TASKS of MATHEMATICS
 for Economic Applications AA. 2015/16

$$
\text { Intermediate Test January } 2016
$$

I M 1) Find the three numbers x for which $(i-1)^{4}=(1-x)^{3}$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & k\end{array}\right\|$, determine, on varying the parameter k, if it is a diagonalizable matrix when it admits multiple eigenvalues and if it may admit complex eigenvalues.
I M 3) Using the columns of the matrix $\mathbb{A}=\left\|\begin{array}{ccc}k_{1} & 1 & 1 \\ -1 & k_{2} & 2 \\ 1 & -1 & k_{3}\end{array}\right\|$, determine appropriate values for the parameters k_{1}, k_{2}, k_{3} in order to obtain, from these columns, an orthogonal matrix. I M 4) Given the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A}=\left\|\begin{array}{lll}1 & -1 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & k \\ k & 1 & 1\end{array}\right\|$ determine the value of the parameter k so that the dimension of the Kernel is the maximum possible, and then, for such value, find a basis for the Kernel and a basis for the Image of such linear map.
I M 5) Check if there are values of m and k for which the matrix $\mathbb{A}=\left\|\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right\|$ is similar to the matrix $\mathbb{B}=\left\|\begin{array}{ll}0 & 1 \\ 7 & 0\end{array}\right\|$ if the matrix of the similarity transformation is $\mathbb{P}=\left\|\begin{array}{cc}m & 1 \\ 2 & k\end{array}\right\|$.

I Winter Exam Session 2016

I M 1) Calculating $\frac{1+i}{\sqrt{3}+i}$ determine the sine and cosine of $\frac{\pi}{12}$.
I M 2) Given $\mathbb{X}_{1}=(1,-1,2)$ and $\mathbb{X}_{2}=(-2, m, 2)$ find the relation between m and k for which the vector $\mathbb{Y}=(0,1, k)$ is a linear combination of \mathbb{X}_{1} and \mathbb{X}_{2}.
IM 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & -3 & -4\end{array}\right\|$, check if such matrix is diagonalizable.
I M 4) For the linear map $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(y_{1}, y_{2}, y_{3}\right)$ such that:
$\left\{\begin{array}{l}y_{1}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \\ y_{2}=x_{1}+x_{2}+x_{3}+x_{4}-x_{5}, \text { find a basis for the Kernel and a basis for the Image of } \\ y_{3}=x_{1}+x_{2}+x_{3}-x_{4}+x_{5}\end{array}\right.$
such linear map.
II M 1) The equation $f(x, y)=\log \left(x^{2}+y^{2}\right)-\frac{y}{x}=0$ defines an implicit function $y=y(x)$ in a neighboroud of the point $(1,0)$. Calculate $y^{\prime}(1)$.
II M 2) Given $f(x, y)=e^{x-y}$ determine at least one direction $v=(\cos \alpha, \operatorname{sen} \alpha)$ such that $\mathcal{D}_{v} f(0,0)=\mathcal{D}_{v,-v}^{2} f(0,0)$.

II M 3) Solve the problem: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x y-y^{2} \\ \text { u.c. }\left\{\begin{array}{l}x \leq 1-y^{2} \\ 0 \leq x\end{array}\right.\end{array}\right.$.
II M 4) Verify that the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-x y+y z$ has a second order total differential that is everywhere a positive definite quadratic form.

II Winter Exam Session 2016

I M 1) Compute $i^{15} \cdot \frac{(1+i)^{5}}{(1-i)^{6}}$.
I M 2) Given the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A}=\left\|\begin{array}{ccc}1 & -1 & 0 \\ x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right\|$, find a matrix \mathbb{A} for which $f(1,0,1)=(1,0,1,0), f(1,-1,0)=(2,1,0,1)$, such that the Kernel of the map has dimension equal to 1 and vector $(1,1,1)$ belongs to the Kernel. Then find a basis for the Kernel of such linear map.
I M 3) Verify that the matrix $\mathbb{A}=\left\|\begin{array}{ccc}1 & -1 & 0 \\ -1 & k & 1 \\ 0 & 1 & 1\end{array}\right\|$ cannot have multiple eigenvalues for every value of the real parameter k.
I M 4) Determine an orthogonal matrix which diagonalizes $\mathbb{A}=\left\|\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right\|$.
II M 1) With the system $\left\{\begin{array}{l}f(x, y, z)=e^{x^{4}-y^{4}}+e^{z^{4}-y^{4}}-2 x y z=0 \\ g(x, y, z)=x^{3}-y^{3}+z^{3}+3 x z=0\end{array}\right.$ we define at the point $(-1,1,-1)$ an implicit function $x \rightarrow(y(x), z(x))$. Calculate $\left(y^{\prime}(-1), z^{\prime}(-1)\right)$.
II M 2) Given the function $f(x, y)=e^{\alpha(x-y)}$, determine the value of the parameter α knowing that $D_{v} f(0,0)+D_{v,-v}^{2} f(0,0)=\frac{1}{4}$, where v is the unit vector of $(1,-1)$.
II M 3) Solve the problem: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y, z)=x+y+z \\ \text { u.c. } x^{2}+2 y^{2}+3 z^{2}=66\end{array}\right.$.
II M 4) Verify that the second order total differential of the function $f(x, y)=e^{3 x-y}$ never is a negative definite quadratic form.

