TASKS of MATHEMATICS for Economic Applications AA. 2015/16

Intermediate Test January 2016

I M 1) Find the three numbers x for which $(i-1)^4 = (1-x)^3$. I M 2) Given the matrix $\mathbb{A} = \begin{vmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & k \end{vmatrix}$, determine, on varying the parameter k, if it is

a diagonalizable matrix when it admits multiple eigenvalues and if it may admit complex eigenvalues.

I M 3) Using the columns of the matrix $\mathbb{A} = \begin{vmatrix} k_1 & 1 & 1 \\ -1 & k_2 & 2 \\ 1 & -1 & k_3 \end{vmatrix}$, determine appropriate va-

lues for the parameters k_1, k_2, k_3 in order to obtain, from these columns, an orthogonal matrix.

I M 4) Given the linear map
$$f : \mathbb{R}^3 \to \mathbb{R}^4$$
, $f(\mathbb{X}) = \mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & k \\ k & 1 & 1 \end{vmatrix}$ deter-

mine the value of the parameter k so that the dimension of the Kernel is the maximum possible, and then, for such value, find a basis for the Kernel and a basis for the Image of such linear map.

I M 5) Check if there are values of m and k for which the matrix $\mathbb{A} = \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$ is similar to the matrix $\mathbb{B} = \begin{vmatrix} 0 & 1 \\ 7 & 0 \end{vmatrix}$ if the matrix of the similarity transformation is $\mathbb{P} = \begin{vmatrix} m & 1 \\ 2 & k \end{vmatrix}$.

I Winter Exam Session 2016

I M 1) Calculating $\frac{1+i}{\sqrt{3}+i}$ determine the sine and cosine of $\frac{\pi}{12}$. I M 2) Given $X_1 = (1, -1, 2)$ and $X_2 = (-2, m, 2)$ find the relation between m and k for which the vector $\mathbb{Y} = (0, 1, k)$ is a linear combination of \mathbb{X}_1 and \mathbb{X}_2 . I M 3) Given the matrix $\mathbb{A} = \begin{vmatrix} 2 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & -3 & -4 \end{vmatrix}$, check if such matrix is diagonalizable. I M 4) For the linear map $f : \mathbb{R}^5 \to \mathbb{R}^3$, $f(x_1, x_2, x_3, x_4, x_5) = (y_1, y_2, y_3)$ such that: $\begin{cases} y_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ y_2 = x_1 + x_2 + x_3 + x_4 - x_5 \\ y_3 = x_1 + x_2 + x_3 - x_4 + x_5 \end{cases}$, find a basis for the Kernel and a basis for the Image of

such linear map.

II M 1) The equation $f(x,y) = \log (x^2 + y^2) - \frac{y}{x} = 0$ defines an implicit function y = y(x) in a neighboroud of the point (1,0). Calculate y'(1).

II M 2) Given $f(x, y) = e^{x-y}$ determine at least one direction $v = (\cos \alpha, \sin \alpha)$ such that $\mathcal{D}_v f(0,0) = \mathcal{D}_{v,-v}^2 f(0,0)$.

II M 3) Solve the problem: $\begin{cases} Max/min \ f(x,y) = xy - y^2 \\ u.c. \begin{cases} x \le 1 - y^2 \\ 0 < r \end{cases} \end{cases}$

II M 4) Verify that the function $f(x, y, z) = x^2 + y^2 + z^2 - xy + yz$ has a second order total differential that is everywhere a positive definite quadratic form.

II Winter Exam Session 2016

I M 1) Compute $i^{15} \cdot \frac{(1+i)^5}{(1-i)^6}$.

I M 2) Given the linear map $f : \mathbb{R}^3 \to \mathbb{R}^4$, $f(\mathbb{X}) = \mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A} = \begin{vmatrix} 1 & -1 & 0 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$, find

a matrix A for which f(1,0,1) = (1,0,1,0), f(1, -1,0) = (2,1,0,1), such that the Kernel of the map has dimension equal to 1 and vector (1, 1, 1) belongs to the Kernel. Then find a basis for the Kernel of such linear map.

I M 3) Verify that the matrix $\mathbb{A} = \begin{vmatrix} 1 & -1 & 0 \\ -1 & k & 1 \\ 0 & 1 & 1 \end{vmatrix}$ cannot have multiple eigenvalues for

every value of the real parameter k.

