COMPITI DI MATEMATICA GENERALE AA. 2015/16

Prova Intermedia Anno 2015-Compito A1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0}\frac{(1+x)^\pi-1}{\sin 2x}\,;\; \lim_{x\to +\infty}\biggl(\frac{1-3x}{2-x}\biggr)^{1-x}\;.$$

- 2) Date le quattro generiche proposizioni \mathbb{A} , \mathbb{B} , \mathbb{C} e \mathbb{D} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Rightarrow \mathbb{B}) \Leftrightarrow (\mathbb{C} \Rightarrow non \, \mathbb{D})$, nell'ipotesi che la proposizione \mathbb{B} sia vera e la proposizione \mathbb{D} sia falsa.
- 3) Date le funzioni f(x) = 3x 2 e $g(x) = 3^{1-x}$, si determini l'espressione della funzione composta F(x) = f(g(f(x))) e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow f(x) > \varepsilon;$
- b) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow 1 < f(x) < 1 + \varepsilon$;
- e presenta un punto di discontinuità di I specie in x = 0.
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log(3^x 2)}{\sqrt{1 x^2}}$.

Prova Intermedia Anno 2015-Compito B1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\cos 3x - 1}{e^{x^2} - 1}; \ \lim_{x \to +\infty} \left(\frac{2 + 2x}{3 + 2x}\right)^{x + 1}.$$

- 2) Date le quattro generiche proposizioni \mathbb{A} , \mathbb{B} , \mathbb{C} e \mathbb{D} , determinare i casi di verità e di falsità della proposizione $(non \, \mathbb{A} \Rightarrow \mathbb{C}) \Rightarrow (\mathbb{B} \Leftrightarrow \mathbb{D})$, nell'ipotesi che la proposizione \mathbb{C} sia vera e la proposizione \mathbb{D} sia falsa.
- 3) Date le funzioni f(x) = 2x + 3 e $g(x) = \log_2(x + 1)$, si determini l'espressione della funzione composta F(x) = f(g(f(x))) e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow |f(x) + 1| < \varepsilon;$
- b) $\forall \varepsilon \exists \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow f(x) < \varepsilon;$
- e presenta un punto di discontinuità di II specie infinita in $\,x=1\,$
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\sqrt{2 + x x^2}}{\log(1 + x^2)}$.

Prova Intermedia Anno 2015-Compito C1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0} \frac{\operatorname{sen}(\operatorname{sen} x) - \operatorname{tg}^2 x}{e^x - 1}; \ \lim_{x\to +\infty} \left(\frac{2x - 5}{1 + 4x}\right)^{x - 1}.$$

- 2) Date le quattro generiche proposizioni \mathbb{A} , \mathbb{B} , \mathbb{C} e \mathbb{D} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Rightarrow non \, \mathbb{B}) \, e \, (\mathbb{C} \Leftrightarrow \mathbb{D})$, nell'ipotesi che la proposizione \mathbb{A} sia vera e la proposizione \mathbb{D} sia vera.
- 3) Date le funzioni f(x) = 3x + 4 e $g(x) = \sqrt{2x 1}$, si determini l'espressione della funzione composta F(x) = f(g(f(x))) e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow -1 \varepsilon < f(x) < -1;$
- b) $\forall \varepsilon \exists \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow f(x) > \varepsilon$;
- e presenta un punto di discontinuità di I specie in x = 0.
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log(2 x x^2)}{\sqrt{x}}$.

Prova Intermedia Anno 2015-Compito D1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\log(1 + \sin^2 x)}{1 - \cos x}; \ \lim_{x \to +\infty} \left(\frac{3x + 7}{3x + 5}\right)^{2x}$$

- 2) Date le quattro generiche proposizioni \mathbb{A} , \mathbb{B} , \mathbb{C} e \mathbb{D} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Leftrightarrow \mathbb{B})$ o $(non \mathbb{C} \Rightarrow \mathbb{D})$, nell'ipotesi che la proposizione \mathbb{B} sia falsa e la proposizione \mathbb{D} sia vera.
- 3) Date le funzioni f(x) = 2x 3 e $g(x) = \frac{1}{3^x + 1}$, si determini l'espressione della funzione composta F(x) = f(g(f(x))) e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow f(x) < \varepsilon;$
- b) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow |f(x)| < \varepsilon$;
- e presenta un punto di discontinuità di II specie infinita in x = 1.
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\sqrt{2^x 3}}{\log(x 1)^2}$.

