_{[1,\infty)}(d)$$
 ,

dove $A = \{(x_1, \dots, x_n) : 0 < x_1 < \dots < x_n < 1\}.$

Dimostrazione. In conseguenza del Teorema 12.3.3 si può assumere senza perdita di generalità che F sia la funzione di ripartizione di una variabile casuale con distribuzione Uniforme U(0,1) e che $\widehat{F}(x)$ sia la funzione di ripartizione empirica relativa a un campione casuale proveniente dalla medesima distribuzione. Si ha $|\widehat{F}(x) - F(x)| = 0$ per $x \notin (0,1)$, per cui $\sup_x |\widehat{F}(x) - F(x)|$ deve essere ottenuto per qualche $x \in (0,1)$, ovvero la statistica di Kolmogorov può essere espressa come

$$D = \sup_{0 \le x \le 1} |\widehat{F}(x) - x|.$$

Il supporto di D risulta (0,1), ovvero si deve determinare $Pr(D \le d)$ solamente per 0 < d < 1. Tenendo presente le precedenti considerazioni, si ha

$$G(d) = \Pr(D \le d) = \Pr(\sup_{0 < x < 1} |\widehat{F}(x) - x| \le d) = \Pr(|\widehat{F}(x) - x| \le d, \forall x \in (0, 1)), 0 < d < 1.$$

Considerando la rappresentazione di $\widehat{F}(x)$ in termini della statistica ordinata, dall'espressione precedente si ha

$$\begin{split} G(d) &= \Pr(|i/n - x| \leq d, \forall x \in [X_{(i)}, X_{(i+1)}), \forall i = 0, 1, \dots, n) \\ &= \Pr(i/n - d \leq x \leq i/n + d, \forall x \in [X_{(i)}, X_{(i+1)}), \forall i = 0, 1, \dots, n) = \Pr(\bigcap_{i=0}^{n} E_i), 0 < d < 1, \dots, n$$

dove con abuso di notazione si definisce $X_{(0)}=0$ e $X_{(n+1)}=1$, mentre

$$E_i = \{i/n - d \le x \le i/n + d, \forall x \in [X_{(i)}, X_{(i+1)})\}, 0 < d < 1.$$

L'insieme di valori di x comune agli eventi E_i e E_{i+1} , per $i=0,1,\ldots,n-1$, è dato da

$$\{i/n - d \le x \le i/n + d\} \cap \{(i+1)/n - d \le x \le (i+1)/n + d\} =$$

$$= \{(i+1)/n - d \le x \le i/n + d\}, i = 0, 1, \dots, n-1, 1/(2n) \le d < 1,$$

dove il vincolo $d \ge 1/(2n)$ deriva dalla condizione $i/n + d \ge (i+1)/n - d$. Inoltre, si noti che la variabile casuale $X_{(i+1)}$ è comune solo agli eventi E_i e E_{i+1} , per cui

$$E_i \cap E_{i+1} = \{(i+1)/n - d \le X_{(i+1)} \le i/n + d\}, i = 0, 1, \dots, n-1, 1/(2n) \le d < 1.$$

Di conseguenza, si ha

$$\bigcap_{i=0}^{n} E_i = \bigcap_{i=0}^{n-1} (E_i \cap E_{i+1}) = \bigcap_{i=0}^{n-1} \{(i+1)/n - d \le X_{(i+1)} \le i/n + d\}, 1/(2n) \le d < 1,$$

ovvero risulta

$$G(d) = \Pr(\bigcap_{i=0}^{n-1} \{(i+1)/n - d \le X_{(i+1)} \le i/n + d\})$$

$$= n! \int_{1/n-d}^{d} \int_{2/n-d}^{1/n+d} \dots \int_{1-d}^{(n-1)/n+d} \mathbf{1}_{A}(x_{1}, \dots, x_{n}) dx_{1} dx_{2} \dots dx_{n}, 1/(2n) \le d < 1.$$

Inoltre, per $d \le 1/(2n)$ si ha $\Pr(D \le d) = 0$, dal momento che in questo caso $\bigcap_{i=0}^n E_i = \emptyset$. Infine, per $d \ge 1$ si ha $\Pr(D \le d) = 1$.

• Esempio 12.3.1. Dal Teorema 12.3.4, per n = 2 si ha

$$G(d) = 2(\int_{1/2-d}^d \int_{1-d}^{1/2+d} \mathbf{1}_A(x_1x_2) \, dx_1 dx_2) \, \mathbf{1}_{(1/4,1)}(d) + \mathbf{1}_{[1,\infty)}(d) \, ,$$

dove $A = \{(x_1, x_2) : 0 < x_1 < x_2 < 1\}$. Per quanto riguarda il precedente integrale si deve distinguere due casi. Per 1/4 < d < 1/2 si ha

$$2\int_{1/2-d}^{d} \int_{1-d}^{1/2+d} \mathbf{1}_{A}(x_{1}x_{2}) dx_{1}dx_{2} = 2\int_{1/2-d}^{d} \int_{1-d}^{1/2+d} dx_{1}dx_{2} = 8d^{2} - 4d + \frac{1}{2},$$

mentre per 1/2 < d < 1 si ha

$$2\int_{1/2-d}^{d}\int_{1-d}^{1/2+d}\mathbf{1}_{A}(x_{1}x_{2})\,dx_{1}dx_{2}=2\int_{0}^{1-d}\int_{1-d}^{1}dx_{1}dx_{2}+2\int_{1-d}^{d}\int_{x_{1}}^{1}dx_{1}dx_{2}=-2d^{2}+4d-1\;.$$

Dunque, risulta

$$G(d) = (8d^2 - 4d + 1/2)\mathbf{1}_{(1/4,1/2)}(d) + (-2d^2 + 4d - 1)\mathbf{1}_{(1/2,1)}(d) + \mathbf{1}_{[1,\infty)}(d).$$

◁

Per quanto riguarda la distribuzione per grandi campioni di $D = D_n$ si ha il seguente teorema.

Teorema 12.3.5. Se $(X_1, ..., X_n)$ è un campione casuale con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, per $n \to \infty$ si ha

$$\lim_n \Pr(\sqrt{n}D \leq d) = 1 - 2\sum_{i=1}^\infty \left(-1\right)^{i-1} e^{-2i^2 d^2}$$
 , $d \geq 0$.

Dimostrazione. Si veda Billingsley (1968).

• Esempio 12.3.2. Nella Tavola 12.3.1 sono riportati i quantili di ordine 0.95 della distribuzione di D e le relative approssimazioni ottenute mediante il Teorema 12.3.5 per alcuni valori di n.

Tavola 12.3.1. Quantili $d_{n,0.95}$ di D e relative approssimazioni.

\overline{n}	$d_{0.95}$	approssimazione
2	0.8419	0.9612
5	0.5633	0.6685
10	0.4087	0.4864
20	0.2939	0.3524
30	0.2417	0.2898
40	0.2101	0.2521
50	0.1884	0.2260

Dunque, D converge abbastanza lentamente alla relativa distribuzione per grandi campioni.

12.4. Il test di Kolmogorov. Sia (X_1, \ldots, X_n) un campione casuale da una variabile casuale assolutamente continua X con funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$. Il sistema di ipotesi da verificare risulta $H_0: F(x) = F_0(x), \forall x \in \mathbb{R}$, contro $H_1: F(x) \neq F_0(x), \exists x \in \mathbb{R}$, dove $F_0(x)$ è una funzione di ripartizione completamente specificata. Il test si basa sulla statistica

$$D = \sup_{x} |\widehat{F}(x) - F_0(x)|,$$

ovvero sulla statistica di Kolmogorov. La statistica D può essere convenientemente espressa come

$$D = \max_{1 \le i \le n} (\max(|i/n - F_0(X_{(i)})|, |(i-1)/n - F_0(X_{(i)})|)) .$$

Se la funzione di ripartizione empirica si discosta molto da quella ipotizzata, allora si hanno valori elevati di D, che conseguentemente portano a respingere l'ipotesi di base in favore dell'ipotesi alternativa. Se dunque $d_{n,\alpha}$ rappresenta il quantile di ordine α della distribuzione di D, la regione critica del test risulta dunque

$$T_1 = \{d : d \ge d_{n,1-\alpha}\}$$
.

• Esempio 12.4.1. Su un campione di dieci ragnatele è stato misurato l'angolo fra l'asse della ragnatela e la perpendicolare alla superficie terrestre, e si sono ottenuti i dati della Tavola 12.4.1. Si vuole verificare se i dati provengono da una distribuzione di von Mises, che è una distribuzione circolare adatta a modellare questi dati. La funzione di densità di una variabile casuale di von Mises è data da

$$g(x)=rac{1}{2\pi I_0(\kappa)}\,e^{\kappa\cos(x-\mu)}\mathbf{1}_{(0,2\pi]}(x)$$
 , $0\leq\mu<2\pi$, $\kappa>0$,

dove $I_0(\kappa)$ rappresenta la funzione di Bessel del primo tipo e ordine 0 e dove μ e κ sono rispettivamente la direzione media e il parametro di condentrazione. La relativa funzione di ripartizione è data da

$$G(x) = \frac{\mathbf{1}_{(0,2\pi]}(x)}{2\pi I_0(\kappa)} \int_0^x e^{\kappa \cos(t-\mu)} dt + \mathbf{1}_{(2\pi,\infty)}(x) .$$

Dal momento che si sospetta che le ragnatele siano state costruite da ragni della specie Araneus rufipalpus è noto da molte osservazioni precedenti che i parametri della distribuzione di von Mises sono in questo caso $\mu=0.27$ per quanto riguarda la direzione media e $\kappa=37.94$ per quanto riguarda il parametro di concentrazione.

Tavola 12.4.1. Angoli fra ragnatele e asse terrestre (in radianti).

		· · · · · · · · · · · · · · · · · · ·	ma ragnatere e ass	e terrestre (in radianti):
i	$x_{(i)}$	$G(x_{(i)})$	$ i/10 - G(x_{(i)}) $	$ (i-1)/10 - G(x_{(i)}) $
1	0.1745	0.2297	0.1297	0.2297
2	0.2094	0.3057	0.1057	0.2057
3	0.2269	0.3464	0.0464	0.1464
4	0.2618	0.4307	0.0307	0.1307
5	0.2793	0.4735	0.0265	0.0735
6	0.2967	0.5159	0.0841	0.0159
7	0.4189	0.7702	0.0702	0.1702
8	0.4363	0.7968	0.0032	0.0968
9	0.4538	0.8209	0.0791	0.0209
10	0.5411	0.9022	0.0978	0.0022

Fonte: Gadsen e Kanji (1981)

Si vuole verificare l'ipotesi $H_0: F(x) = G(x), \forall x \in \mathbb{R}$, contro $H_1: F(x) \neq G(x), \exists x \in \mathbb{R}$. Dalla Tavola 12.4.1 si ricava che d = 0.2297, per cui

$$Pr(D \ge 0.2297) > 0.20$$

e quindi la significatività osservata risulta $\alpha_{oss} > 0.20$. L'evidenza empirica porta dunque ad accettare che i dati provengono da una distribuzione di von Mises, dal momento che si può accettare H_0 ad ogni livello di significatività $\alpha \leq 0.20$.

• Esempio 12.4.2. E' stato fatto un esperimento al fine di verificare la resistenza alla rottura di alcune fibre di poliestere. Più esattamente sono stati determinati i carichi da applicare a un campione di queste fibre al fine di provocarne il cedimento. Si sospetta che la distribuzione dei carichi segua una distribuzione log-Normale. I dati della Tavola 12.4.2 sono stati ottenuti trasformando quelli originali mediante la trasformazione dell'integrale di probabilità, ovvero se l'ipotesi di log-Normalità è valida allora il campione trasformato dovrebbe provenire da una distribuzione Uniforme U(0,1). Dal momento che

$$F_0(x) = x \mathbf{1}_{(0,1)}(x) + \mathbf{1}_{[1,\infty)}(x)$$
,

si vuole dunque verificare l'ipotesi $H_0: F(x) = F_0(x), \forall x \in \mathbb{R}$, contro $H_1: F(x) \neq F_0(x), \exists x \in \mathbb{R}$. Dalla Tavola 12.4.2 si ricava d = 0.238, per cui

$$0.05 < \Pr(D \ge 0.238) < 0.10$$

e quindi la significatività osservata risulta $0.05 < \alpha_{oss} < 0.10$. In questo caso, vi è qualche dubbio ad accettare H_0 , ovvero che il campione trasformato proviene da una distribuzione Uniforme U(0,1) e che quindi il campione originale proviene da una variabile casuale log-Normale, in quanto si potrebbe respingere questa ipotesi ad ogni livello di significatività $\alpha \ge 0.10$.

Tavola 12.4.2. Carichi di rottura delle fibre di poliestere.

	fibra $F_{i}(x,y) = \frac{i}{2} \frac{30}{20} = \frac{F_{i}(x,y)}{20} = \frac{1}{2} \frac{30}{20} = \frac{F_{i}(x,y)}{20} = \frac{1}{2} \frac{30}{20} = \frac{F_{i}(x,y)}{20} = \frac{1}{2} \frac{30}{20} = \frac{1}{$													
fibra	$x_{(i)}$	$F_0(x_{(i)})$	$ i/30 - F_0(x_{(i)}) $	$ (i-1)/30 - F_0(x_{(i)}) $										
1	.023	.023	.010	.023										
2	.032	.032	.035	.001										
3	.054	.054	.046	.013										
4	.069	.069	.064	.031										
5	.081	.081	.086	.052										
6	.094	.094	.106	.073										
7	.105	.105	.128	.095										
8	.127	.127	.140	.106										
9	.148	.148	.152	.119										
10	.169	.169	.164	.131										
11	.188	.188	.178	.145										
12	.216	.216	.184	.151										
13	.255	.255	.178	.145										
14	.277	.277	.190	.156										
15	.311	.311	.189	.156										
16	.361	.361	.172	.139										
17	.376	.376	.191	.170										
18	.395	.395	.205	.172										
19	.432	.432	.201	.168										
20	.463	.463	.204	.170										
21	.481	.481	.219	.186										
22	.519	.519	.214	.181										
23	.529	.529	.238	.204										
24	.567	.567	.233	.200										
25	.642	.642	.191	.158										
26	.674	.674	.193	.159										
27	.752	.752	.148	.115										
28	.832	.832	.110	.077										
29	.887	.887	.080	.046										
30	.926	.926	.074	.041										
		Fonte: (Quesanbarry a Hola	g (1090)										

Fonte: Quesenberry e Hales (1980)

12.5. La statistica di Kolmogorov-Smirnov. In questo paragrafo viene considerata una modifica della statistica di Kolmogorov che permette di costruire test per la verifica di ipotesi funzionali quando la variabile casuale d'interesse è continua e si dispone di due campioni.