I Additional Exam Session 2016

I M 1) If $z=i^{19}-3 i^{6}-i^{18}+3 i^{3}$, find which between the fourth roots of z have a positive imaginary part.
I M 2) Given the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A}=\left\|\begin{array}{cccc}1 & 1 & 2 & -2 \\ 1 & 2 & 1 & 1 \\ 3 & 2 & m & k\end{array}\right\|$, since $\operatorname{Dim}(\operatorname{Ker})=2$, find a basis for the Kernel and a basis for the Image of such linear map. I M 3) Since the matrix $\mathbb{A}=\left\|\begin{array}{ccc}3 & 2 & 1 \\ 1 & 4 & k \\ 1 & 2 & -3\end{array}\right\|$ has the multiple eigenvalue $\lambda=2$, find the value of the real parameter k and than check if the matrix is a diagonalizable one.

I M 4) Determine proper values for the real parameters k and m such that the matrix $\mathbb{A}=\left\|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right\|$ may be similar to the matrix $\mathbb{B}=\left\|\begin{array}{cc}0 & m \\ 1 & k\end{array}\right\|$ and than find at least a square non-singular matrix \mathbb{P} such that $\mathbb{A} \cdot \mathbb{P}=\mathbb{P} \cdot \mathbb{B}$.
II M 1) Given the function $f(x, y)=e^{x^{2}-y^{2}}$, determine all the points (x, y) of the real plan satisfying the condition $D_{v, v}^{2} f(x, y)+D_{-v,-v}^{2} f(x, y)=0$, where v is the versor of $(1,1)$.
II M 2) The equation $\log \left(x^{2}+y^{2}\right)-x y=0$ defines an implicit function $y=y(x)$ in a neighborhood of the point $P=(0,1)$. Determine $y^{\prime}(0)$ and $y^{\prime \prime}(0)$.
II M 3) Given $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},\left(t_{1}, t_{2}, t_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \rightarrow y$ differentiable functions, if $\frac{\partial(y)}{\partial\left(t_{1}, t_{2}, t_{3}\right)}=\| \begin{array}{lll}1 & 3 & 4 \| \text { and } \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(t_{1}, t_{2}, t_{3}\right)}=\left\|\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & 1\end{array}\right\| \text {, determi- } \text {, }{ }^{2} \text {, }\end{array}$ ne $\frac{\partial(y)}{\partial\left(x_{1}, x_{2}\right)}$.
II M 4) Determine maximum and minimum points for $f(x, y)=x^{3}+y^{3}$ in the region of \mathbb{R}^{2} consisting by the triangle of vertices $(0,0),(1,0)$ and $(0,1)$.

I Summer Exam Session 2016
I M 1) Find the complex value of k for which $\frac{(2+i)^{2}-(1-i)^{2}}{k+2 i}=i$.
I M 2) For the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$ find a basis for the Kernel and a basis for the Image of such linear map.
I M 3) In the basis $\mathbb{W}=\{(1,1,1),(1,-1,1),(1,1,-1)\}$ the vector \mathbb{X} has coordinates $(1,-2,1)$. Determine its coordinates in the basis $\mathbb{V}=\{(1,0,1),(0,1,0),(0,0,1)\}$.
I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{lcc}3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & m & k\end{array}\right\|$, verify that it admits the eigenvalue $\lambda=2$ for every value of m and k and than check, on varying the parameters m and k, if such eigenvalue may be a multiple eigenvalue and if it is a diagonalizable matrix for such values of the parameters.
II M 1) Given a function $f(x, y)$, two times differentiable at a certain stationary point P_{0}, since $D_{e_{1},-e_{2}}^{2} f\left(P_{0}\right)=2, D_{-e_{1}, e_{1}}^{2} f\left(P_{0}\right)=3$ and $D_{e_{2}, e_{2}}^{2} f\left(P_{0}\right)=-2$, determine the nature of the stationary point $P_{0} .\left(e_{1}, e_{2}\right)$ is the standard basis.
II M 2) With the system $\left\{\begin{array}{l}f(x, y, z)=x-z-y e^{y}=0 \\ g(x, y, z)=x e^{z-x}-z e^{x-z}-y^{2}=0\end{array}\right.$ which type of implicit function can we define at the point $(1,0,1)$? Calculate its first order derivatives.
II M 3) Given $f(x, y, z)=x^{3}-8 y^{3}-z^{3}+3 x^{2}-24 y z$ find its stationary points and study their nature.
II M 4) Solve the problem: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=y-x \\ \text { u.c. }\left\{\begin{array}{l}x^{2}+y^{2} \leq 1 \\ y \leq 1-x^{2}\end{array}\right.\end{array}\right.$ I Autumn Exam Session 2016