Prova Intermedia Anno 2015-Compito A2

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{(1-x)^e - 1}{\operatorname{tg} 3x} \; ; \; \lim_{x \to -\infty} \frac{1 - 3^{-x} + 3^x + \sin x}{2 - 2^x} \; .$$

- 2) Date le tre generiche proposizioni \mathbb{A} , \mathbb{B} e \mathbb{C} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Rightarrow \mathbb{B}) \Leftrightarrow (\mathbb{C} \ o \ non \ \mathbb{A})$, nell'ipotesi che la proposizione $\mathbb{B} \Leftrightarrow \mathbb{C}$ sia vera.
- 3) Date le funzioni f(x) = 3x 2 e $g(x) = 3^{1-x}$, si determini l'espressione della funzione composta $F(x) = f\left(\frac{3}{g(x)-1}\right)$ e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon \exists \delta(\varepsilon) : 0 < |x-1| < \delta(\varepsilon) \Rightarrow f(x) > \varepsilon$;
- b) $\forall \varepsilon > 0 \ \exists \ \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow 1 < f(x) < 1 + \varepsilon;$
- e presenta un asintoto obliquo sulla sinistra di equazione $y = -\frac{1}{2}x$.

5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log(9-3^x)}{\log(9-x^2)}$.

Prova Intermedia Anno 2015-Compito B2

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\log(1 - x^2)}{1 - \cos 2x} \; ; \; \lim_{x \to 0} \frac{\sqrt[5]{x} + \sqrt[3]{x} + \sin x}{2x - \sqrt[3]{x}} \, .$$

- 2) Date le tre generiche proposizioni \mathbb{A} , \mathbb{B} e \mathbb{C} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Leftrightarrow \mathbb{B}) \Rightarrow (non \mathbb{C} e \mathbb{A})$, nell'ipotesi che la proposizione $\mathbb{A} \Leftrightarrow \mathbb{C}$ sia falsa.
- 3) Date le funzioni f(x)=x-3 e $g(x)=\log_3{(x-1)}$, si determini l'espressione della funzione composta $F(x)=f\left(\frac{2}{g(x)+1}\right)$ e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow 1 \varepsilon < f(x) < 1;$
- b) $\forall \varepsilon \exists \delta(\varepsilon) : 0 < |x| < \delta(\varepsilon) \Rightarrow f(x) < \varepsilon$;
- e presenta un asintoto obliquo sulla destra di equazione y = 1 2x
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log(16 x^2)}{\log(9 2^x)}$.

Prova Intermedia Anno 2015-Compito C2

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{3^{-x} - 3^x + \sin x}{3x}; \quad \lim_{x \to -\infty} \frac{10x - 2^{-x} + 4^x}{2 + \sin x + 2^x}$$

- 2) Date le tre generiche proposizioni \mathbb{A} , \mathbb{B} e \mathbb{C} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} e \, non \, \mathbb{B}) \Leftrightarrow (\mathbb{C} \Rightarrow \mathbb{A})$, nell'ipotesi che la proposizione $\mathbb{B} \Leftrightarrow \mathbb{A}$ sia vera.
- 3) Date le funzioni f(x) = 3x + 3 e $g(x) = 2^{x-2}$, si determini l'espressione della funzione composta $F(x) = f\left(\frac{2}{1 g(x)}\right)$ e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon \exists \delta(\varepsilon) : 0 < |x+1| < \delta(\varepsilon) \Rightarrow f(x) > \varepsilon$;
- b) $\forall \, \varepsilon > 0 \, \exists \, \delta(\varepsilon) : x > \delta(\varepsilon) \Rightarrow |f(x)| < \varepsilon;$
- e presenta un asintoto obliquo sulla sinistra di equazione y=x-3 .
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log (4 2^x)}{\log (5 x^2)}$.

Prova Intermedia Anno 2015-Compito D2

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\cos 2x - \cos 3x}{3x^2}; \lim_{x \to 0} \frac{x^2 + \sqrt[7]{x} + \sin^2 x}{2 - \sqrt[7]{x}}.$$

2) Date le tre generiche proposizioni \mathbb{A} , \mathbb{B} e \mathbb{C} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \circ \mathbb{B}) \Leftrightarrow (\mathbb{A} \Rightarrow non \mathbb{C})$, nell'ipotesi che la proposizione $\mathbb{B} \Leftrightarrow \mathbb{C}$ sia falsa.

- 3) Date le funzioni f(x)=1-2x e $g(x)=1+\log_3 x$, si determini l'espressione della funzione composta $F(x)=f\left(\frac{-1}{1+g(x)}\right)$ e si determini poi l'espressione dell'inversa di F(x).
- 4) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow 0 < f(x) < \varepsilon;$
- b) $\forall \varepsilon \exists \delta(\varepsilon) : 0 < |x+1| < \delta(\varepsilon) \Rightarrow f(x) > \varepsilon$;
- e presenta un asintoto obliquo sulla destra di equazione y = 2x 3.
- 5) Determinare il Campo di esistenza della funzione $f(x) = \frac{\log(9 x^2)}{\log(10 3^x)}$.