Definizione 12.5.1. Siano (X_1, \ldots, X_{n_1}) e (Y_1, \ldots, Y_{n_2}) due campioni casuali indipendenti, tali che il campione misto abbia funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, dove $n = n_1 + n_2$. Siano inoltre $\widehat{F}_1(x)$ e $\widehat{F}_2(x)$ le funzione di ripartizione empiriche relative a ciascuno dei due campioni. La statistica di Kolmogorov-Smirnov è data da

$$D = \sup_{x} |\widehat{F}_1(x) - \widehat{F}_2(x)| . \qquad \qquad \triangleleft$$

La statistica di Kolmogorov-Smirnov è una misura della discrepanza fra le due funzione di ripartizione empiriche. Si può dimostrare in modo del tutto analogo a quanto fatto nel Teorema 12.3.3 per la statistica di Kolmogorov, che la statistica di Kolmogorov-Smirnov è "distribution-free" su C_F .

Se $(V_{(1)}, \ldots, V_{(n)})$ è la statistica ordinata relativa al campione misto $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$, allora la statistica D può essere espressa come

$$D = \max_{1 \le i \le n} |\widehat{F}_1(V_{(i)}) - \widehat{F}_2(V_{(i)})|.$$

Il Teorema di Glivenko-Cantelli (vedi Serfling, 1980) implica che $D \stackrel{p}{\to} 0$ per $n_1, n_2 \to \infty$. La distribuzione di D può essere determinata in modo semplice per $n_1 = n_2 = n$ mediante alcune proprietà delle passeggiate aleatorie.

Teorema 12.5.2. Siano (X_1, \ldots, X_n) e (Y_1, \ldots, Y_n) due campioni casuali indipendenti, tali che il campione misto abbia funzione di ripartizione congiunta $F_{2n} \in \mathcal{C}_F$. La distribuzione della statistica D di Kolmogorov-Smirnov risulta

$$G(d) = 1 + 2 {2n \choose n}^{-1} \sum_{i=1}^{r} (-1)^{i} {2n \choose n + i(nd+1)},$$

dove d = 0, 1/n, 2/n, ..., 1 e $r = \lfloor n/(nd+1) \rfloor$.

Dimostrazione. Sia $(V_{(1)},\ldots,V_{(2n)})$ la statistica ordinata relativa al campione misto $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ e sia T_i una variabile casuale tale che vale 1/n se $V_{(i)}$ appartiene al primo campione e vale -1/n se $V_{(i)}$ appartiene al secondo campione per $i=1,\ldots,2n$. Si consideri inoltre l'ulteriore variabile casuale $S_i=T_1+\ldots+T_i$, per $i=1,\ldots,2n$. L'insieme delle variabili casuali S_i , per $i=1,\ldots,2n$, costituisce una passeggiata aleatoria in 2n passi i cui percorsi (i,S_i) sono tali che iniziano in (0,0) e finiscono in (2n,0). Vi sono $\binom{2n}{n}$ di questi percorsi, ognuno dei quali corrisponde ad una possibile sequenza di X_i e di Y_i nel campione misto ordinato. Dal momento che i due campioni provengono dalla stessa distribuzione ogni percorso è ugualmente probabile. Si deve osservare che dalla definizione di D si ha

$$D = \max(|\max_{1 \le i \le 2n} S_i|, |\min_{1 \le i \le 2n} S_i|),$$

per cui la determinazione di G(d) è equivalente alla determinazione del numero di percorsi compresi fra la retta L^+ , data da s=d+1/n, e la retta L^- , data da s=-d-1/n. Si ottenga innanzitutto il numero di percorsi che intersecano la retta L^+ . Esiste un punto A in cui il percorso interseca per la prima volta la retta L^+ . Per la parte di percorso da A a (2n,0), esiste un percorso simmetrico rispetto alla retta L^+ , da A a (2n,2d+2/n). Quindi il numero di percorsi da (0,0) che intersecano la retta L^+ in A e finiscono in (2n,0) è uguale al numero di percorsi da (0,0) che intersecano la retta L^+ in A e procedono specularmente rispetto ai percorsi originari fino a (2n,2d+2/n). Questo numero è dato da $\binom{2n}{n+nd+1}$, ovvero il numero in cui (n+nd+1) salti positivi e (n-nd-1) salti negativi possono essere permutati. Si denoti con P_0^+ l'insieme di percorsi che intersecano L^+ e con P_0^- l'insieme dei percorsi che intersecano L^- . Sia inoltre #(E) il numero di percorsi in un insieme E di percorsi. Si ha dunque

$$\#(P_0^+ \cup P_0^-) = \#(P_0^+) + \#(P_0^-) - \#(P_0^+ \cap P_0^-) \; .$$

Per quanto affermato in precedenza si ha

$$\#(P_0^+) = \#(P_0^-) = \binom{2n}{n+nd+1}$$
.

Si noti che $(P_0^+ \cap P_0^-) = (P_1^+ \cup P_1^-)$, dove P_1^+ è l'insieme di tutti i percorsi che contengono almeno una parte di percorso che va da L^+ a L^- e in maniera simile P_1^- è l'insieme di tutti i percorsi che contengono almeno una parte di percorso che va da L^- a L^+ . Dunque, si ha

$$\#(P_0^+\cap P_0^-) = \#(P_1^+) + \#(P_1^-) - \#(P_1^+\cap P_1^-) \;,$$

dove, in maniera analoga a quanto visto in precedenza, si ha

$$\#(P_1^+) = \#(P_1^-) = \binom{2n}{n+2(nd+1)}.$$

Definendo con P_i^+ l'insieme di tutti i percorsi che contengono almeno i parti di percorso che vanno da L^+ a L^- e con P_i^- l'insieme di tutti i percorsi che contengono i parti di percorso che vanno da L^- a L^+ , procedendo in maniera iterativa si ha

$$\#(P_{i-1}^+\cap P_{i-1}^-)=\#(P_i^+)+\#(P_i^-)-\#(P_i^+\cap P_i^-)$$
 , $i=0,1,\ldots,r-1$,

$$\#(P_i^+) = \#(P_i^-) = \binom{2n}{n + (i+1)(nd+1)}, i = 0, 1, \dots, r-1,$$

dove $r = \lfloor n/(nd+1) \rfloor$. Ovviamente, si ha $\#(P_{r-1}^+ \cap P_{r-1}^-) = 0$. Dunque, si ottiene

$$\#(P_0^+ \cup P_0^-) = \sum_{i=0}^{r-1} (-1)^i (\#(P_i^+) + \#(P_i^-)) = 2\sum_{i=1}^r (-1)^{i-1} \binom{2n}{n+i(nd+1)},$$

per cui il numero di percorsi che non intersecano mai le rette L^+ e L^- è dato da

$$\binom{2n}{n} - \#(P_0^+ \cup P_0^-) = \binom{2n}{n} - 2\sum_{i=1}^r (-1)^{i-1} \binom{2n}{n+i(nd+1)}.$$

Tenendo presente questo risultato, si ha

$$G(d) = {2n \choose n}^{-1} \left({2n \choose n} - 2 \sum_{i=1}^{r} (-1)^{i-1} {2n \choose n+i(nd+1)} \right)$$
$$= 1 + 2 {2n \choose n}^{-1} \sum_{i=1}^{r} (-1)^{i} {2n \choose n+i(nd+1)},$$

che è quanto si voleva dimostrare.

Per quanto riguarda infine la distribuzione per grandi campioni di $D = D_{n_1,n_2}$ si ha il seguente risultato.

Teorema 12.5.3. Per $n, n_2 \rightarrow \infty$ si ha

$$\lim_{n_1,n_2} \Pr(\sqrt{n_1 n_2/(n_1+n_2)}D \leq d) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} e^{-2i^2 d^2} , \ d \geq 0 .$$

Dimostrazione. Si veda Billingsley (1968).

12.6. Il test di Kolmogorov-Smirnov. Siano (X_1,\ldots,X_{n_1}) e (Y_1,\ldots,Y_{n_2}) due campioni casuali indipendenti, tali che il campione misto abbia funzione di ripartizione congiunta $F_n \in \mathcal{C}_F$, dove $n=n_1+n_2$. Il sistema di ipotesi da verificare risulta $H_0:F_1(x)=F_2(x)=F(x), \forall x\in\mathbb{R}$, contro $H_1:F_1(x)\neq F_2(x), \exists x\in\mathbb{R}$. Il test si basa sulla statistica

$$D = \sup_{x} |\widehat{F}_1(x) - \widehat{F}_2(x)|,$$

ovvero sulla statistica di Kolmogorov-Smirnov. Se le due funzione di ripartizione empiriche si discostano molto fra di loro, allora si hanno realizzazioni elevate di D che conseguentemente portano a respingere l'ipotesi di base in favore dell'ipotesi alternativa. Se dunque $d_{n_1,n_2,\alpha}$ rappresenta il quantile di ordine α della distribuzione di D, la regione critica del test risulta

$$T_1 = \{d : d \ge d_{n_1, n_2, 1-\alpha}\}.$$

• Esempio 12.6.1. In un esperimento per la verifica delle capacità percettive sono stati bendati 24 soggetti. I soggetti hanno poi percorso un tracciato irregolare di forma approssimativamente circolare. Ad un certo punto del tracciato ad ognuno dei soggetti è stato chiesto di stimare l'angolo formato dalla loro attuale posizione rispetto alla posizione di partenza. Dodici di questi soggetti hanno percorso il tracciato in senso orario, mentre gli altri lo hanno percorso in senso anti-orario. I dati della Tavola 12.6.1 riportano gli errori commessi (in gradi) nelle stime degli angoli dai due gruppi. Si vuole verificare se i dati provengono dalla stessa distribuzione. Il procedimento per il calcolo della realizzazione campionaria di D per questi dati è riportato nella Tavola 12.6.2. Si ha dunque d=4/12, per cui

$$\Pr(D \ge 4/12) > 0.20$$

e la significatività osservata risulta $\alpha_{oss} > 0.20$. Si è portati ad accettare che le due distribuzioni sono identiche, in quanto si può accettare H_0 ad ogni livello di significatività $\alpha \leq 0.20$.

Tavola 12.6.1. Errori nelle stime degli angoli (in gradi).

gruppo percorso	gruppo percorso
senso orario	senso anti-orario
50	23
22	0
16	9
10	7
8	-4
14	24
-18	-17
-2	-13
-3	-32
– 11	-23
-12	-47
-31	-53
	senso orario 50 22 16 10 8 14 - 18 - 2 - 3 - 11 - 12

Fonte: Lederman, Klatsky e Barber (1985)

Tavola 12.6.2.

			1a 12.0.2.	
soggetto	$z_{(i)}$	$\widehat{F}_1(z_{(i)})$	$\widehat{F}_2(z_{(i)})$	$ \widehat{F}_1(z_{(i)}) - \widehat{F}_2(z_{(i)}) $
1	-53	0	1/12	1/12
2	-47	0	2/12	2/12
3	-32	0	3/12	3/12
4	-31	1/12	3/12	2/12
5	-23	1/12	4/12	3/12
6	-18	2/12	4/12	2/12
7	-17	2/12	5/12	3/12
8	-13	2/12	6/12	4/12
9	-12	3/12	6/12	3/12
10	-11	4/12	6/12	2/12
11	-4	4/12	7/12	3/12
12	-3	5/12	7/12	2/12
13	-2	6/12	7/12	1/12
14	0	6/12	8/12	2/12
15	7	6/12	9/12	3/12
16	8	7/12	9/12	2/12
17	9	7/12	10/12	3/12
18	10	8/12	10/12	2/12
19	14	9/12	10/12	1/12
20	16	10/12	10/12	0
21	22	11/12	10/12	1/12
22	23	11/12	11/12	0
23	24	11/12	12/12	1/12
24	50	1	1	0

A.1. Alcune distribuzioni e relative caratteristiche. Di seguito vengono introdotte alcune variabili casuali di frequente uso, insieme ad alcune loro caratteristiche. Una generica variabile casuale assolutamente continua Z viene considerata nella sua forma standard, e le relative funzioni di ripartizione e densità vengono rispettivamente indicate con F ed f. Quando si considera la variabile casuale non standard $X = \delta Z + \lambda$, dove λ è un parametro di posizione e δ è un parametro di scala, allora la funzione di ripartizione è data da $G(x) = F((x - \lambda)/\delta)$, mentre la funzione di densità risulta $g(x) = f((x - \lambda)/\delta)/\delta$. Si ha $E(X) = \mu = \delta E(Z) + \lambda$ e $Var(X) = \sigma^2 = \delta^2 Var(Z)$. In particolare, se E(Z) = 0 e Var(Z) = 1, allora $\mu = \lambda$ e $\sigma = \delta$.

A.1.1. Distribuzione Uniforme. Una variabile casuale Uniforme Z ammette funzione di densità

$$f(z) = \mathbf{1}_{(0,1)}(z)$$
.

Per questa distribuzione risulta

$$E(Z) = \frac{1}{2}, Var(Z) = \frac{1}{12},$$

e

$$\alpha_3=0\ ,\alpha_4=\frac{9}{5}\ .$$

La mediana è data $z_{0.5} = 1/2$. Inoltre, si ha

$$f(0) = 1$$
,

$$\int_0^1 f(z)^2 \, dz = 1 \; ,$$

$$\int_0^1 z (F(z) - 1/2) f(z)^2 dz = \frac{1}{12} ,$$

$$\int_{1/2}^{1} z f(z)^2 dz - \int_{0}^{1/2} z f(z)^2 dz = \frac{1}{4}.$$

La distribuzione Uniforme non standard viene indicata con la notazione $U(\lambda, \delta)$.