I M 1) Find the two complex values of x for which $(x-i)^{2}=\frac{1+i}{1-i}$.

I M 2) For the linear system $\mathbb{A} \cdot \mathbb{X}=\mathbb{Y}, \mathbb{A}=\left\|\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ 2 & 0 & 1 & m & k\end{array}\right\|$ and $\mathbb{Y}=\left\|\begin{array}{l}1 \\ 1 \\ h\end{array}\right\|$, find the values of the parameters m, k and h for which the system has ∞^{3} solutions.
I M 3) Given the set of vectors $\mathbb{W}=\{(1,1,-2),(2,0,3),(-1,-1, k)\}$ find the value of the parameter k for which such set of vectors is not a basis for \mathbb{R}^{3}.
I M 4) Find an ortogonal matrix which diagonalizes $\mathbb{A}=\left\|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right\|$.
II M 1) Check for the nature of the stationary points of $f(x, y)=x^{2} y-k x y+x y^{2}$ on varying the parameter k.
II M 2) Given $f(x, y)=2 x y-x y^{2}$ and $P_{0}=(1,-1)$, since $D_{v} f\left(P_{0}\right)=\frac{7}{\sqrt{2}}$, find at least a value for α in the unit vector $v=(\cos \alpha, \operatorname{sen} \alpha)$.
II M 3) With the equation $f(x, y, z)=x y z-x^{2} y+x z^{2}-y z=0$ which type of implicit function can we define at point $P_{0}=(1,1,1)$? Calculate its first order derivatives.
II M 4) Solve the problem:

$$
\left\{\begin{array}{l}
\operatorname{Max} / \min f(x, y)=x^{2}+y^{2} \\
\text { u.c. }: 4 x^{2}+y^{2}=4
\end{array}\right.
$$

II Additional Exam Session 2016

I M 1) Find the three solutions of the equation $x^{3}+3 x^{2}+4 x+12=0$.
I M 2) Given $\mathbb{A}=\left\|\begin{array}{cccc}1 & 0 & 1 & -1 \\ 2 & -1 & 0 & -1 \\ 1 & -1 & -1 & m\end{array}\right\|$ and $\mathbb{Y}=\left\|\begin{array}{l}1 \\ 2 \\ k\end{array}\right\|$, check for the solvability of the linear system $\mathbb{A} \cdot \mathbb{X}=\mathbb{Y}$ on varying the parameters m and k.
I M 3) Consider the basis for $\mathbb{R}^{3}: \mathbb{V}=\left\{\mathbb{V}_{1}=(1,0,1), \mathbb{V}_{2}=(0,1,1), \mathbb{V}_{3}=(1,1,0)\right\}$; if the vector \mathbb{X} has coordinates $\mathbb{X}_{\mathbb{V}}=(1,-1,2)$ in the basis \mathbb{V}, find its coordinates \mathbb{X}_{e} in the canonical basis.
I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}2 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 0\end{array}\right\|$, check if it is a diagonalizable matrix, and then find, if it exists, its inverse matrix and find the eigenvalues of such inverse.
II M 1) Check for the nature of the stationary points of $f(x, y)=x y-x^{2}+x y^{2}$.
II M 2) Given $f(x, y)=2 x^{3} y-3 x y^{2}, P_{0}=(1,-1)$ and v the unit vector of $(1,-2)$, calculate $D_{v} f\left(P_{0}\right)$.
II M 3) With the equation $e^{x^{2}-y^{2}}+x^{2}-y^{2}=1$ at point $(3,-3)$ we can define y as an implicit function of x. Calculate $y^{\prime}(3)$.
II M 4) Solve the problem: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}-2 y \\ \text { u.c. }: x^{2}+y^{2} \leq 4\end{array}\right.$.