I Appello Sessione Invernale 2016 - Compito A

- 1) Determinare l'andamento del grafico della funzione $f(x) = (x^2 1) \cdot e^{2-x}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0^+}\frac{\log{(1+x^2)}-\sqrt[5]{x^3}+\sin{x}}{1-\cos{x}+\sqrt{x}}\,;\,\,\lim_{x\to +\infty}x\cdot\log{\left(1+\frac{1}{x}\right)}\,.$$

- 3) Determinare per quale valore del parametro k risulta $\lim_{x\to 2^+} \frac{x^3 3x^2 + 5x 5}{x^2 x k} = +\infty$.
- 4) Dato $n \in \mathbb{N}, n > 3$ determinare massimi e minimi per la funzione $f(x) = (x-2)^n \cdot x^3$, esaminando sia il caso n pari che quello n dispari.
- 5) Analizzare la natura dei punti stazionari della funzione $f(x,y)=e^{x^2+3y-y^3}$.
- 6) Calcolare $\int_0^1 e^{2-3x} \frac{1}{(x-2)^3} dx$.
- 7) Data $f(x,y) = x e^{3y-x} + 3y$, se ne calcoli il gradiente nel punto (3,1) e si trovino poi tutti i vettori perpendicolari a $\nabla f(3,1)$ e di modulo pari a $\sqrt{37}$.
- 8) Date $f(x) = \frac{2^x + k}{2^x 1}$ e g(x) = 1 x, determinare il valore del parametro k sapendo che f(g(0)) = 5 e determinare poi l'espressione dell'inversa della funzione f(g(x)).
- 9) Data $f(x) = e^{1-kx}$ determinare il valore del parametro k in modo tale che la retta tangente al grafico della funzione nel punto x = 0 risulti parallela alla bisettrice del I e del III quadrante e si determini poi l'equazione di tale retta tangente.
- 10) Siano date le tre proposizioni:
- A: Ho il giorno libero;
- \mathbb{B} : Io studio;
- \mathbb{C} : Io lavoro.

Costruire le tavole di verità della proposizione:

P: Se non ho il giorno libero allora o studio o lavoro.

I Appello Sessione Invernale 2016 - Compito B

- 1) Determinare l'andamento del grafico della funzione $f(x) = \left(4 x^2\right) \cdot e^{1-x}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{x^3 - \log(1 + x^3) - \sqrt[3]{x^4}}{\sin^2 x + x^3}; \lim_{x \to +\infty} (x+1) \cdot \sin\frac{1}{x}.$$

3) Determinare per quale valore del parametro k risulta $\lim_{x\to 1^-} \frac{x^5+3x^2-2x}{x^2-4x-k} = +\infty$.

- 4) Dato $n \in \mathbb{N}$ determinare massimi e minimi per la funzione $f(x) = x^n \cdot (x+1)^3$, esaminando sia il caso n pari che quello n dispari.
- 5) Analizzare la natura dei punti stazionari della funzione $f(x,y)=e^{y^3-3y-x^2}$.
- 6) Calcolare $\int_0^1 \frac{1}{(x+1)^2} + e^{1-2x} dx$.
- 7) Data $f(x,y) = y e^{2y-x} 3x$, se ne calcoli il gradiente nel punto (2,1) e si trovino poi tutti i vettori perpendicolari a $\nabla f(2,1)$ e di modulo pari a 5.
- 8) Date $f(x) = \frac{3^x + 2}{3^x k}$ e g(x) = x + 2, determinare il valore del parametro k sapendo che f(g(-1)) = 5 e determinare poi l'espressione dell'inversa della funzione f(g(x)).
- 9) Data $f(x) = e^{kx+2}$ determinare il valore del parametro k in modo tale che la retta tangente al grafico della funzione nel punto x = 0 risulti parallela alla bisettrice del I e del III quadrante e si determini poi l'equazione di tale retta tangente.
- 10) Siano date le tre proposizioni:
- A: Ho il giorno libero;
- **B**: Io studio;
- \mathbb{C} : Io lavoro.

Costruire le tavole di verità della proposizione:

P: Se oggi studio allora ho il giorno libero e non lavoro.

I Appello Sessione Invernale 2016 - Compito C

- 1) Determinare l'andamento del grafico della funzione $f(x) = (x^2 4) \cdot e^{x-1}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\sqrt[3]{x^4} - \log(1+x) + x^2}{\sin^2 x + x}; \lim_{x \to +\infty} x \cdot \left(2^{\frac{1}{x}} - 1\right).$$