A.1.2. Distribuzione Normale. Una variabile casuale Normale Z ammette funzione di densità

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} .$$

La funzione di ripartizione di questa variabile casuale viene indicata con il simbolo Φ . Inoltre, il quantile di ordine α viene indicato con z_{α} . Per questa distribuzione risulta

$$E(Z) = 0$$
, $Var(Z) = 1$,

e

$$\alpha_3 = 0$$
 , $\alpha_4 = 3$.

La mediana è data $z_{0.5} = 0$. Inoltre, risulta

$$f(0) = \frac{1}{\sqrt{2\pi}},$$

$$\int_{-\infty}^{\infty} f(z)^2 dz = \frac{1}{2\sqrt{\pi}},$$

$$\int_{-\infty}^{\infty} z (\Phi(z) - 1/2) f(z)^2 dz = \frac{1}{4\pi\sqrt{3}},$$

$$\int_0^\infty z f(z)^2 dz - \int_0^0 z f(z)^2 dz = \frac{1}{2\pi} .$$

La distribuzione Normale non standard viene indicata con la notazione $N(\mu, \sigma^2)$.

A.1.3. Distribuzione Logistica. Una variabile casuale Logistica Z ammette funzione di densità

$$f(z) = \frac{e^{-z}}{(1 + e^{-z})^2} .$$

Per questa distribuzione risulta

$$E(Z) = 0$$
, $Var(Z) = \frac{\pi^2}{3}$,

e

$$\alpha_3 = 0 \ , \alpha_4 = \frac{21}{5} \ .$$

La mediana è data $z_{0.5} = 0$. Inoltre, risulta

$$f(0) = \frac{1}{4} \,,$$

$$\int_{-\infty}^{\infty} f(z)^2 dz = \frac{1}{6} ,$$

$$\int_{-\infty}^{\infty} z (F(z) - 1/2) f(z)^2 dz = \frac{1}{24} ,$$

$$\int_0^\infty z f(z)^2 dz - \int_{-\infty}^0 z f(z)^2 dz = \frac{4 \log 2 - 1}{12}.$$

La distribuzione Logistica non standard viene indicata con $Lo(\mu, \delta)$.

A.1.4. Distribuzione Esponenziale. Una variabile casuale Esponenziale Z ammette funzione di densità

$$f(z) = e^{-z} \mathbf{1}_{(0,\infty)}(z)$$
.

Per questa distribuzione risulta

$$E(Z) = 1$$
, $Var(Z) = 1$,

e

$$\alpha_3 = 2 \, , \, \alpha_4 = 9 \, .$$

La mediana è data $z_{0.5} = \log 2$. Inoltre, risulta

$$f(\log 2) = \frac{1}{2} \,,$$

$$\int_0^\infty f(z)^2 dz = \frac{1}{2} ,$$

$$\int_0^\infty z (F(z) - 1/2) f(z)^2 dz = \frac{1}{72} .$$

$$\int_{\log^2}^{\infty} z f(z)^2 dz - \int_0^{\log^2} z f(z)^2 dz = \frac{2 \log 2 - 1}{8}.$$

La distribuzione Esponenziale non standard viene indicata con la notazione $E(\lambda, \sigma)$.

A.1.5. Distribuzione di Laplace. Una variabile casuale di Laplace Z ammette funzione di densità

$$f(z) = \frac{1}{2} e^{-|z|}$$
.

Per questa distribuzione risulta

$$E(Z) = 0$$
, $Var(Z) = 2$,

e

$$\alpha_3 = 0 \, , \, \alpha_4 = 6 \, .$$

La mediana è data $z_{0.5}=0$. Inoltre, risulta

$$f(0) = \frac{1}{2},$$

$$\int_{-\infty}^{\infty} f(z)^2 dz = \frac{1}{4} ,$$

$$\int_{-\infty}^{\infty} z (F(z) - 1/2) f(z)^2 dz = \frac{5}{144} ,$$

$$\int_0^\infty z f(z)^2 dz - \int_{-\infty}^0 z f(z)^2 dz = \frac{1}{8}.$$

La distribuzione di Laplace non standard è denotata con $L(\mu, \delta)$.

A.1.6. Distribuzione di Cauchy. Una variabile casuale di Cauchy Z ammette funzione di densità

$$f(z) = \frac{1}{\pi(1+z^2)} \ .$$

Questa distribuzione non possiede momenti e la mediana è data $z_{0.5} = 0$. Inoltre, risulta

$$f(0) = \frac{1}{\pi} ,$$

$$\int_{-\infty}^{\infty} f(z)^2 dz = \frac{1}{2\pi} ,$$

$$\int_{-\infty}^{\infty} z(F(z) - 1/2) f(z)^2 dz = \frac{1}{4\pi^2} ,$$

$$\int_{0}^{\infty} z f(z)^2 dz - \int_{-\infty}^{0} z f(z)^2 dz = \frac{1}{\pi^2} .$$

La distribuzione di Cauchy non standard è denotata con $C(\lambda, \delta)$.

A.2. Alcuni risultati matematici. Il seguente teorema consente di determinare la somma di alcune potenze dei primi n interi.

Teorema A.2.1. Si ha

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2},$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4},$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}.$$

Dimostrazione. Si veda Randles e Wolfe (1979).

A.3. Alcuni risultati di teoria della probabilità. In questo paragrafo vengono richiamati alcuni risultati sulla convergenza di successioni di variabili casuali. Una completa trattazione di questo argomento è dato in Serfling (1980).

Teorema A.3.1. (Legge Debole dei Grandi Numeri di Khintchine) Si consideri una successione $(X_n)_{n\geq 1}$ di variabili casuali indipendenti ed ugualmente distribuite con $\mathrm{E}(X_1)=\mu<\infty$. Se $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$ per $n\geq 1$, si ha

$$\bar{X}_n \stackrel{p}{\to} \mu$$
.

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.1. Sia $(X_n)_{n\geq 1}$ una successione di variabili casuali indipendenti ed ugualmente distribuite con $\mathrm{E}(X_1)=\mu<\infty$ e $\mathrm{Var}(X_1)=\sigma^2<\infty$. Si consideri la successione di variabili casuali $(Z_n)_{n\geq 1}$, dove $Z_n=(X_n-\mu)^2$ per $n\geq 1$. Si noti che $(Z_n)_{n\geq 1}$ è una successione di variabili casuali indipendenti ed ugualmente distribuite con $\mathrm{E}(Z_1)=\sigma^2<\infty$. Di conseguenza, per la Legge Debole dei Grandi Numeri di Khintchine (Teorema A.3.1), si ha

$$\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \xrightarrow{p} \sigma^2.$$

Teorema A.3.2. (Legge Debole dei Grandi Numeri di Markov) Per ogni n sia (X_{1n},\ldots,X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in})=\mu_{in}<\infty$, con $i=1,\ldots,n$. Si supponga inoltre che esista un $\delta\in(0,1]$, per cui si ha $E(|X_{in}-\mu_{in}|^{1+\delta})<\infty$ e

$$\lim_{n} \frac{1}{n^{1+\delta}} \sum_{i=1}^{n} \mathrm{E}(|X_{in} - \mu_{in}|^{1+\delta}) = 0.$$

Se $\overline{X}_n = n^{-1} \sum_{i=1}^n X_{in} per n \ge 1$, si ha

$$\bar{X}_n - \mathrm{E}(\bar{X}_n) \stackrel{p}{\to} 0$$
.

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.2. Sia (X_{1n},\ldots,X_{nn}) un vettore di variabili casuali indipendenti con $\mathrm{E}(X_{in})=c/\sqrt{n}$ e $\mathrm{Var}(X_{in})=\sigma^2$ con c costante, per $i=1,\ldots,n$. Per $\delta=1$, si ha $\mathrm{E}(|X_{in}-\mu_{in}|^2)=\sigma^2<\infty$ e

$$\lim_{n} \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \lim_{n} \frac{\sigma^2}{n} = 0,$$

e dalla Legge Debole dei Grandi Numeri di Markov (Teorema A.3.2) si ottiene

$$\overline{X}_n - c/\sqrt{n} \stackrel{p}{\to} 0$$
.

Teorema A.3.3. (Legge Forte dei Grandi Numeri di Khintchine) Per ogni n sia (X_{1n}, \ldots, X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in}) = \mu < \infty$, con $i = 1, \ldots, n$. Se $\overline{X}_n = n^{-1} \sum_{i=1}^n X_{in}$ per $n \geq 1$, si ha

$$\bar{X}_n \stackrel{qc}{\to} \mu$$
.

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.3. Sia (X_{1n}, \ldots, X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in}) = c/\sqrt{n}$ e $Var(X_{in}) = \sigma^2 < \infty$, dove c è costante, per $i = 1, \ldots, n$. Si consideri il vettore trasformato (Z_{1n}, \ldots, Z_{nn}) , dove $Z_{in} = (X_{in} - c/\sqrt{n})^2$ per $i = 1, \ldots, n$, che risulta ancora un vettore di variabili casuali indipendenti con $E(Z_{in}) = \sigma^2 < \infty$. Di conseguenza, dalla Legge Forte dei Grandi Numeri di Khintchine (Teorema A.3.3) si ha

$$\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n (X_{in} - c/\sqrt{n})^2 \stackrel{qc}{\rightarrow} \sigma^2,$$

che implica

$$\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n \left(X_{in} - c / \sqrt{n} \right)^2 \xrightarrow{p} \sigma^2.$$

Teorema A.3.4. (**Teorema di Sverdrup**) Se $(X_n)_{n\geq 1}$ è una successione di variabili casuali e $g: \mathbb{R} \to \mathbb{R}$ è una funzione continua, allora

$$X_n \stackrel{p}{\to} \theta \Rightarrow g(X_n) \stackrel{p}{\to} g(\theta)$$
 ,

$$X_n \stackrel{qc}{\to} \theta \Rightarrow g(X_n) \stackrel{qc}{\to} g(\theta)$$
,

$$X_n \stackrel{d}{\to} X \Rightarrow g(X_n) \stackrel{d}{\to} g(X)$$
.

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.4. Sia $(X_n)_{n\geq 1}$ una successione di variabili casuali indipendenti ed ugualmente distribuite con $E(X_1) = \mu < \infty$ e $Var(X_1) = \sigma^2 < \infty$. Sia inoltre

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
,

dove $\overline{X}_n=n^{-1}\sum_{i=1}^n X_i$. Con la notazione dell'Esempio A.3.1, S_n^2 può essere espresso come

$$S_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X}_n - \mu)^2 \right) = \frac{n}{n-1} \left(\bar{Z}_n - (\bar{X}_n - \mu)^2 \right).$$

Dalla Legge Debole dei Grandi Numeri di Khintchine (Teorema A.3.1) si ha $\overline{X}_n \stackrel{p}{\to} \mu$, mentre dall'Esempio A.3.1 si ha $\overline{Z}_n \stackrel{p}{\to} \sigma^2$. Si noti che $g(x,z) = z - (x-\mu)^2$ è una funzione continua. Tenendo dunque presente che $\lim_n n/(n-1) = 1$, per la generalizzazione al caso multivariato del Teorema di Sverdrup (Teorema A.3.4) si ha $S_n^2 \stackrel{p}{\to} \sigma^2$.

• Esempio A.3.5. Sia (X_{1n}, \ldots, X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in}) = c/\sqrt{n}$ e $Var(X_{in}) = \sigma^2 < \infty$ con c costante, per $i = 1, \ldots, n$. Sia inoltre

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{in} - \bar{X}_n)^2,$$

dove $\overline{X}_n=n^{-1}\sum_{i=1}^n X_{in}$. Con la notazione dell'Esempio A.3.3, S_n^2 può essere espresso come

$$S_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n \left(X_{in} - c/\sqrt{n} \right)^2 - (\overline{X}_n - c/\sqrt{n})^2 \right) = \frac{n}{n-1} \left(\overline{Z}_n - (\overline{X}_n - c/\sqrt{n})^2 \right).$$

Dall'Esempio A.3.2 si ha $\overline{X}_n - c/\sqrt{n} \stackrel{p}{\to} 0$, mentre dall'Esempio A.3.3 si ha $\overline{Z}_n \stackrel{p}{\to} \sigma^2$. Tenendo presente che $g(x,z)=z-x^2$ è una funzione continua e che $\lim_n n/(n-1)=1$, per la generalizzazione al caso multivariato del Teorema A.3.4 si ha infine $S_n^2 \stackrel{p}{\to} \sigma^2$.

Teorema A.3.5. (Teorema di Slutsky) $Se\ (X_n)_{n\geq 1}\ e\ (Y_n)_{n\geq 1}$ sono due successioni di variabili casuali tali che $X_n\stackrel{d}{\to} X\ e\ Y_n\stackrel{p}{\to} \theta\ con\ \theta\ costante,\ allora$

$$X_n + Y_n \stackrel{d}{\rightarrow} X + \theta$$
,

$$Y_n X_n \stackrel{d}{\to} \theta X$$
,

$$X_n/Y_n \stackrel{d}{\to} X/\theta$$
 , $\theta \neq 0$.

Dimostrazione. Vedi Serfling (1980).