I M 4) Determine an orthogonal matrix which diagonalizes $\mathbb{A} = \begin{vmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix}$. II M 1) With the system $\begin{cases} f(x, y, z) = e^{x^4 - y^4} + e^{z^4 - y^4} - 2xyz = 0 \\ g(x, y, z) = x^3 - y^3 + z^3 + 3xz = 0 \end{cases}$ we define at the point

(-1, 1, -1) an implicit function $x \to (y(x), z(x))$. Calculate (y'(-1), z'(-1)). II M 2) Given the function $f(x, y) = e^{\alpha(x-y)}$, determine the value of the parameter α

knowing that $D_v f(0,0) + D_{v,-v}^2 f(0,0) = \frac{1}{4}$, where v is the unit vector of (1, -1). II M 3) Solve the problem: $\begin{cases} Max/min \ f(x,y,z) = x + y + z \\ u.c. \ x^2 + 2y^2 + 3z^2 = 66 \end{cases}$

II M 4) Verify that the second order total differential of the function $f(x, y) = e^{3x-y}$ never is a negative definite quadratic form.

I Additional Exam Session 2016

I M 1) If $z = i^{19} - 3i^6 - i^{18} + 3i^3$, find which between the fourth roots of z have a positive imaginary part.

I M 2) Given the linear map $f : \mathbb{R}^4 \to \mathbb{R}^3$, $f(\mathbb{X}) = \mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A} = \begin{bmatrix} 1 & 1 & 2 & -2 \\ 1 & 2 & 1 & 1 \\ 3 & 2 & m & k \end{bmatrix}$,

since Dim(Ker) = 2, find a basis for the Kernel and a basis for the Image of such linear map. I M 3) Since the matrix $\mathbb{A} = \begin{vmatrix} 3 & 2 & 1 \\ 1 & 4 & k \\ 1 & 2 & -3 \end{vmatrix}$ has the multiple eigenvalue $\lambda = 2$, find the va-

lue of the real parameter k and than check if the matrix is a diagonalizable one.

I M 4) Determine proper values for the real parameters k and m such that the matrix $\mathbb{A} = \left| \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} \right| \text{ may be similar to the matrix } \mathbb{B} = \left| \begin{vmatrix} 0 & m \\ 1 & k \end{vmatrix} \right| \text{ and than find at least a square}$ non-singular matrix \mathbb{P} such that $\mathbb{A} \cdot \mathbb{P} = \mathbb{P} \cdot \mathbb{B}$.

II M 1) Given the function $f(x, y) = e^{x^2 - y^2}$, determine all the points (x, y) of the real plan satisfying the condition $D_{v,v}^2 f(x,y) + D_{-v,-v}^2 f(x,y) = 0$, where v is the versor of (1,1).

II M 2) The equation $\log (x^2 + y^2) - xy = 0$ defines an implicit function y = y(x) in a neighborhood of the point P = (0, 1). Determine y'(0) and y''(0).

II M 3) Given $g: \mathbb{R}^3 \to \mathbb{R}^2$, $(t_1, t_2, t_3) \to (x_1, x_2)$ and $f: \mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \to y$ differentiable functions, if $\frac{\partial(y)}{\partial(t_1, t_2, t_3)} = ||1 | 3 | 4||$ and $\frac{\partial(x_1, x_2)}{\partial(t_1, t_2, t_3)} = \left| \begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \end{vmatrix} \right|$, determining the function of the second second

ne $\frac{\partial(y)}{\partial(x_1, x_2)}$

II M 4) Determine maximum and minimum points for $f(x, y) = x^3 + y^3$ in the region of \mathbb{R}^2 consisting by the triangle of vertices (0,0), (1,0) and (0,1).

I Summer Exam Session 2016

I M 1) Find the complex value of k for which $\frac{(2+i)^2 - (1-i)^2}{k+2i} = i$.

I M 2) For the linear map $f : \mathbb{R}^4 \to \mathbb{R}^3$, $f(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_2 + x_3, x_3 + x_4)$ find a basis for the Kernel and a basis for the Image of such linear map.

I M 3) In the basis $\mathbb{W} = \{(1,1,1), (1,-1,1), (1,1,-1)\}$ the vector \mathbb{X} has coordinates (1, -2, 1). Determine its coordinates in the basis $\mathbb{V} = \{(1, 0, 1), (0, 1, 0), (0, 0, 1)\}$.

I M 4) Given the matrix $\mathbb{A} = \begin{vmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & m & k \end{vmatrix}$, verify that it admits the eigenvalue $\lambda = 2$ for

every value of m and k and than check, on varying the parameters m and k, if such eigenvalue may be a multiple eigenvalue and if it is a diagonalizable matrix for such values of the parameters.