- 3) Determinare per quale valore del parametro k risulta $\lim_{x\to 2^-}\frac{x^2+3x-5}{x^2-3x-k}=-\infty$. 4) Dato $n\in\mathbb{N}$ determinare massimi e minimi per la funzione $f(x)=x^3\cdot(x-1)^n$, esami-
- nando sia il caso n pari che quello n dispari.
- 5) Analizzare la natura dei punti stazionari della funzione $f(x,y) = e^{x^3 3x + y^2}$.
- 6) Calcolare $\int_0^1 e^{3x-1} \frac{1}{(x+2)^3} dx$.
- 7) Data $f(x,y) = 2y + x e^{y-2x}$, se ne calcoli il gradiente nel punto (1,2) e si trovino poi tutti i vettori perpendicolari a $\nabla f(1,2)$ e di modulo pari a $\sqrt{20}$.
- 8) Date $f(x) = \frac{2^x k}{2^x + 4}$ e g(x) = 2 x, determinare il valore del parametro k sapendo che f(g(1)) = -1 e determinare poi l'espressione dell'inversa della funzione f(g(x)).
- 9) Data $f(x) = e^{kx-1}$ determinare il valore del parametro k in modo tale che la retta tangente al grafico della funzione nel punto x=0 risulti parallela alla bisettrice del I e del III quadrante e si determini poi l'equazione di tale retta tangente.
- 10) Siano date le tre proposizioni:
- A: Ho il giorno libero;
- **B**: Io studio;
- \mathbb{C} : Io lavoro.

Costruire le tavole di verità della proposizione:

P: Se studio e non lavoro allora ho il giorno libero.

I Appello Sessione Invernale 2016 - Compito D

- 1) Determinare l'andamento del grafico della funzione $f(x) = (1 x^2) \cdot e^{x-2}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0}\frac{3^x-1+\sqrt[3]{x}-x^2}{\sin x+x^3}\,;\, \lim_{x\to +\infty}x^2\cdot\left(1-\cos\frac{1}{x}\right).$$

- 3) Determinare per quale valore del parametro k risulta $\lim_{x\to 1^+} \frac{x^3-3x+3}{x^2-5x-k} = -\infty$.
- 4) Dato $n \in \mathbb{N}$ determinare massimi e minimi per la funzione $f(x) = x^n \cdot (x+2)^3$, esaminando sia il caso n pari che quello n dispari.
- 5) Analizzare la natura dei punti stazionari della funzione $f(x,y)=e^{3x-x^3-y^2}$.
- 6) Calcolare $\int_0^1 \frac{1}{(x-3)^2} + e^{2x-3} dx$.
- 7) Data $f(x,y) = 3x + y e^{y-3x}$, se ne calcoli il gradiente nel punto (1,3) e si trovino poi tutti i vettori perpendicolari a $\nabla f(1,3)$ e di modulo pari a $\sqrt{13}$.
- 8) Date $f(x) = \frac{3^x 1}{3^x + k}$ e g(x) = x 1, determinare il valore del parametro k sapendo che f(g(2)) = 2 e determinare poi l'espressione dell'inversa della funzione f(g(x)).
- 9) Data $f(x) = e^{2-kx}$ determinare il valore del parametro k in modo tale che la retta tangente al grafico della funzione nel punto x = 0 risulti parallela alla bisettrice del I e del III quadrante e si determini poi l'equazione di tale retta tangente.
- 10) Siano date le tre proposizioni:
- A: Ho il giorno libero;
- \mathbb{B} : Io studio;
- \mathbb{C} : Io lavoro.

Costruire le tavole di verità della proposizione:

P: Se lavoro allora non ho il giorno libero e non studio.

II Appello Sessione Invernale 2016 - Compito A

- 1) Dopo aver determinato l'andamento del grafico della funzione $f(x) = (x-1) \cdot e^{2-x}$ si determini quello della funzione $g(x) = |x-1| \cdot e^{2-x}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to +\infty} \left(1 - \frac{1}{3x - 1}\right)^{2x + 1}; \lim_{x \to +\infty} \frac{\sqrt[3]{x^4} - x^2 + e^{1 - x}}{x^2 + \sin x}.$$

- 3) La funzione $f(x) = \log(3x 2)$ ha un differenziale $df(x_0) = \frac{3}{8}$ per un incremento $dx = \frac{1}{2}$. Determinare il punto x_0 .
- 4) Determinare il valore del parametro k per il quale $\int_0^k e^{3x+4} dx = 2$.
- 5) Date la funzione f(x) e la sua funzione derivata f'(x), definite, derivabili e diverse da 0 $\forall\,x\in\mathbb{R}$, determinare l'espressione della funzione derivata della funzione $F(x)=\frac{x\cdot f(x)}{f'(x)}$.
- 6) Data la funzione $f(x) = x^3 \cdot \log^3 x$, determinare i punti nei quali la retta tangente al grafico della funzione risulta orizzontale, stabilendo poi la natura di tali punti.