Teorema A.3.6. (Teorema Fondamentale del Limite Classico) Sia $(X_n)_{n\geq 1}$ una successione di variabili casuali indipendenti ed ugualmente distribuite con $E(X_1)=\mu<\infty$ e $Var(X_1)=\sigma^2<\infty$. Se $\overline{X}_n=n^{-1}\sum_{i=1}^n X_i$ per $n\geq 1$, si ha

$$\frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - \mu \right) \stackrel{d}{\to} N(0,1) .$$

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.6. Sia $(X_n)_{n\geq 1}$ una successione di variabili casuali indipendenti ed ugualmente distribuite con $\mathrm{E}(X_1)=\mu$ e $\mathrm{Var}(X_1)=\sigma^2$. Si assuma inoltre che $\mathrm{E}(X_1^4)<\infty$ e $\mathrm{E}((X_1-\mu)^4)=\mu_4$, da cui $\mathrm{Var}((X_1-\mu)^2)=\gamma^2=\mu_4-\sigma^4$. Tenendo presente la notazione e i risultati dell'Esempio A.3.4 si ha

$$\frac{\sqrt{n}}{\gamma} (S_n^2 - \sigma^2) = \frac{\sqrt{n}}{\gamma} \left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2 - \frac{n}{n-1} (\bar{X}_n - \mu)^2 - \frac{n\sigma^2}{n-1} + \frac{\sigma^2}{n-1} \right)
= \frac{n}{n-1} \frac{\sqrt{n}}{\gamma} (\bar{Z}_n - \sigma^2) - \frac{n}{n-1} \frac{1}{\gamma} (\sqrt{n} (\bar{X}_n - \mu)^2 - \sigma^2 / \sqrt{n}).$$

Dal momento che $E((\bar{X}_n - \mu)^2) = \sigma^2/n$, allora

$$\lim_n \left(\sqrt{n} \mathrm{E}((\overline{X}_n - \mu)^2) - \sigma^2 / \sqrt{n} \right) = \lim_n 2\sigma^2 / \sqrt{n} = 0 \; ,$$

ovvero $(\sqrt{n}(\overline{X}_n-\mu)^2-\sigma^2/\sqrt{n})$ converge in media a 0, che implica

$$\sqrt{n}(\bar{X}_n-\mu)^2-\sigma^2/\sqrt{n}\stackrel{p}{\to}0$$
.

Inoltre, dal Teorema Fondamentale del Limite Classico (Teorema A.3.6) si ha

$$\frac{\sqrt{n}}{\gamma} (\overline{Z}_n - \sigma^2) \stackrel{d}{\to} N(0, 1) .$$

Quindi per il Teorema di Slutsky (Teorema A.3.5) si può concludere che

$$\frac{\sqrt{n}}{\gamma} \left(S_n^2 - \sigma^2 \right) \stackrel{d}{\to} N(0, 1) .$$

Teorema A.3.7. (Teorema Fondamentale del Limite di Lindberg) Per ogni n sia (X_{1n}, \ldots, X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in}) = \mu_{in} < \infty$ e $Var(X_{in}) = \sigma_{in}^2 < \infty$ per $i = 1, \ldots, n$, e sia inoltre $\mu_n = \sum_{i=1}^n \mu_{in}$ e $\sigma_n^2 = \sum_{i=1}^n \sigma_{in}^2$. Se per ogni $\epsilon > 0$ si ha

$$\lim_n \frac{1}{\sigma_n^2} \sum_{i=1}^n \mathrm{E}((X_{in} - \mu_{in})^2 \mathbf{1}_{(-\infty, \mu_{in} - \epsilon \sigma_n] \cup [\mu_{in} + \epsilon \sigma_n, \infty)}(X_{in})) = 0,$$

e se $\bar{X}_n=n^{-1}\sum_{i=1}^n X_{in}$, si ha

$$\frac{1}{\sigma_n} (n \overline{X}_n - \mu_n) \stackrel{d}{\to} N(0,1)$$
.

Dimostrazione. Vedi Serfling (1980).

Corollario A.3.8. Per ogni n sia (X_{1n},\ldots,X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in})=\mu_n<\infty$ e $Var(X_{in})=\sigma_n^2<\infty$ per $i=1,\ldots,n$. Se $\overline{X}_n=n^{-1}\sum_{i=1}^n X_{in}$, si ha

$$\frac{\sqrt{n}}{\sigma_n} (\bar{X}_n - \mu_n) \stackrel{d}{\to} N(0,1) .$$

Dimostrazione. Vedi Serfling (1980).

Teorema A.3.9. (Teorema Fondamentale del Limite di Lyapunov) Per ogni n sia (X_{1n}, \ldots, X_{nn}) un vettore di variabili casuali indipendenti con $E(X_{in}) = \mu_{in} < \infty$ e $Var(X_{in}) = \sigma_{in}^2 < \infty$ per $i = 1, \ldots, n$, e sia inoltre $\mu_n = \sum_{i=1}^n \mu_{in}$ e $\sigma_n^2 = \sum_{i=1}^n \sigma_{in}^2$. Se esiste un $\delta > 0$ tale che

$$\lim_{n} \frac{1}{\sigma_n^{2+\delta}} \sum_{i=1}^{n} \mathrm{E}(|X_{in} - \mu_{in}|^{2+\delta}) = 0$$
 ,

e se $\bar{X}_n = n^{-1} \sum_{i=1}^n X_{in}$ si ha

$$\frac{1}{\sigma_n} (n \bar{X}_n - \mu_n) \stackrel{d}{\to} N(0,1).$$

Dimostrazione. Vedi Serfling (1980).

Teorema A.3.10. (Metodo Delta) Se $(X_n)_{n\geq 1}$ è una successione di variabili casuali tale che $\sqrt{n}(X_n-\mu)/\sigma \stackrel{d}{\to} N(0,1)$ e se $g:\mathbb{R}\to\mathbb{R}$ è una funzione continua tale che $g'(\mu)$ esiste e $g'(\mu)\neq 0$, allora

$$\sqrt{n} \frac{g(X_n) - g(\mu)}{\sigma g'(\mu)} \stackrel{d}{\to} N(0,1)$$
.

Analogamente, se $(\mathbf{X}_n)_{n\geq 1}$ è un vettore di variabili casuali tale che $\sqrt{n}(\mathbf{X}_n - \boldsymbol{\mu}) \stackrel{d}{\to} N_k(\mathbf{0}, \boldsymbol{\Sigma})$ e se $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^l$ è un vettore di funzioni continue tale che $\mathbf{D} = \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\boldsymbol{\mu}}$ esiste e $\mathbf{D} \neq \mathbf{0}$, si ha

$$\sqrt{n}(\mathbf{g}(\boldsymbol{X}_n) - \mathbf{g}(\boldsymbol{\mu})) \stackrel{d}{\to} N_l(\mathbf{0}, \mathbf{D}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{D})$$
.

Dimostrazione. Vedi Serfling (1980).

• Esempio A.3.7. Sia $(X_n)_{n\geq 1}$ una successione di variabili casuali indipendenti ed ugualmente distribuite per cui si ha $E(X_1)=\mu$, $Var(X_1)=\sigma^2$ e $E((X_1-\mu)^4)=\mu_4<\infty$. Nell'Esempio A.3.3 è stato dimostrato che $\sqrt{n}(S_n^2-\sigma^2)/\gamma \stackrel{d}{\to} N(0,1)$. Se si considera la trasformata $S_n=g(S_n^2)=\sqrt{S_n^2}$ si ha $g'(\sigma^2)=1/(2\sqrt{\sigma^2})$, per cui applicando il Metodo Delta si ha

$$\sqrt{n} \frac{S_n - \sigma}{\gamma/(2\sigma)} \stackrel{d}{\to} N(0,1) .$$

Teorema A.3.11. (Teorema di Cochran) Sia $(X_n)_{n\geq 1}$ una successione di vettori casuali tale che $\sqrt{n}(X_n-\mu)\stackrel{d}{\to} N_k(\mathbf{0}, \mathbf{\Sigma})$. Sia inoltre \mathbf{C} una matrice quadrata simmetrica di ordine k. Si ha

$$n(\boldsymbol{X}_n - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{C}(\boldsymbol{X}_n - \boldsymbol{\mu}) \stackrel{d}{\to} \chi_q^2$$

se e solo se $\Sigma C\Sigma C\Sigma = \Sigma C\Sigma$, dove $tr(C\Sigma) = q$.

Dimostrazione. Vedi Serfling (1980).

Teorema A.3.12. Sia $(F_n)_{n\geq 1}$ una successione di funzioni di ripartizione di variabili casuali assolutamente continue che converge uniformemente alla funzione di ripartizione G. Se $(c_n)_{n\geq 1}$ è una successione in \mathbb{R} , allora

$$\lim_{n} F_n(c_n) = \alpha$$
 , $0 < \alpha < 1$,

se e solo se $\lim_n c_n = x_\alpha$, dove x_α è tale che $G(x_\alpha) = \alpha$.

Dimostrazione. Vedi Serfling (1980).

Tavola 1. Gli elementi della tavola danno le probabilità di coda sinistra di una variabile casuale con distribuzione Normale N(0,1).

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	0.461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8461 .8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.1	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995

Tavola 2. Gli elementi della tavola danno i quantili di una variabile casuale con distribuzione Chi-quadrato χ_n^2 per alcune probabilità di coda sinistra P e gradi di libertà $n = 1, 2, \dots, 30$.

$n \backslash P$	0.05	0.10	0.50	0.75	0.90	0.95	0.975	0.99	.995	.999
1	0.004	0.016	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	0.10	0.21	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	0.35	0.58	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	0.71	1.06	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	1.15	1.61	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	1.64	2.20	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	2.17	2.83	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	2.73	3.49	7.34	10.22	12.36	15.51	17.54	20.09	21.96	26.12
9	3.33	4.17	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	3.94	4.87	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	4.57	5.58	10.34	13.70	17.28	19.68	21.92	24.72	26.76	31.26
12	5.23	6.30	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	5.89	7.04	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	6.57	7.79	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	7.26	8.55	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	7.96	9.31	15.34	19.37	23.54	26.30	28.84	32.00	34.27	39.25
17	8.67	10.09	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	9.39	10.86	17.34	21.60	25.99	28.87	31.53	34.81	37.16	43.31
19	10.12	11.65	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	10.85	12.44	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
21	11.59	13.24	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
22	12.34	14.04	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
23	13.09	14.85	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
24	13.85	15.66	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
25	14.61	16.47	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
26	15.38	17.29	25.34	30.43	35.56	38.89	41.92	45.64	48.29	54.05
27	16.15	18.11	26.34	31.53	36.74	40.11	43.19	46.96	49.64	55.48
28	16.93	18.94	27.34	32.62	37.92	41.34	44.46	48.28	50.99	56.89
29	17.71	19.77	28.34	33.71	39.09	42.56	45.72	49.59	52.34	58.30
30	18.49	20.60	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70

Per n>30 le probabilità di coda sinistra possono essere ottenute tenendo presente che $Z=\sqrt{2\chi_n^2}-\sqrt{2n-1}$ converge in probabilità ad una variabile casuale con distribuzione Normale N(0,1).

Tavola 3. Gli elementi della tavola danno le probabilità P di coda sinistra o destra della statistica B del test dei segni (a secondo che nella tavola b sia a sinistra o a destra di P), $n=2,3,\ldots,20$.

n	b	P	b	n	b	P	b	n	b	P	b	n	b	P	b
2	0	.2500	2	10	2	.0547	0	1.4	c	.3953	8	10	9	.0007	16
2	0 1	.7500	1	10	3	.0347 $.1719$	8 7	14	6 7	.5955 .6047	o 7	18	2 3	.0038	15
3	0	.1250	3		3 4	.3770	6	15	0	.0000	15		3 4	.0058	$\frac{13}{14}$
3	1	.5000	2		5	.6230	5	10	1	.0005	14		5	.0134	13
4	0	.0625	$\frac{2}{4}$	11	0	.0230	11		2	.0037	13		6	.1189	$\frac{13}{12}$
4	1	.3125	3	11	1	.0059	10		3	.0176	12		7	.2403	11
	2	.6875	2		2	.0039	9		4	.0592	11		8	.4073	10
5	0	.0313	5		3	.1133	8		5	.1509	10		9	.5927	9
0	1	.1875	4		4	.2744	7		6	.3036	9	19	0	.0000	19
	2	.5000	3		5	.5000	6		7	.5000	8	10	1	.0000	18
6	0	.0156	6	12	0	.0002	12	16	o	.0000	16		2	.0004	17
Ü	1	.1094	5		1	.0032	11	10	1	.0003	15		3	.0022	16
	2	.3438	$\stackrel{\circ}{4}$		2	.0193	10		2	.0021	14		4	.0096	15
	3	.6563	3		3	.0730	9		3	.0106	13		5	.0318	14
7	0	.0078	7		4	.1938	8		4	.0384	12		6	.0835	13
	1	.0625	6		5	.3872	7		5	.1051	11		7	.1796	12
	2	.2266	5		6	.6128	6		6	.2272	10		8	.3238	11
	3	.5000	4	13	0	.0001	13		7	.4018	9		9	.5000	10
8	0	.0039	8		1	.0017	12		8	.5982	8	20	0	.0000	20
	1	.0352	7		2	.0112	11	17	0	.0000	17		1	.0000	19
	2	.1445	6		3	.0461	10		1	.0001	16		2	.0002	18
	3	.3633	5		4	.1334	9		2	.0012	15		3	.0013	17
	4	.6367	4		5	.2905	8		3	.0064	14		4	.0059	16
9	0	.0020	9		6	.5000	7		4	.0245	13		5	.0207	15
	1	.0195	8	14	0	.0001	14		5	.0717	12		6	.0577	14
	2	.0898	7		1	.0009	13		6	.1662	11		7	.1316	13
	3	.2539	6		2	.0065	12		7	.3145	10		8	.2517	12
	4	.5000	5		3	.0287	11		8	.5000	9		9	.4119	11
10	0	.0010	10		4	.0898	10	18	0	.0000	18		10	.5881	10
	1	.0107	9		5	.2120	9		1	.0001	17				

Tavola 4. Gli elementi della tavola danno le probabilità P di coda sinistra o destra della statistica W^+ di Wilcoxon (a secondo che nella tavola w^+ sia a sinistra o a destra di P), $n=2,3,\ldots,15$.