II M 1) Given a function f(x, y), two times differentiable at a certain stationary point P_0 , since $D_{e_1,-e_2}^2 f(P_0) = 2$, $D_{-e_1,e_1}^2 f(P_0) = 3$ and $D_{e_2,e_2}^2 f(P_0) = -2$, determine the nature of the stationary point P_0 . (e_1, e_2) is the standard basis. II M 2) With the system $\begin{cases} f(x, y, z) = x - z - y e^y = 0\\ g(x, y, z) = x e^{z-x} - z e^{x-z} - y^2 = 0 \end{cases}$ which type of implicit

function can we define at the point (1, 0, 1)? Calculate its first order derivatives.

II M 3) Given $f(x, y, z) = x^3 - 8y^3 - z^3 + 3x^2 - 24yz$ find its stationary points and study their nature.

II M 4) Solve the problem:
$$\begin{cases} Max/\min \ f(x,y) = y - x \\ u.c. \begin{cases} x^2 + y^2 \le 1 \\ y \le 1 - x^2 \end{cases} \end{cases}$$

I Autumn Exam Session 2016

I M 1) Find the two complex values of x for which $(x - i)^2 = \frac{1 + i}{1 - i}$.

I M 2) For the linear system $\mathbb{A} \cdot \mathbb{X} = \mathbb{Y}$, $\mathbb{A} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ 2 & 0 & 1 & m & k \end{vmatrix}$ and $\mathbb{Y} = \begin{vmatrix} 1 \\ 1 \\ 1 \\ h \end{vmatrix}$, find the values of the parameters m, k and h for which the system has ∞^3 solutions.

I M 3) Given the set of vectors $\mathbb{W} = \{(1, 1, -2), (2, 0, 3), (-1, -1, k)\}$ find the value of the parameter k for which such set of vectors is not a basis for \mathbb{R}^3 .

I M 4) Find an ortogonal matrix which diagonalizes $\mathbb{A} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$.

II M 1) Check for the nature of the stationary points of $f(x,y) = x^2 y - k xy + x y^2$ on varying the parameter k.

II M 2) Given $f(x,y) = 2xy - xy^2$ and $P_0 = (1, -1)$, since $D_v f(P_0) = \frac{7}{\sqrt{2}}$, find at

least a value for α in the unit vector $v = (\cos \alpha, \sin \alpha)$. II M 3) With the equation $f(x, y, z) = xyz - x^2y + xz^2 - yz = 0$ which type of implicit function can we define at point $P_0 = (1, 1, 1)$? Calculate its first order derivatives. II M 4) Solve the problem: $\begin{cases} Max/min \ f(x, y) = x^2 + y^2 \\ u.c. : 4x^2 + y^2 = 4 \end{cases}$

II Additional Exam Session 2016

I M 1) Find the three solutions of the equation $x^3 + 3x^2 + 4x + 12 = 0$.

I M 1) Find the three solutions $C = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 2 & -1 & 0 & -1 \\ 1 & -1 & -1 & m \end{bmatrix}$ and $\mathbb{Y} = \begin{bmatrix} 1 & 1 \\ 2 & k \\ k \end{bmatrix}$, check for the solvability of the

linear system $\mathbb{A} \cdot \mathbb{X} = \mathbb{Y}$ on varying the parameters m and k. I M 3) Consider the basis for \mathbb{R}^3 : $\mathbb{V} = \{\mathbb{V}_1 = (1, 0, 1), \mathbb{V}_2 = (0, 1, 1), \mathbb{V}_3 = (1, 1, 0)\};$ if the vector X has coordinates $X_{\mathbb{V}} = (1, -1, 2)$ in the basis V, find its coordinates X_e in the canonical basis.

I M 4) Given the matrix $\mathbb{A} = \begin{vmatrix} 2 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{vmatrix}$, check if it is a diagonalizable matrix, and then

find, if it exists, its inverse matrix and find the eigenvalues of such inverse.

II M 1) Check for the nature of the stationary points of $f(x, y) = xy - x^2 + xy^2$.

II M 2) Given $f(x,y) = 2x^3y - 3xy^2$, $P_0 = (1, -1)$ and v the unit vector of (1, -2), calculate $D_v f(P_0)$.

II M 3) With the equation $e^{x^2-y^2} + x^2 - y^2 = 1$ at point (3, -3) we can define y as an im-

plicit function of x. Calculate y'(3). II M 4) Solve the problem: $\begin{cases} Max/min \ f(x,y) = x^2 - 2y \\ u.c. : x^2 + y^2 \le 4 \end{cases}$