- 7) Data $f(x,y) = x^2 ax + y^2 by xy$, si determinino i valori di a e b per i quali la funzione ha in (1, -1) un punto stazionario e si determini poi la natura di tale punto.
- 8) Determinare per quale valore di k risulta $||1 1|| \cdot \begin{vmatrix} 1 & k \\ -k & 1 \end{vmatrix} | \cdot \begin{vmatrix} 1 \\ 1 \end{vmatrix} = 4$.
- 9) Data $f(x, y, z) = x^{y} y^{3z} + \log(x + 2y)$, calcolare $\nabla f(1, 1, 1)$
- 10) Siano date le due proposizioni:

A: La funzione $f(x)=(2x-3)^4$ risulta crescente $\forall\,x\in\mathbb{R}$; \mathbb{B} : La funzione $g(x)=e^{1-2x}$ risulta convessa $\forall\,x\in\mathbb{R}$.

Dopo aver determinato verità o falsità di A e di B, costruire le tavole di verità della proposizione $\mathbb{P}: \mathbb{A} \Rightarrow non \mathbb{B}$.

II Appello Sessione Invernale 2016 - Compito B

- 1) Dopo aver determinato l'andamento del grafico della funzione $f(x) = (2-x) \cdot e^{x-1}$ si determini quello della funzione $g(x) = |2 - x| \cdot e^{x-1}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{1 - 2x} \right)^{3x + 2}; \lim_{x \to +\infty} \frac{x^2 - \sqrt[3]{x^{10}} + \log x}{3^{-x} - 3x}.$$

- 3) La funzione $f(x) = \log(2x + 3)$ ha un differenziale $df(x_0) = \frac{2}{15}$ per un incremento $\mathrm{d}x = \frac{1}{3}$. Determinare il punto x_0 .
- 4) Determinare il valore del parametro k per il quale $\int_{k}^{k} e^{2x+5} dx = 1$.
- 5) Date la funzione f(x) e la sua funzione derivata f'(x), definite, derivabili e diverse da 0 $\forall x \in \mathbb{R}$, determinare l'espressione della funzione derivata della funzione $F(x) = \frac{f'(x)}{x \cdot f(x)}$.
- 6) Data la funzione $f(x) = x^2 \cdot \log^5 x$, determinare i punti nei quali la retta tangente al grafico della funzione risulta orizzontale, stabilendo poi la natura di tali punti.
- 7) Data $f(x,y) = ax x^2 + by y^2 xy$, si determinino i valori di a e b per i quali la funzione ha in (1,1) un punto stazionario e si determini poi la natura di tale punto.
- 8) Determinare per quale valore di k risulta $||-1 \quad 1|| \cdot \begin{vmatrix} k & 1 \\ 1 & -k \end{vmatrix} | \cdot \begin{vmatrix} 1 \\ 1 \end{vmatrix} = 6$.
- 9) Data $f(x, y, z) = x^z z^{3y} + \log(z + 3y)$, calcolare $\nabla f(1, y)$
- 10) Siano date le due proposizioni:

A: La funzione $f(x) = e^{2x-3}$ risulta crescente solo per $x \ge 0$;

 \mathbb{B} : La funzione $q(x) = (x+1)^3$ risulta convessa solo per x > -1.

Dopo aver determinato verità o falsità di A e di B, costruire le tavole di verità della proposizione $\mathbb{P}: non \mathbb{A} \Rightarrow \mathbb{B}$.

II Appello Sessione Invernale 2016 - Compito C

- 1) Dopo aver determinato l'andamento del grafico della funzione $f(x) = (x-1) \cdot e^{x-2}$ si determini quello della funzione $g(x) = |x - 1| \cdot e^{x-2}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to +\infty} \left(1 - \frac{1}{2x+1} \right)^{3x-1}; \lim_{x \to +\infty} \frac{x^5 + 3^{-x} - \sqrt{x^5}}{\log x - x^6}.$$

- 3) La funzione $f(x) = \log(3x + 2)$ ha un differenziale $df(x_0) = \frac{3}{4}$ per un incremento $dx = \frac{1}{2}$. Determinare il punto x_0 .
- 4) Determinare il valore del parametro k per il quale $\int_0^k e^{3x+2} dx = 2$.
- 5) Date la funzione f(x) e la sua funzione derivata f'(x), definite, derivabili e diverse da 0 $\forall x \in \mathbb{R}$, determinare l'espressione della funzione derivata della funzione $F(x) = \frac{x \cdot f'(x)}{f(x)}$.
- 6) Data la funzione $f(x) = x^4 \cdot \log^2 x$, determinare i punti nei quali la retta tangente al grafico della funzione risulta orizzontale, stabilendo poi la natura di tali punti.
- 7) Data $f(x,y) = x^2 ax + y^2 by + xy$, si determinino i valori di a e b per i quali la funzione ha in (-1,1) un punto stazionario e si determini poi la natura di tale punto.
- 8) Determinare per quale valore di k risulta $||1 1|| \cdot \begin{vmatrix} 1 & -k \\ k & 1 \end{vmatrix}| \cdot \begin{vmatrix} 1 & 1 \\ -1 \end{vmatrix}| = 4$.
- 9) Data $f(x, y, z) = x^{2z} z^{3y} + \log(2x + 3z)$, calcolare $\nabla f(1, 1, 1)$.
- 10) Siano date le due proposizioni:
- A: La funzione $f(x) = (3x 3)^4$ risulta crescente solo per $x \ge 1$;
- \mathbb{B} : La funzione $g(x)=e^{2x-3}$ risulta convessa solo per $x\geq \frac{3}{2}$.