n	w^+	P	w^+	n	w^+	P	w^+	n	w^+	P	w^+	$n w^+$	P	w^+	$n w^+$	P	w^+
2	0	.2500	3	7	4	.0547	24	9	5	.0195	40	10 17	.1611	38	1124	.2324	42
	1	.5000	2		5	.0781	23		6	.0273	39	18	.1875	37	25	.2598	41
3	0	.1250	6		6	.1094	22		7	.0371	38	19	.2158	36	26	.2886	40
	1	.2500	5		7	.1484	21		8	.0488	37	20	.2461	35	27	.3188	39
	2	.3750	4		8	.1875	20		9	.0645	36	21	.2783	34	28	.3501	38
	3	.6250	3		9	.2344	19		10	.0820	35	22	.3125	33	29	.3823	37
4	0	.0625	10		10	.2891	18		11	.1016	34	23	.3477	32	30	.4155	36
	1	.1250	9		11	.3438	17		12	.1250	33	24	.3848	31	31	.4492	35
	2	.1875	8		12	.4063	16		13	.1504	32	25	.4229	30	32	.4829	34
	3	.3125	7		13	.4688	15		14	.1797	31	26	.4609	29	33	.5171	33
	4	.4375	6		14	.5313	14		15	.2129	30	27	.5000	28	$12\ 0$.0002	78
	5	.5625	5	8	0	.0039	36		16	.2480	29	11 0	.0005	66	1	.0005	77
5	0	.0313	15		1	.0078	35		17	.2852	28	1	.0010	65	2	.0007	76
	1	.0625	14		2	.0117	34		18	.3262	27	2	.0015	64	3	.0012	75
	2	.0938	13		3	.0195	33		19	.3672	26	3	.0024	63	4	.0017	74
	3	.1563	12		4	.0273	32		20	.4102	25	4	.0034	62	5	.0024	73
	4	.2188	11		5	.0391	31		21	.4551	24	5	.0049	61	6	.0034	72
	5	.3125	10		6	.0547	30		22	.5000	23	6	.0068	60	7	.0046	71
	6	.4063	9		7	.0742	29	10	0 (.0010	55	7	.0093	59	8	.0061	70
	7	.5000	8		8	.0977	28		1	.0020	54	8	.0122	58	9	.0081	69
6	0	.0156	21		9	.1250	27		2	.0029	53	9	.0161	57	10	.0105	68
	1	.0313	20		10	.1563	26		3	.0049	52	10	.0210	56	11	.0134	67
	2	.0469	19		11	.1914	25		4	.0068	51	11	.0269	55	12	.0171	66
	3	.0781	18		12	.2305	24		5	.0098	50	12	.0337	54	13	.0212	65
	4	.1094	17		13	.2734	23		6	.0137	49	13	.0415	53	14	.0261	64
	5	.1563	16		14	.3203	22		7	.0186	48	14	.0508	52	15	.0320	63
	6	.2188	15		15	.3711	21		8	.0244	47	15	.0615	51	16	.0386	62
	7	.2813	14		16	.4219	20		9	.0322	46	16	.0737	50	17	.0461	61
	8	.3438	13		17	.4727	19		10	.0420	45	17	.0874	49	18	.0549	60
	9	.4219	12		18	.5273	18		11	.0527	44	18	.1030	48	19	.0647	59
	10	.5000	11	9	0	.0020	45		12	.0654	43	19	.1201	47	20	.0757	58
7	0	.0078	28		1	.0039	44		13	.0801	42	20	.1392	46	21	.0881	57
	1	.0156	27		2	.0059	43		14	.0967	41	21	.1602	45	22	.1018	56
	2	.0234	26		3	.0098	42		15	.1162	40	22	.1826	44	23	.1167	55
	3	.0391	25		4	.0137	41		16	.1377	39	23	.2065	43	24	.1331	54

Tavola 4. (segue)

n	w^+	P	w^+	$n w^+$	P	w^+	$n w^+$	P	w^+	$n w^+$	P	w^+	$n w^+$	P	w^+
12	25	.1506	53	13 20	.0402	71	14 9	.0020	96	14 44	.3129	61	15 26	.0277	94
	26	.1697	52	21	.0471	70	10	.0026	95	45	.3349	60	27	.0319	93
	$\frac{1}{27}$.1902	51	$\frac{1}{2}$.0549	69	11	.0034	94	46	.3574	59	28	.0365	92
	28	.2119	50	$\frac{-}{23}$.0636	68	12	.0043	93	47	.3804	58	29	.0416	91
	29	.2349	49	24	.0732	67	13	.0054	92	48	.4039	57	30	.0473	90
	30	.2593	48	25	.0839	66	14	.0067	91	49	.4276	56	31	.0535	89
	31	.2847	47	26	.0955	65	15	.0083	90	50	.4516	55	32	.0603	88
	32	.3110	46	27	.1082	64	16	.0101	89	51	.4758	54	33	.0677	87
	33	.3386	45	28	.1219	63	17	.0123	88	52	.5000	53	34	.0757	86
	34	.3667	44	29	.1367	62	18	.0148	87	15 0	.0000	120	35	.0844	85
	35	.3955	43	30	.1527	61	19	.0176	86	1	.0001	119	36	.0938	84
	36	.4250	42	31	.1698	60	20	.0209	85	2	.0001	118	37	.1039	83
	37	.4548	41	32	.1879	59	21	.0247	84	3	.0002	117	38	.1147	82
	38	.4849	40	33	.2072	58	22	.0290	83	4	.0002	116	39	.1262	81
	39	.5151	39	34	.2274	57	23	.0338	82	5	.0003	115	40	.1384	80
13	0	.0001	91	35	.2487	56	24	.0392	81	6	.0004	114	41	.1514	79
	1	.0002	90	36	.2709	55	25	.0453	80	7	.0006	113	42	.1651	78
	2	.0004	89	37	.2939	54	26	.0520	79	8	.0008	112	43	.1796	77
	3	.0006	88	38	.3177	53	27	.0594	78	9	.0010	111	44	.1947	76
	4	.0009	87	39	.3424	52	28	.0676	77	10	.0013	110	45	.2106	75
	5	.0012	86	40	.3677	51	29	.0765	76	11	.0017	109	46	.2271	74
	6	.0017	85	41	.3934	50	30	.0863	75	12	.0021	108	47	.2444	73
	7	.0023	84	42	.4197	49	31	.0969	74	13	.0027	107	48	.2622	72
	8	.0031	83	43	.4463	48	32	.1083	73	14	.0034	106	49	.2807	71
	9	.0040	82	44	.4730	47	33	.1206	72	15	.0042	105	50	.2997	70
	10	.0052	81	45	.5000	46	34	.1338	71	16	.0051	104	51	.3193	69
	11	.0067	80	$14 \ 0$.0001	105		.1479	70	17	.0062	103	52	.3394	68
	12	.0085	79	1	.0001	104		.1629	69	18	.0075	102	53	.3599	67
	13	.0107	78	2	.0002	103		.1788	68	19	.0090	101	54	.3808	66
	14	.0133	77	3	.0003	102		.1955	67	20	.0108	100	55	.4020	65
	15	.0164	76	4	.0004	101		.2131	66	21	.0128	99	56	.4235	64
	16	.0199	75	5	.0006	100		.2316	65	22	.0151	98	57	.4452	63
	17	.0239	74	6	.0009	99	41	.2508	64	23	.0177	97	58	.4670	62
	18	.0287	73	7	.0012	98	42	.2708	63	24	.0206	96	59	.4890	61
	19	.0341	72	8	.0015	97	43	.2915	62	25	.0240	95	60	.5110	60

Tavola 5. Gli elementi della tavola danno le probabilità P di coda sinistra o destra della statistica W di Mann-Whitney-Wilcoxon (a secondo che nella tavola w sia a sinistra o a destra di P), $n_1 \le n_2 = 1, 2, \dots, 10$.

n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w
1	1	1	.5000	2	1	10	2	.1818	10	2	7	3	.0278	17	2	10	6	.0909	20	3	6	8	.0476	22
1	2	1	.3333	3			3	.2727	9			4	.0556	16			7	.1364	19			9	.0833	21
		2	.6667	2			4	.3636	8			5	.1111	15			8	.1818	18			10	.1310	20
1	3	1	.2500	4			5	.4545	7			6	.1667	14			9	.2424	17			11	.1905	19
		2	.5000	3			6	.5455										.3030					.2738	
1	4	1	.2000	5	2	2	3	.1667				8	.3333					.3788					.3571	
		2	.4000				4	.3333				9	.4444					.4545					.4524	
		3	.6000				5	.6667					.5556					.5455					.5476	
1	5	1	.1667		2	3	3	.1000		2	8		.0222		3	3		.0500		3	7		.0083	
		2	.3333				4	.2000									7	.1000					.0167	
		3	.5000				5	.4000					.0889				8	.2000					.0333	
1	6	1	.1429		_		6	.6000										.3500					.0583	
		2	.2857		2	4	3	.0667				7	.2000		_			.5000					.0917	
		3	.4286				4	.1333				8	.2667		3	4	6	.0286					.1333	
-	_	4	.5714				5	.2667					.3556					.0571					.1917	
1	7	1	.1250				6	.4000					.4444				8	.1143					.2583	
		2	.2500		0	F	7	.6000		0	0		.5556					.2000					.3333	
		3 4	.3750 .5000		2	Э	ა 4	.0476 .0952		2	9		.0182					.3143 .4286					.4167	
1	8	1	.1111				5	.0952 $.1905$				4 5	.0304 $.0727$.5714		9	0		.0061	
1	O	2	.2222				6	.1903				-	.1091		2	5		.0179		3	O	7	.0121	
		3	.3333				7	.4286				-	.1636		3	9		.0357				•	.0242	
		4	.4444				8	.5714									8	.0714					.0424	
		5	.5556		2	6	-	.0357									-	.1250					.0667	
1	9	1	.1000		_	0		.0714					.3636					.1964					.0970	
-	Ü	2	.2000				5	.1429					.4545					.2857					.1394	
		3	.3000				6	.2143					.5455					.3929					.1879	
		4	.4000				7	.3214		2	10							.5000					.2485	
		5	.5000				8	.4286							3	6		.0119					.3152	
1	10	1	.0909	11			9	.5714	9			5	.0606	21			7	.0238	23			16	.3879	20

n_1	$n_2 w P w$	$n_1 n$	$v_2 w P$	w	$n_1 n_2$	$_2 w$	P	w	$n_1 n_2$	w	P	w	n_1	n_2	w	P	w
3	8 17.4606 19	3 1	0 20 .4685	22	4 6	18	.2381	26	4 8	20.	.1838	32	4	10	14.	.0120	46
	18.5394 18		21.5315	21		19	.3048	25		21.	2303	31			15.	.0180	45
3	9 6 .0045 33	4 4	10.0143	26		20	.3810	24		22.	.2848	30			16	.0270	44
	7 .0091 32		11.0286	25		21	.4571	23		23.	.3414	29			17.	.0380	43
	8 .0182 31		12.0571	24		22	.5429	22		24.	.4040	28			18.	.0529	42
	9 .0318 30		13.1000	23	4 7	10	.0030	38		25.	4667	27			19.	.0709	41
	10.050029		14.1714	22		11	.0061	37		26.	.5333	26			20.	.0939	40
	11.0727 28		15.2429	21		12	.0121	36	4 9	10.	.0014	46			21.	.1199	39
	12.1045 27		16.3429	20		13	.0212	35		11.	.0028	45			22.	.1518	38
	$13.1409\ 26$		17.4429				.0364				.0056					.1868	
	$14.1864\ 25$		18.5571				.0545				.0098					.2268	
	15.2409 24						.0818				.0168					.2697	
	16.3000 23		11.0159				.1152				.0252					.3177	
	17.3636 22		12.0317				.1576				.0378					.3666	
	18.4318 21		13.0556				.2061				.0531					.4196	
	19.5000 20		14.0952				.2636				.0741					.4725	
3	106 .0035 36		15.1429				.3242				.0993					.5275	
	7 .0070 35		16.2063				.3939									.0040	
	8 .0140 34		17.2778				.4636				.1650					.0079	
	9 .0245 33		18.3651				.5364				.2070					.0159	
	10.0385 32		19.4524		4 8		.0020				.2517					.0278	
	$11.0559 \ 31$		20.5476				.0040				.3021					.0476	
	12.0804 30						.0081				.3552					.0754	
	13.1084 29		11.0095				.0141				.4126					.1111	
	14.1434 28		12.0190				.0242				.4699					.1548	
	15.1853 27		13.0333				.0364				.5301					.2103	
	16.2343 26		14.0571						4 10							.2738	
	17.2867 25		15.0857				.0768				.0020	_				.3452	
	18.3462 24		16.1286				.1071				.0040					.4206	
	19.4056 23		17.1762	27		19	.1414	33		13.	.0070	47			27.	.5000	28

n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w
5	6	15	.0022	2 45	5	7	29	.3194	36	5	9	20	.0095	55	5	10	27	.0646	53	6	6	37	.4091	41
			.0043					.3775					.0145					.0823					.4686	
			.0087					.4381				22	.0210	53			29	.1032	51				.5314	
		18	.0152	42			32	.5000	33			23	.0300	52			30	.1272	50	6	7	21	.0006	63
		19	.0260	41	5	8	15	.0008	55			24	.0415	51			31	.1548	49			22	.0012	62
		20	.0411	40			16	.0016	54			25	.0559	50			32	.1855	48			23	.0023	61
		21	.0628	39			17	.0031	53			26	.0734	49			33	.2198	47			24	.0041	60
			.0887				18	.0054	52			27	.0949	48			34	.2567	46				.0070	
			.1234					.0093					.1199					.2970					.0111	
			.1645					.0148					.1489					.3393					.0175	
			.2143					.0225					.1818					.3839					.0256	
			.2684					.0326				-	.2188					.4296					.0367	
			.3312					.0466					.2592					.4765					.0507	
			.3961					.0637					.3032					.5235					.0688	
			.4654					.0855					.3497		6	6		.0011					.0903	
_	_		.5346					.1111					.3986					.0022					.1171	
5	7		.0013					.1422					.4491					.0043					.1474	
			.0025					.1772		F			.5000					.0076					.1830	
			.0051					.2176 .2618		Э	10		.0003 $.0007$.0130 .0206					.2226 .2669	
			.0066					.2018					.0007					.0200					.2009	
			.0240					.3621					.0013					.0325 $.0465$.3654	
			.0366					.4165					.0040				_	.0460					.4178	
			.0530					.4716					.0063					.0898					.4726	
			.0745					.5284					.0097					.1201					.5274	
			.1010		5	9		.0005					.0140					.1548		6	8		.0003	
			.1338		•	Ü		.0010					.0200					.1970		0	_		.0007	
			.1717					.0020					.0276					.2424					.0013	
			.2159					.0035					.0376					.2944					.0023	
			.2652					.0060					.0496				36	.3496	42				.0040	