Dopo aver determinato verità o falsità di \mathbb{A} e di \mathbb{B} , costruire le tavole di verità della proposizione $\mathbb{P}: \mathbb{B} \Rightarrow non \mathbb{A}$.

II Appello Sessione Invernale 2016 - Compito $\mathbb D$

- 1) Dopo aver determinato l'andamento del grafico della funzione $f(x)=(2-x)\cdot e^{1-x}$ si determini quello della funzione $g(x)=|2-x|\cdot e^{1-x}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{2 - 3x} \right)^{2x + 1}; \lim_{x \to +\infty} \frac{\sin x + \sqrt[3]{x} + x}{3^{1 - x} - 5x}.$$

- 3) La funzione $f(x) = \log(2x 3)$ ha un differenziale $df(x_0) = \frac{2}{9}$ per un incremento $dx = \frac{1}{3}$. Determinare il punto x_0 .
- 4) Determinare il valore del parametro k per il quale $\int_0^k e^{2x+3} \, \mathrm{d}x = 3$.
- 5) Date la funzione f(x) e la sua funzione derivata f'(x), definite, derivabili e diverse da 0 $\forall x \in \mathbb{R}$, determinare l'espressione della funzione derivata della funzione $F(x) = \frac{f(x)}{x \cdot f'(x)}$.
- 6) Data la funzione $f(x) = x^3 \cdot \log^2 x$, determinare i punti nei quali la retta tangente al grafico della funzione risulta orizzontale, stabilendo poi la natura di tali punti.
- 7) Data $f(x,y)=ax-x^2+by-y^2+xy$, si determinino i valori di a e b per i quali la funzione ha in (0,-1) un punto stazionario e si determini poi la natura di tale punto.
- 8) Determinare per quale valore di k risulta $||1 1|| \cdot \begin{vmatrix} k & 1 \\ 1 & -k \end{vmatrix} \cdot \begin{vmatrix} -1 \\ 1 \end{vmatrix} = 2$.
- 9) Data $f(x, y, z) = y^{2z} z^{3x} + \log(2y + z)$, calcolare $\nabla f(1, 1, 1)$.

10) Siano date le due proposizioni:

A: La funzione $f(x) = e^{2x-3}$ risulta crescente $\forall x \in \mathbb{R}$;

 \mathbb{B} : La funzione $g(x) = (x-1)^3$ risulta convessa $\forall x \in \mathbb{R}$.

Dopo aver determinato verità o falsità di \mathbb{A} e di \mathbb{B} , costruire le tavole di verità della proposizione \mathbb{P} : $non \mathbb{B} \Rightarrow \mathbb{A}$.

Appello Sessione Straordinaria I 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = \log(2x x^2)$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{e^x - 1} \; ; \; \lim_{x \to 0} \frac{\sqrt[3]{x^2} - \sin x + x^2}{x - 3\sqrt[3]{x^2}} \; .$$

3) Data la funzione $f(x) = \frac{1}{(e)^{\frac{1}{x}} - 1}$, determinare il suo Campo di esistenza e la specie dei

suoi punti di discontinuità.

- 4) Date le funzioni $f(x) = x^2 3x + 1$ e $g(x) = kx x^2$, determinare il valore del parametro k per il quale, nel punto x = 1, le rette tangenti al grafico delle due funzioni risultano parallele e determinare le loro equazioni.
- 5) Siano date le tre proposizioni:

A: La funzione
$$f(x) = \log(2 - 3x)$$
 ha per Campo di esistenza l'insieme $\left\{x : x > \frac{2}{3}\right\}$;

- \mathbb{B} : La funzione $g(x) = e^{x^2 2x}$ risulta crescente $\forall x \in \mathbb{R}$;
- C: Una generica proposizione che può essere sia vera che falsa.

Dopo aver determinato verità o falsità di \mathbb{A} e di \mathbb{B} , costruire le tavole di verità della proposizione $\mathbb{P}: (\mathbb{A} \Rightarrow \mathbb{B}) \ e \ (non \ \mathbb{B} \Rightarrow \mathbb{C})$.