n_1	n_2	w P	w	n_1	n_2	v P	w	n_1	$n_2 w$	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w
6	8	26 .0063	64	6	9	31 .0248	8 65	6	10 33	.0280	69	7	7	39	.0487	66	7	8	44	.0946	68
		27.0100	63			32 .0332	2 64		34	.0363	68			40	.0641	65			45	.1159	67
		28.0147	62			33 .0440	63		35	.0467	67			41	.0825	64			46	.1405	66
		29.0213	61			34.056	7 62		36	.0589	66			42	.1043	63			47	.1678	65
		30.0296	60			35.0723	3 61		37	.0736	65			43	.1297	62			48	.1984	64
		31.0406	5 5 9			36.0905	5 60		38	.0903	64			44	.1588	61			49	.2317	63
		32.0539				37.1119				.1099					.1914					.2679	
		33.0709				38.136				.1317					.2279					.3063	
		34 .0906				39.1638				.1566					.2675					.3472	
		35.1142				10 .1942				.1838					.3100					.3894	
		36 .1412				11.2280				.2139					.3552					.4333	
		37.1725				12 .2643				.2461					.4024					.4775	
		38 .2068				13 .303			_	.2811				-	.4508	-	_	_		.5225	
		39 .2454				14 .344				.3177		_	_		.5000		7	9		.0001	
		40 .2864				15 .3878				.3564		7	8		.0002					.0002	
		41 .3310				16 .4320				.3962					.0003					.0003	
		42 .3773				17 .4773				.4374					.0006					.0006	
		43 .4259		0		18 .522				.4789					.0011					.0010	
		44 .4749		6		21.0001		_		.5211					.0019					.0017	
C	0	45 .5251				22.0002		1		.0003					.0030					.0026	
6	9	21 .0002 22 .0004				23.000 24.000			_	.0006					.0047 $.0070$.0039 .0058	-
		23 .0004				24.0003				.0012					.0070					.003c .0082	
		24 .0014				26 .001 26 .002				.0020					.0145					.0082 .0115	
		25 .0024				20.002^{2}				.0055					.0143					.0116	
		26.0024				27.005				.0033					.0200					.0130	
		27 .0060				29 .003 29 .008				.0131					.0361				-	.0203	
		28 .0088				30 .000				.0189					.0469					.0213	
		29 .0128				31.0156				.0265					.0603					.0350	
		30 .0180				32 .0210				.0364					.0760					.0571	
		-0.0100								. 5 5 5 1	•					00					

n_1	$n_2 w P w$	$n_1 n_2$	v P	w	$n_1 n_2$	w	P	w	n_1	n_2	w	P	w	n_1	$n_2 w$	P	w
7	9 45 .0708 74	7 10	13 .0277	7 83	8 8	45	.0074	91	8	9	42	.0012	102	8	9 72	.5187	72
	46.086973		4 .0351	82		46	.0103	90			43	.0019	101	8	10 36	.0000	116
	47.105272		15 .0439	81		47	.0141	89			44	.0028	100		37	.0000	115
	48.126171		16 .0544	1 80		48	.0190	88			45	.0039	99		38	.0001	114
	49.149670		17.0665	79		49	.0249	87			46	.0056	98		39	.0002	113
	50.175569		8.0806	78		50	.0325	86			47	.0076	97		40	.0003	112
	$51.2039\ 68$		19 .0966	3 77		51	.0415	85			48	.0103	96		41	.0004	111
	52.234967		50.1148	3 76		52	.0524	84			49	.0137	95		42	.0007	110
	$53.2680\ 66$		51.1349	75		53	.0652	83			50	.0180	94		43	.0010	109
	$54.3032\ 65$		52.1574	1 74		54	.0803	82			51	.0232	93		44	.0015	108
	55.340364		3.1819	73		55	.0974	81			52	.0296	92		45	.0022	107
	56.378863		54.2087	7 72		56	.1172	80			53	.0372	91		46	.0031	106
	57.418562		55.2374	1 71		57	.1393	79			54	.0464	90		47	.0043	105
	58.459161		66.2681				.1641					.0570				.0058	
	59 .5000 60		57.3004	1 69			.1911					.0694				.0078	
7	$10\ 28\ .0001\ 98$		58.3345			60	.2209	76				.0836				.0103	
	29.000197		59.3698				.2527					.0998				.0133	
	30.000296		30.4063			62	.2869	74			59	.1179	85		52	.0171	100
	31.000495		31.4434				.3227					.1383				.0217	
	32.000694		32.4811	64		64	.3605	72			61	.1606	83		54	.0273	98
	33 .0010 93		33.5189				.3992					.1852				.0338	
	34.001592		36 .0001)		.4392					.2117				.0416	
	35.002391		37.0002				.4796					.2404				.0506	
	36.003490		38 .0003				.5204					.2707				.0610	
	37.004889		39 .0005		8 9		.0000					.3029				.0729	
	38.0068~88		2000.01			37	.0001	10'	7			.3365				.0864	
	39.009387		11.0015	95		38	.0002	106	3		68	.3715	76		61	.1015	91
	40.012586		12.0023				.0003					.4074				.1185	
	41.016585		13 .0035				.0005				70	.4442	74			.1371	
	42.021584		14.0052	92		41	.0008	103	3		71	.4813	73		64	.1577	88

n_1	$n_2 u$	υ	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	n_1	n_2	w	P	w	$n_1 n_2 w$	P	w
8	10.6	35	1900	97	0	0	62	0252	100	0	10	50	0005	100	2.0	10	၀ဂ	2745	00	10 10 76	0144	194
0			2041			9		.0232					.0003					.2745 .3019			.0144	
								.0315													.0216	
			2299 2574					.0383					.0011					.3304 .3598			.0210 $.0262$	
			2863					.0567					.0013					.3901 .3901			.0202	
			2003 3167					.0680					.0021					.3901 .4211			.0376	
			3482					.0807					.0028					.4211 $.4524$.0376	
			3809					.0951					.0053					.4924 $.4841$.0526	
			4143					.1112					.0066					.5159			.0520 $.0615$	
			4143 4484					.1112					.0086								.0013	
			4827					.1487					.0110					.0000			.0827	
			5173					.1701					.0140					.0000			.0952	
9			0000					.1933					.0175					.0000			.1088	
5			0000					.2181					.0217					.0000			.1237	
			0001					.2447					.0267					.0001			.1399	
			0001					.2729					.0326					.0002			.1575	
			0002					.3024					.0394					.0002			.1763	
			0004					.3332					.0474					.0004			.1965	
			0006					.3652					.0564					.0005			.2179	
			0009					.3981					.0667					.0008			.2406	
			0014					.4317					.0782				66	.0010	144		.2644	
	Ę	i4.	0020	11	7		84	.4657	87			73	.0912	107	7		67	.0014	143	97	.2894	113
	5	55.	0028	11	6		85	.5000	86			74	.1055	106	3		68	.0019	142	98	.3153	112
	5	66.	0039	11	5 9	10	45	.0000	135			75	.1214	105	5		69	.0026	141	99	.3421	111
	5	57.	0053	11	4		46	.0000	134			76	.1388	104	1		70	.0034	140	100	.3697	110
	5	58.	0071	11	3		47	.0000	133			77	.1577	103	3		71	.0045	139	101	.3980	109
	Ę	i9.	0094	11	2		48	.0001	132			78	.1781	102	2		72	.0057	138	102	.4267	108
	6	60.	0122	11	1		49	.0001	131			79	.2001	101	L		73	.0073	137	103	.4559	107
	6	61.	0157	11	0		50	.0002	130			80	.2235	100)		74	.0093	136	104	.4853	106
	6	32 .	0200	10	9		51	.0003	129			81	.2483	99			75	.0116	135	105	.5147	105

Tavola 6. Gli elementi della tavola danno le probabilità P di coda destra della statistica A di Ansari-Bradley, $n_1 \leq n_2 = 2, 3, \dots, 10$.

n_1	n_2	a	P	n_1	n_2	a	P	n_1	n_2	a	P	n_1	n_2	a	P	n_1	n_2	a	P
2	2	2	1.0000	2	7	7	.3056	2	10		.1515	3	6		.1429	3	9	7	.9273
		3	.8333			8	.1389				.0758				.0595			8	.8636
		4	.1667			9	.0556			12	.0152			13	.0119			9	.7636
2	3	2	1.0000	2		2	1.0000	3	3	4	1.0000	3	7	4	1.0000				.6364
		3	.9000			3	.9778			5	.9000			5	.9833				.5000
		4	.5000			4	.8889			6	.7000			6	.9500				.3636
		5	.2000			5	.7778			7	.3000			7	.8667				.2364
2	4	2	1.0000			6	.6000			8	.1000			8	.7500				.1364
		3	.9333			7	.4000	3	4	4	1.0000			9	.5833				.0727
		4	.6667			8	.2222			5	.9429				.4167				.0273
		5	.3333			9	.1111			6	.8286				.2500				.0091
		6	.0667				.0222			7	.5714				.1333	3	10		1.0000
2	5	2	1.0000	2	-	2	1.0000			8	.3429				.0500			5	.9930
		3	.9524			3	.9818			9	.1429				.0167			6	.9790
		4	.7619			4	.9091			10		3	8	4	1.0000			7	.9441
		5	.5238			5	.8182	3	5	4	1.0000			5	.9879			8	.8951
		6	.2381			6	.6727			5	.9643			6	.9636			9	.8182
		7	.0952			7	.5091			6	.8929			7	.9030				.7168
2	6	2	1.0000			8	.3273			7	.7143			8	.8182				.5979
		3	.9643			9	.2000			8	.5000			9	.6909				.4755
		4	.8214			10				9	.2857				.5455				.3497
		5	.6429	_			.0364				.1071				.3939				.2413
		6	.3571	2	10		1.0000	_			.0357				.2606				.1503
		7	.1786			3	.9848	3	6	4	1.0000				.1455				.0839
	_	8	.0357			4	.9242			5	.9762				.0727				.0420
2	7	2	1.0000			5	.8485			6	.9286				.0303				.0175
		3	.9722			6	.7273			7	.8095		_		.0061		,		.0035
		4	.8611			7	.5909			8	.6548	3	9	4	1.0000	4	4		1.0000
		5	.7222			8	.4091			9	.4643			5	.9909			7	.9857
		6	.5000			9	.2727			10	.2857			6	.9727			8	.9286

n_1	$n_2 a P$	$n_1 n_2 a = P$	$n_1 n_2 a - P$	n_1n_2a P	$n_1 n_2 a - P$
4	4 9 .8000 10 .6286	4 7 6 1.0000 7 .9970	4 8 21 .0101 22 .0020	4 10 15 .6593 16 .5554	5 6 14 .8420 15 .7446
	11 .3714	8 .9848	4 9 6 1.0000	17 .4446	16 .6147
	12 .2000	9 .9576	7 .9986	18 .3407	17 .4805
	13 .0714	10 .9091	8 .9930	19 .2458	18 .3463
	14 .0143	11 .8242	9 .9804	20.1658	19 .2294
4	5 6 1.0000	12.7152	10 .9580	21 .1039	20 .1342
	7 .9921	13 .5818	11 .9161	22.0599	21 .0693
	8 .9603	14.4424	12 .8573	23 .0300	22 .0303
	9 .8889	15 .3030	13.7762	24 .0140	23 .0108
	10 .7778	16 .1939	14.6783	25.0050	24 .0022
	11 .6032	17.1061	15.5650	26 .0010	5 7 9 1.0000
	12.4286	18 .0515	16 .4503	5 5 9 1.0000	10 .9975
	13.2619	19 .0182	17.3357	10 .9921	11 .9924
	14.1349	20 .0061	18 .2378	11.9762	12 .9773
	15.0476	$4\ 8\ 6\ 1.0000$	19 .1538	12 .9286	13 .9495
	16.0159	7 .9980	20 .0923	13.8492	14 .9015
4	6 6 1.0000	8 .9899	21.0490	14.7302	15 .8333
	7.9952	9 .9717	22.0238	15.5873	16 .7374
	8 .9762	10 .9394	23.0084	16.4127	17 .6237
	9 .9333	11 .8788	24.0028	17.2698	18 .5000
	10 .8571	12.7980	$4 \ 106 \ 1.0000$	18 .1508	19 .3763
	11 .7333	13 .6889	7 .9990	19.0714	20 .2626
	12.5810	14.5677	8 .9950	20 .0238	21.1667
	13.4190	15.4323	9 .9860	21.0079	22.0985
	14.2667	16 .3111	10 .9700	5 6 9 1.0000	23.0505
	15.1429	17.2020	11 .9401	10 .9957	24.0227
	16 .0667	18 .1212	12 .8961	11 .9870	25.0076
	17.0238	19 .0606	13 .8342	12.9610	26.0025
	18 .0048	20 .0283	14 .7542	13 .9156	

n_1	n_2a-P	$n_1 n_2 a P$	n_1n_2a P	n_1n_2a P	n_1n_2a P
5	8 9 1.0000	5 9 17 .8212	5 10 24 .3044	6 7 12 1.0000	6 8 20 .8751
	10 .9984	18.7423	25.2268	13.9994	21 .8139
	11.9953	19.6523	26.1608	14.9971	22 .7366
	12.9860	20.5514	27.1086	15 .9918	23.6474
	13.9689	21.4486	28.0686	16.9802	24.5501
	14.9386	22.3477	29 .0406	17.9592	25.4499
	15.8936	23.2577	30 .0220	18.9242	26.3526
	16.8275	24.1788	31 .0107	19 .8735	27.2634
	17.7451	25.1179	32 .0047	20 .8048	28 .1861
	18.6457	26.0709	33 .0017	21.7203	29 .1249
	19.5385	27.0400	34 .0003	22.6189	30 .0783
	20.4266	28 .0200	6 6 12 1.0000	23.5122	31 .0453
	21.3209	29 .0090	13 .9989	24.4038	32 .0240
	22.2269	30 .0030	14 .9946	25.3030	33 .0113
	23.1507	31 .0010	15 .9848	26.2133	34.0047
	24.0917	$5 \ 109 \ 1.0000$	16 .9632	27.1410	35.0017
	25.0513	10 .9993	17.9264	28 .0851	36 .0003
	26.0249	11 .9980	18 .8658	29 .0484	6 9 12 1.0000
	27.0109	12 .9940	19 .7846	30 .0239	13 .9998
	28 .0039	13 .9867	20 .6807	31.0105	14 .9990
	29 .0008	14.9734	21.5649	32.0035	15 .9972
5	9 9 1.0000	15.9524	22.4351	33 .0012	16 .9932
	10 .9990	16 .9197	23.3193	6 8 12 1.0000	17 .9856
	11 .9970	17 .8761	24.2154	13 .9997	18 .9724
	12 .9910	18 .8182	25.1342	14 .9983	19 .9518
	13 .9800	19 .7483	26 .0736	15 .9953	20 .9215
	14 .9600	20 .6663	27.0368	16 .9887	21 .8803
	15 .9291	21 .5771	28 .0152	17 .9760	22 .8260
	16 .8821	22 .4832	29 .0054	18 .9547	23 .7600
		23 .3916	30 .0011	19 .9217	24 .6829

n_1	$n_2 a P$	n_1n_2a P	n_1n_2a P	n_1n_2a P	$n_1 n_2 a P$
6	9 25 .5984 26 .5085	6 10 27 .5425 28 .4575	7 7 31 .2652 32 .1894	7 8 36 .1005 37 .0648	7 9 37 .1477 38 .1035
	27.4190	29.3754	33 .1770	38 .0393	39.0694
	28.3323	30.2975	34 .0804	39 .0221	40 .0441
	29.2543	31 .2283	35.0466	40 .0115	41.0266
	30 .1860	32.1678	36.0256	41 .0053	42.0149
	31 .1303	33 .1188	37.0122	42.0022	43.0079
	32.0859	34.0798	38.0052	43.0008	44.0037
	33.0539	35.0513	39 .0017	44.0002	45.0016
	34.0312	36 .0308	40 .0006	7 9 16 1.0000	46.0005
	35.0170	37.0175	7 8 16 1.0000	17 .9998	47.0002
	36.0082	38 .0090	17.9997	18 .9995	$7 \ 10\ 16\ 1.0000$
	37.0036	39 .0042	18 .9991	19 .9984	17.9999
	38 .0012	40 .0017	19.9972	20 .9963	18.9997
	39.0004	41 .0006	20.9935	21.9921	19 .9991
6	$10\ 12\ 1.0000$	7 7 161.0000	21.9862	22.9851	20.9978
	13.9999	17.9994	22.9744	23.9734	21.9954
	14.9994	18 .9983	23.9549	24.9559	22.9912
	15.9983	19 .9948	24.9270	25.9306	23.9841
	16.9958	20.9878	25.8878	26.8965	24.9734
	17.9910	21.9744	26.8375	27.8523	25.9574
	18.9825	22.9534	27.7748	28.7981	26.9354
	19 .9692	23.9196	28.7021	29.7336	27.9059
	20.9487	24.8730	29.6194	30 .6608	28.8685
	21.9202	25.8106	30.5324	31 .5820	29 .8221
	22.8812	26 .7348	31 .4435	32.5000	30 .7676
	23.8322	27.6463	32.3577	33 .4180	31.7052
	24.7717	28.5507	33.2777	34.3392	32.6368
	25.7025	29 .4493	34.2075	35.2664	33.5637
	26.6246	30.3537	35.1478	36 .2019	34.4888

n_1	$n_2 a P$	$n_1 n_2 a P$	$n_1 n_2 a P$	$n_1 n_2 a P$	n_1n_2a P
7	10 35 .4139	8 8 33 .7650	8 9 30 .9504	8 10 23 .9997	8 1053 .0113
	36.3421	34.6970	31.9262	24.9992	54.0065
	37.2753	35.6212	32.8947	25.9983	55.0035
	38.2154	36.5413	33.8549	26.9965	56 .0017
	39.1633	37.4587	34.8069	27.9935	57 .0008
	40 .1199	38 .3788	35.7508	28.9887	58 .0003
	41.0847	39 .3030	36.6877	29 .9813	59 .0001
	42.0576	40.2350	37.6184	30.9704	60 .0000
	43.0375	41.1754	38.5457	31.9551	9 9 25 1.0000
	44.0233	42.1263	39.4714	32.9344	$26\ 1.0000$
	45.0136	43.0867	40.3983	33.9075	27.9999
	46.0075	44.0572	41.3281	34.8738	28 .9996
	47.0038	45.0357	42.2636	35.8328	29 .9991
	48.0017	46.0211	43.2055	36.7847	30 .9981
	49.0007	47.0115	44.1557	37.7296	31 .9963
	50 .0003	48 .0059	45.1139	38 .6686	32.9932
	51 .0001	49 .0026	46.0807	39 .6031	33.9882
8	8 20 1.0000	50 .0011	47.0548	40.5347	34.9805
	21.9999	51 .0004	48.0358	41.4653	35.9695
	22.9996	52.0001	49.0221	42.3969	36.9540
	23.9989	8 9 201.0000	50 .0131	43.3314	37.9332
	24.9974	211.0000	51.0072	44.2704	38.9062
	25.9941	22.9998	52.0037	45.2153	39.8724
	26.9885	23.9994	53 .0017	46.1672	40 .8313
	27.9789	24.9986	54.0007	47.1262	41.7833
	28.9643	25.9969	55.0002	48.0925	42.7283
	29.9428	26.9938	56 .0001	49.0656	43.6677
	30 .9133	27.9886	$8 \ 10\ 20\ 1.0000$	50 .0449	44.6025
	31.8737	28 .9804	211.0000	51.0296	45.5346
	32.8246	29 .9680	22.9999	52.0187	46.4654

n_1	$n_2 a$	P	n_1n_2a	P	n_1n_2a	P	n_1n_2a	P
9	9 47	.3975	9 10 36	.9741	9 1066	.0008	10 10 55	.5296
	48	.3323	37	.9618	67	.0004	56	.4704
	49	.2717	38	.9453	68	.0002	57	.4119
	50	.2167	39	.9240	69	.0001	58	.3551
	51	.1687	40	.8972	70	.0000	59	.3014
	52	.1276	41	.8646	101030	1.0000	60	.2514
	53	.0938	42	.8259	31	1.0000	61	.2060
	54	.0668	43	.7813	32	1.0000	62	.1656
	55	.0460	44	.7310	33	.9999	63	.1306
	56	.0305	45	.6759	34	.9998	64	.1007
	57	.0195		.6166	35	.9996	65	.0761
	58	.0118	47	.5548	36	.9992	66	.0560
	59	.0068	48	.4916	37	.9984	67	.0403
	60	.0037	49	.4287	38	.9971	68	.0282
		.0019		.3673		.9951		.0192
		.0009		.3092		.9920		.0126
		.0004		.2552		.9874		.0080
		.0001		.2064		.9808		.0049
	65	.0000	54	.1632	43	.9718	73	.0029
9	10 25	1.0000	55	.1262	44	.9597	74	.0016
	26	1.0000	56	.0952	45	.9440	75	.0008
	27	.9999	57	.0700	46	.9239	76	.0004
		.9998		.0500		.8993		.0002
		.9995		.0347		.8694		.0001
	30	.9990		.0232		.8344		.0000
		.9980		.0150	50	.7940	80	.0000
		.9964		.0093		.7486		
		.9937		.0056		.6986		
	34	.9894	64	.0031	53	.6449		
	35	.9831	65	.0017	54	.5881		

Tavola 7. Gli elementi della tavola danno le probabilità P di coda sinistra o destra della statistica S di Spearman (a secondo che nella tavola s sia a sinistra o a destra di P), $n=3,4,\ldots,10$.

n	s	P	s	n s	P	s	n s	P	s	n s	P	s
3	10	.167	14	6 69	.329	78	7 111	.482	113	8 150	.250	174
	11	.500	13	70	.357	77	112	.518	112	151	.268	173
4 2	20	.042	30	71	.401	76	8 120	.000	204	152	.291	172
4	21	.167	29	72	.460	75	121	.000	203	153	.310	171
4	22	.208	28	73	.500	74	122	.001	202	154	.332	170
4	23	.375	27	7 84	.000	140	123	.001	201	155	.352	169
4	24	.458	26	85	.001	139	124	.002	200	156	.376	168
4	25	.542	25	86	.003	138	125	.004	199	157	.397	167
5 3		.008	55	87	.006	137		.005	198		.420	166
	36	.042	54	88	.012	136	127	.008	197	159	.441	165
	37	.067	53	89	.017	135		.011	196		.467	164
	38	.117	52	90	.024	134		.014	195		.488	163
;	39	.175	51	91	.033	133		.018	194		.512	162
	40	.225	50	92	.044	132		.023	193	9 165		285
	41	.258	49	93	.055	131		.029	192		.000	284
	42	.342	48	94	.069	130		.035	191		.000	283
	43	.392	47	95	.083	129		.042	190		.000	282
	44	.475	46	96	.100	128		.048	189		.000	281
	45	.525	45	97	.118	127		.057	188		.001	280
6 5		.001	91	98	.133	126		.066	187		.001	279
	57	.008	90	99	.151	125		.076	186		.002	278
	58	.017	89		.177	124		.085	185		.002	277
	59	.029	88		.198	123		.098	184		.003	276
	60	.051	87		.222	122		.108	183		.004	275
	61	.068	86		.249	121		.122	182		.005	274
	62	.088	85		.278	120		.134	181		.007	273
	63	.121	84		.297	119		.150	180		.009	272
	64	.149	83		.331	118		.163	179		.011	271
	35	.178	82		.357	117		.180	178		.013	270
	66	.210	81		.391	116		.195	177		.016	269
	67	.249	80		.420	115		.214	176		.018	268
(68	.282	79	110	.453	114	149	.231	175	183	.022	267

Tavole _______153

Tavola 7. (segue)

n	s	P	s	n s	P	s	n s	P	s	n s	P	s
9	184	.025	266	9 216	.354	234	10 242	.010	363	10 274	.165	331
	185	.029	265	217	.372	233	243	.012	362	275	.174	330
	186	.033	264	218	.388	232	244	.013	361	276	.184	329
	187	.038	263	219	.405	231	245	.015	360	277	.193	328
	188	.043	262	220	.422	230	246	.017	359	278	.203	327
	189	.048	261	221	.440	229	247	.019	358	279	.214	326
	190	.054	260	222	.456	228	248	.022	357	280	.224	325
	191	.060	259	223	.474	227	249	.025	356	281	.235	324
	192	.066	258	224	.491	226	250	.027	355	282	.246	323
	193	.074	257	225	.509	225	251	.030	354	283	.257	322
	194	.081	256	10220	.000	385	252	.033	353	284	.268	321
	195	.089	255	221	.000	384	253	.037	352	285	.280	320
	196	.097	254	222	.000	383	254	.040	351	286	.292	319
	197	.106	253	223	.000	382	255	.044	350	287	.304	318
	198	.115	252	224	.000	381	256	.048	349	288	.316	317
	199	.125	251	225	.000	380	257	.052	348	289	.328	316
	200	.135	250	226	.000	379	258	.057	347	290	.341	315
	201	.146	249	227	.000	378	259	.062	346	291	.354	314
	202	.156	248	228	.000	377	260	.067	345	292	.367	313
	203	.168	247	229	.001	376	261	.072	344	293	.379	312
	204	.179	246	230	.001	375	262	.077	343	294	.393	311
	205	.193	245	231	.001	374	263	.083	342	295	.406	310
	206	.205	244	232	.001	373	264	.089	341	296	.419	309
	207	.218	243	233	.002	372	265	.096	340	297	.433	308
	208	.231	242	234	.002	371	266	.102	339	298	.446	307
	209	.247	241	235	.003	370	267	.109	338	399	.459	306
	210	.260	240	236	.004	369	268	.116	337	300	.473	305
	211	.276	239	237	.004	368	269	.124	336	301	.486	304
	212	.290	238	238	.005	367	270	.132	335	302	.500	303
	213	.307	237	239	.007	366	271	.139	334			
	214	.322	236	240	.008	365	272	.148	333			
	215	.339	235	241	.009	364	273	.156	332			

Tavola 8. Gli elementi della tavola danno le probabilità P di coda sinistra o destra della statistica C di Kendall (a secondo che nella tavola c sia a sinistra o a destra di P), $n=3,4,\ldots,15$.