- 6) Date le matrici $\mathbb{A} = \left| \left| \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right| \right|, \ \mathbb{B} = \left| \left| \begin{array}{cc} 1 & k \\ k & -1 \end{array} \right| \right|$ ed il vettore $\mathbb{X} = \left| \left| \begin{array}{cc} 1 \\ 1 \end{array} \right| \right|$, si verifichi che il risultato del prodotto $\mathbb{A} \cdot \mathbb{B} \cdot \mathbb{X}$ non dipende dal valore di k.
- 7) Determinare il valore del parametro k per il quale $\int_0^1 e^{2x} + e^{k-x} dx = \frac{e^2}{2}$.
- 8) Data $f(x,y) = x^2y xy^2 + 2xy$, si determini la natura dei suoi punti stazionari.
- 9) Disegnare un possibile grafico per una funzione che soddisfa alle seguenti due definizioni di limite:
- a) $\forall \varepsilon > 0 \ \exists \ \delta(\varepsilon) : x < \delta(\varepsilon) \Rightarrow 1 < f(x) < 1 + \varepsilon;$
- $\mathrm{b})\,\forall\,\varepsilon\,\,\exists\,\delta(\varepsilon):0< x<\delta(\varepsilon)\Rightarrow f(x)<\varepsilon;$

ed ha un asintoto obliquo sulla destra di equazione y = 2x - 4 .

- 10) Date le funzioni $f(x) = \frac{x-1}{x+2}$ e $g(x) = \frac{1}{x}$ si verifichi che:
- a) detta K(x) = f(g(f(x))), risulta K(x) = g(x);
- b) detta H(x) = g(f(g(x))), risulta $H^{-1}(x) = f(x)$. $(H^{-1}(x))$ è la funzione inversa)

I Appello Sessione Estiva 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = \log(e^x + 1) \log(e^x 1)$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}; \lim_{x \to +\infty} \left(\frac{1+x}{3+2x}\right)^{\frac{1-x^2}{x}}.$$

- 3) Data la funzione $f(x) = \log(x x^3)$, si determini il suo Campo di esistenza ed il valore del limite nei punti di frontiera di questo.
- 4) Determinare il valore del parametro k per il quale $\int_{1}^{1} e^{2x-k} 3x \, dx = \frac{1}{2}$.
- 5) Siano date due proposizioni $\mathbb{A} \in \mathbb{B}$. Sapendo che la proposizione $\mathbb{A} \Rightarrow (\mathbb{B} \Rightarrow non \mathbb{A})$ è falsa, si determini verità o falsità della proposizione $(\mathbb{A} e \mathbb{B}) \Leftrightarrow (\mathbb{A} \Rightarrow non \mathbb{B})$.
- 6) Dati i due vettori $\mathbb{X} = (1, 1, 1)$ e $\mathbb{Y} = (1, 0, k)$, si determini se esistono valori del parametro k per i quali l'angolo compreso tra i due vettori è pari a 45° .
- 7) Data $f(x,y) = ye^y + 3x^2 2x^3$, si determini la natura dei suoi punti stazionari.
- 8) Data la funzione $f(x) = \frac{e^{2x} + 1}{e^x}$, si determini il punto x_0 nel quale la derivata della funzione coincide con quella della funzione g(x) = 2x - 1.
- 9) Data $f(x, y, z) = e^{2x-y} \log(x^2 + y^2 + 1) 3z$, calcolare $\nabla f(0, 0, 0)$.
- 10) Determinare tutti i valori (x,y) per i quali il prodotto $\|x-y\|\cdot \left\|\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right\|\cdot \left\|\begin{array}{cc} x \\ y \end{array}\right\|$ risulta minimo.

II Appello Sessione Estiva 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = e^{1+x-x^2}$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{x} \; ; \; \lim_{x \to 0} \frac{x^2 - \sin^3 x + x}{x - \sqrt[3]{x^4}} \; .$$

- 3) Data la funzione $f(x) = \log(e^{2x} + e^x)$, si determini il suo Campo di esistenza, dove risulta invertibile nonchè dominio, codominio ed espressione della sua funzione inversa.
- 4) Date le funzioni $f(x) = e^x$ e $g(x) = x^2$, si determini il punto x_0 nel quale si annulla la derivata della funzione $h(x) = \frac{f(g(x))}{g(f(x))}$
- 5) Data $f(x,y) = x^2 y xy + xy^2$, si determini la natura dei suoi quattro punti stazionari.

 6) Data la matrice $\mathbb{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ ed il vettore $\mathbb{X} = \begin{bmatrix} 1 \\ k \\ -1 \end{bmatrix}$, si determinino i valori del

parametro k per i quali il vettore $\mathbb{Y} = \mathbb{A} \cdot \mathbb{X}$ ha modulo uguale a $\sqrt{10}$.