n	c	P	c	n c	P	c	n c	P	c	n c	P	c
3	0	.167	3	8 5	.016	23	10 7	.002	38	$11\ 20$.141	35
	1	.500	2	6	.031	22	8	.005	37	21	.179	34
4	0	.042	6	7	.054	21	9	.008	36	22	.232	33
	1	.167	5	8	.089	20	10	.014	35	23	.271	32
	2	.375	4	9	.138	19	11	.023	34	24	.324	31
	3	.625	3	10	.199	18	12	.036	33	25	.381	30
5	0	.008	10	11	.274	17	13	.054	32	26	.440	29
	1	.042	9	12	.360	16	14	.078	31	27	.500	28
	2	.117	8	13	.452	15	15	.108	30	$12 \ 0$.000	66
	3	.242	7	14	.548	14	16	.146	29	1	.000	65
	4	.408	6	9 0	.000	36	17	.190	28	2	.000	64
	5	.592	5	1	.000	35	18	.242	27	3	.000	63
6	0	.001	15	2	.000	34	19	.300	26	4	.000	62
	1	.008	14	3	.000	33	20	.364	25	5	.000	61
	2	.028	13	4	.001	32	21	.431	24	6	.000	60
	3	.068	12	5	.003	31	22	.500	23	7	.000	59
	4	.136	11	6	.006	30	11 0	.000	55	8	.000	58
	5	.235	10	7	.012	29	1	.000	54	9	.000	57
	6	.360	9	8	.022	28	2	.000	53	10	.000	56
	7	.500	8	9	.038	27	3	.000	52	11	.001	55
7	0	.000	21	10	.060	26	4	.000	51	12	.002	54
	1	.001	20	11	.090	25	5	.000	50	13	.003	53
	2	.005	19	12	.130	24	6	.000	49	14	.004	52
	3	.015	18	13	.179	23	7	.000	48	15	.007	51
	4	.035	17	14	.238	22	8	.001	47	16	.010	50
	5	.068	16	15	.306	21	9	.002	46	17	.016	49
	6	.119	15	16	.381	20	10	.003	45	18	.022	48
	7	.191	14	17	.460	19	11	.005	44	19	.031	47
	8	.281	13	18	.540	18	12	.008	43	20	.043	46
	9	.386	12	10 0	.000	45	13	.013	42	21	.058	45
	10	.500	11	1	.000	44	14	.020	41	22	.076	44
8	0	.000	28	2	.000	43	15	.030	40	23	.098	43
	1	.000	27	3	.000	42	16	.043	39	24	.125	42
	2	.001	26	4	.000	41	17	.060	38	25	.155	41
	3	.002	25	5	.000	40	18	.082	37	26	.190	40
	4	.007	24	6	.001	39	19	.109	36	27	.230	39

n c	P	c	n c	P	c	n c	P	c	n c	P	c
12 28	.273	38	13 30	.153	48	$14\ 26$.018	65	15 16	.000	89
29	.319	37	31	.184	47	27	.024	64	17	.000	88
30	.369	36	32	.218	46	28	.031	63	18	.000	87
31	.420	35	33	.255	45	29	.040	62	19	.000	86
32	.473	34	34	.295	44	30	.050	61	20	.000	85
33	.527	33	35	.338	43	31	.063	60	21	.001	84
13 0	.000	78	36	.383	42	32	.079	59	22	.001	83
1	.000	77	37	.429	41	33	.096	58	23	.001	82
2	.000	76	38	.476	40	34	.117	57	24	.002	81
3	.000	75	39	.524	39	35	.140	56	25	.003	80
4	.000	74	$14 \ 0$.000	91	36	.165	55	26	.004	79
5	.000	73	1	.000	90	37	.194	54	27	.006	78
6	.000	72	2	.000	89	58	.225	53	28	.008	77
7	.000	71	3	.000	88	39	.259	52	29	.010	76
8	.000	70	4	.000	87	40	.295	51	30	.014	75
9	.000	69	5	.000	86	41	.334	50	31	.018	74
10	.000	68	6	.000	85	42	.374	49	32	.023	73
11	.000	67	7	.000	84	43	.415	48	33	.029	72
12	.000	66	8	.000	83	44	.457	47	34	.037	71
13	.000	65	9	.000	82	45	.500	46	35	.046	70
14	.001	64	10	.000	81	$15 \ 0$.000	105	36	.057	69
15	.001	63	11	.000	80	1	.000	104	37	.070	68
16	.002	62	12	.000	79	2	.000	103	38	.084	67
17	.003	61	13	.000	78	3	.000	102	39	.101	66
18	.005	60	14	.000	77	4	.000	101	40	.120	65
19	.007	59	15	.000	76	5	.000	100	41	.141	64
20	.011	58	16	.000	75	6	.000	99	42	.164	63
21	.015	57	17	.001	74	7	.000	98	43	.190	62
22	.021	56	18	.001	73	8	.000	97	44	.218	61
23	.029	55	19	.002	72	9	.000	96	45	.248	60
24	.038	54	20	.002	71	10	.000	95	46	.279	59
25	.050	53	21	.003	70	11	.000	94	47	.313	58
26	.064	52	22	.005	69	12	.000	93	48	.349	57
27	.082	51	23	.007	68	13	.000	92	49	.385	56
28	.102	50	24	.010	67	14	.000	91	50	.423	55
29	.126	49	25	.013	66	15	.000	90	51	.461	54
									52	.500	53

Tavola 9. Gli elementi della tavola danno i quantili della statistica di Kolmogorov per alcune probabilità di coda sinistra P e $n=1,2,\ldots,40$.

$n \setminus P$	0.80	0.90	0.95	0.98	0.99	$n \setminus P$	0.80	0.90	0.95	0.98	0.99
1	.900	.950	.975	.990	.995	21	.226	.259	.287	.321	.344
2	.684	.776	.842	.900	.929	22	.221	.253	.281	.314	.337
3	.565	.636	.780	.785	.829	23	.216	.247	.275	.307	.330
4	.493	.565	.624	.689	.734	24	.212	.242	.269	.301	.323
5	.447	.509	.563	.627	.669	25	.208	.238	.264	.295	.317
6	.410	.468	.519	.577	.617	26	.204	.233	.259	.290	.311
7	.381	.436	.483	.538	.576	27	.200	.229	.254	.284	.305
8	.358	.410	.454	.507	.542	28	.197	.225	.250	.279	.300
9	.339	.387	.430	.480	.513	29	.193	.221	.246	.275	.295
10	.323	.369	.409	.457	.489	30	.190	.218	.242	.270	.290
11	.308	.352	.391	.437	.468	31	.187	.214	.238	.266	.285
12	.296	.338	.375	.419	.449	32	.184	.211	.234	.262	.281
13	.285	.325	.361	.404	.432	33	.182	.208	.231	.258	.277
14	.275	.314	.349	.390	.418	34	.179	.205	.227	.254	.273
15	.266	.304	.338	.377	.404	35	.177	.202	.224	.251	.269
16	.258	.295	.327	.366	.392	36	.174	.199	.221	.247	.265
17	.250	.286	.318	.355	.381	37	.172	.196	.218	.244	.262
18	.244	.279	.309	.346	.371	38	.170	.194	.215	.241	.258
19	.237	.271	.301	.337	.361	39	.168	.191	.213	.238	.255
20	.232	.265	.294	.329	.352	40	.165	.189	.210	.235	.252

Tavola 10. Gli elementi della tavola danno i quantili della statistica di Kolmogorov-Smirnov per uguali campioni di numerosità n per alcune probabilità di coda sinistra P e $n=1,2,\ldots,40$.

$n \setminus P$	0.80	0.90	0.95	0.98	0.99	$n \setminus P$	0.80	0.90	0.95	0.98	0.99
1						21	6/21	7/21	8/21	9/21	10/21
2						22	7/22	8/22	8/22	,	10/22
3	2/3	2/3				23	7/23	8/23	9/23		10/23
4	3/4	3/4	3/4			24	7/24	8/24	9/24		11/24
5	3/5	3/5	4/5	4/5	4/5	25	7/25	8/25	9/25	10/25	11/25
6	3/6	4/6	4/6	5/6	5/6	26	7/26	8/26	9/26	10/26	11/26
7	4/7	4/7	5/7	5/7	5/7	27	7/27	8/27	9/27	,	11/27
8	4/8	4/8	5/8	5/8	6/8	28	8/28	9/28		11/28	
9	4/9	5/9	5/9	6/9	6/9	29	8/29	9/29		11/29	
10	4/10	5/10	6/10	6/10	7/10	30	8/30	9/30		11/30	
11	5/11	5/11	6/11	7/11	7/11	31	8/31	9/31	10/31	11/31	12/31
12	5/12	5/12	6/12	7/12	7/12	32	8/32	9/32	,	,	12/32
13	5/13	6/13	6/13	7/13	8/13	33	8/33	9/33	,	12/33	,
14	5/14	6/14	7/14	7/14	8/14	34	8/34				13/34
15	5/15	6/15	7/15	8/15	8/15	35	8/35	10/35	11/35	12/35	13/35
16	6/16	6/16	7/16	8/16	9/16	36	9/36	10/36	11/36	12/36	13/36
17	6/17	7/17	7/17	8/17	9/17	37	9/37				13/37
18	6/18	7/18	8/18	9/18	9/18	38	9/38				14/38
19	6/19	7/19	8/19	9/19	9/19	39	9/39				14/39
20	6/20	7/20	8/20	9/20	10/20	40	9/40			13/40	

Bibliografia

Bibliografia di base

Billingsley, P. (1968) Convergence of Probability Measures, Wiley, New York.

Conover, W.J. (1980) Practical Nonparametric Statistics, Wiley, New York.

Daniel, W.W. (1978) Applied Nonparametric Statistics, Houghton Mifflin Company, Boston.

Feller W. (1971) An Introduction to Probability Theory and its Applications, vol. I-II, Wiley, New York.

Fraser, D.A.S. (1957) Nonparametric Methods in Statistics, Wiley, New York.

Gibbons, J.D. (1985) Nonparametric Methods for Quantitative Analysis, American Sciences Press, Syracuse, New York.

Gibbons, J.D. e Chakraborti, S. (1992) Nonparametric Statistical Inference, Dekker, New York.

Hettmansperger, T.P. (1991) Statistical Inference Based on Ranks, Krieger Publishing Company, Malabar, Florida.

Hettmansperger, T.P. e McKean, J.W. (1998) Robust Nonparametric Statistical Methods, Arnold, London.

Hollander, M. e Wolfe, D.A. (1973) Nonparametric Statistical Methods, Wiley, New York.

Hájek, J. (1969) Nonparametric Statistics, Holden Day, San Francisco.

Hájek, J. e Šidák, Z. (1967) Theory of Rank Tests, Academic Press, New York.

Kendall, M.G. (1962) Rank Correlation Methods, Hafner, New York.

Kendall, M.G. e Gibbons J.D. (1976) Rank Correlation Methods, Edward Arnold, London.

Lehmann, E.L. (1975) Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San Francisco.

Maritz, J.S. (1981) Distribution-free Statistical Methods, Chapman and Hall, London.

Noether, G.E. (1967) Elements of Nonparametric Statistics, Wiley, New York.

Puri, M.L. e Sen, P.K. (1971) Nonparametric Methods in Multivariate Analysis, Wiley, New York.

Randles, R.H. e Wolfe, D.A. (1979) *Introduction to the Theory of Nonparametric Statistics*, Wiley, New York.

Siegel, S. (1956) Nonparametric Statistics for Behavioral Sciences, McGraw Hill, New York.

Siegel, S. e Castellan, N.J. (1988) *Nonparametric Statistics for Behavioral Sciences*, McGraw Hill, New York.

Serfling, R.J. (1980) Approximation Theorems of Mathematical Statistics, Wiley, New York.

Riferimenti bibliografici

Batschelet, E. (1981) Circular Statistics in Biology, Academic Press, London.

Benford, F. (1938) The law of anomalous numbers, *Proceedings of the American Philosophical Society* **78**, 551-572.

Bhatia, M.L., Manchanda, S.C. e Roy, S.B. (1969) Coronary Haemodinamic studies in chronic severe anaemia, *British Heart Journal* **31**, 365-374.

Brinegar, C.S. (1963) Mark Twain and the Q.C.S. letters - a statistical test of authorship, *Journal of the Royal Statistical Association* **58**, 85-96.

Brook, C.G.D. (1971) Determination of body composition of children from skinfold measuraments, *Archivia Disease Childhood* **46**, 182-184.

Bryson, M.C. e Siddiqui, M.M. (1969) Survival time: some criteria for aging, *Journal of the American Statistical Association* **64**, 1472-1483.

Cameron, E. e Pauling, L. (1974) Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer, *Proceedings of the National Academy of Science USA* **75**, 4538-4542.

160 Bibliografia

Clarke, R.D. (1946) An application of the Poisson distribution, *Journal of the Institute of the Actuaries* **72**, 48.

- Darwin, C. (1876) The effects of cross- and self-fertilization in the vegetable kingdom, John Murray, London.
- Dubois, C. (1970) Lowie's Selected Papers in Antrophology, University of California Press, California.
- Edwards A.W. e Fraccaro M. (1960) Distribution and sequences of sexes in a selected sample of Swedish families, *Annals Human Genetics* **24**, 245-252.
- Gadsen, R.J. e Kanji, G.K. (1981) Sequential analysis for angular data, *The Statistician* **30**, 119-129.
- Johnson, T.E. e Graybill, F.A. (1972) An analysis of two-way model with interaction and no replication, *Journal of the American Statistical Association* **67**, 862-868.
- Kendall, D.G. (1951) Some problems in the theory of queues, *Journal of the Royal Statistical Society* **B13**, 151-185.
- Lederman, S.J., Klatsky, R.L. e Barber, B.P.O. (1985) Spatial and movement-based heuristics for encoding pattern information through touch, *Journal of Experimental Psycology: General* **114**, 33-49.
- Lunn, A.D. e McNeil, D.R. (1991) Computer-Interactive Data Analysis, Wiley, New York.
- Nanji, A.A. e French, S.W. (1985) Relationship between pork consumption and cirrhosis, *The Lancet* 1, 681-683.
- Preece, D.A. (1981) Distributions of final digits in the data, *The Statistician* **30**, 31-60.
- Quesenberry, C.P. e Hales, C. (1980) Concentration bands for uniformity plots, *Journal of Statistical Computation and Simulation* 11, 41-53.
- Romano, A. (1977) Applied Statistics for Science and Industry, Allyn and Bacon, Boston.
- Rutheford, E. e Geiger, M. (1910) The probability of variations in the distributions of alpha-particles, *Philosophical Magazine* **20**, 698-704.
- Selvin, S. (1991) Statistical Analysis of Epidemiological Data, Oxford University Press, New York.
- Snedecor, G.W. e Cochran, G.C. (1967) Statistical Methods, Iowa State University Press, Ames.
- Till, R. (1974) Statistical Methods for the Earth Scientist, McMillan, London.
- Van Oost, B.A., Veldhayzen, B., Timmermans, A.P.M. e Sixma, J.J. (1983) Increased urinary β-thromboglobulin excretion in diabets assayed with a modified RIA kit-technique, *Thrombosis and Haemostasis* 9, 18-20.