- 7) Determinare il segno del valore dell'integrale $\int_{0}^{1} e^{2x-1} e^{1-x} dx$.
- 8) Dati tre generici insiemi \mathbb{A} , \mathbb{B} e \mathbb{C} si determini se, sotto opportune condizioni, $\mathbb{A} \cap \mathbb{C}$ può essere un sottoinsieme di $(\mathbb{A} \cup \mathbb{C}) \setminus \mathbb{B}$.
- 9) Data la funzione $f(x) = \frac{x^3}{x^2 1}$, se ne determinino gli asintoti al grafico.
- 10) Data $f(x) = e^{2x} xe^x$, determinare il suo polinomio di MacLaurin di terzo grado.

I Appello Sessione Autunnale 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = x e^{x^2}$.

2) Determinare il valore dei seguenti limiti:
$$\lim_{x\to 0}\frac{1-\cos x-x^2}{\sin^2 x}\,;\, \lim_{x\to 0}\frac{x^2-x^3+2\sin x-\sin^2 x}{3x}\,.$$

- 3) Determinare il valore del parametro k per il quale $\lim_{r\to 0} \frac{3^x 2^x}{kr} = 1$.
- 4) Date le due funzioni $f(x) = e^{3x-1}$ e $g(x) = 2e^{1-x}$, si determini il punto x_0 nel quale risulta $f'(x_0) = g''(x_0)$.
- 5) Determinare il valore del parametro k per il quale risulta $\int_{a}^{1} e^{x} x \, dx = \int_{a}^{k} e^{x+1} \, dx$.
- 6) Determinare il valore del parametro k per il quale i vettori (1,1) e (1,k) formano un angolo di 45°.
- 7) Data $f(x, y, z) = e^{x-y} + e^{y-z} x + z$, determinare i punti P in cui $\nabla f(P) = (0, 0, 0)$.
- 8) Data la proposizione $(\mathbb{A} \Rightarrow \mathbb{B})*(\mathbb{A} e non\mathbb{B})$, determinare almeno un connettivo logico * in modo tale che la proposizione risulti sempre falsa.
- 9) Data la funzione $f(x) = \sin x 2 \sin 2x + \sin 3x$, se determini l'espressione del suo polinomio di MacLaurin di terzo grado.
- 10) Data $f(x,y) = x^2 + ky^2 2xy$ analizzare, al variare del parametro k, la natura dei suoi punti stazionari.

II Appello Sessione Autunnale 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = x^2 \cdot e^x$.
- 2) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{\cos 2x - \cos 3x}{x^2}; \lim_{x \to +\infty} \left(\frac{1 + 3x + x^2}{3x^2} \right)^{1-x}.$$

- 3) Determinare il valore del parametro k per il quale $\lim_{x \to +\infty} \left(1 + \frac{k}{x}\right)^{x-1} = 5$.
- 4) Date le tre funzioni $f(x)=e^{2x}$, g(x)=3x-1 e h(x), sapendo che $f(g(h(x)))=x^3$, si determini l'espressione della funzione h(x).
- 5) Calcolare $\int_{1}^{e} \frac{x^2 2x + 1}{x} dx.$
- 6) Determinare per quale valore di k risulta $\begin{vmatrix} 1 & k \\ k & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$.

 7) Per quale valore del parametro k la funzione $f(x) = e^{k-3x}$ ha nel punto $x_0 = -1$ la
- retta tangente al suo grafico parallela alla bisettrice del II e IV quadrante?
- 8) Approssimare la funzione $f(x) = e^{x-1}$ con un opportuno polinomio di III grado in un intorno del punto $x_0 = 1$.
- 9) Data $f(x,y) = xy x^2 + xy^2$, analizzare la natura dei suoi punti stazionari.
- 10) Verificare se la proposizione $P_1: (\mathbb{A} \Rightarrow non \mathbb{B})$ e la proposizione $P_2: non (\mathbb{A} e \mathbb{B})$ sono o no proposizioni logicamente equivalenti.

Appello Sessione Straordinaria II 2016

- 1) Determinare l'andamento del grafico della funzione $f(x) = \frac{1}{e^x + 1}$.

2) Determinare il valore dei seguenti limiti:
$$\lim_{x\to 0}\frac{\sin 5x - \sin 3x}{x}\,;\, \lim_{x\to +\infty}\frac{3x^2-x^3+2\log x}{x^3+3x^2-x+10}\,.$$

3) Determinare il valore del parametro k per il quale $\lim_{x \to +\infty} \frac{1 - 3x + 5x^2}{2 + x + kx^2} = -1$.

- 4) Date le due funzioni $f(x) = \log x$ e g(x) = 2x + 3, si calcoli la funzione derivata della funzione F(x) = f(g(x)) g(f(x)).
- 5) Determinare il valore $k \neq 0$ per il quale $\int_0^k 3e^x 2e^{2x} dx = 0$.
- 6) Determinare i valori della variabile x per i quali il vettore $\mathbb{X} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ x \end{bmatrix}$ ha modulo pari a $\sqrt{6}$.
- 7) Determinare il punto x_0 nel quale risultano parallele le rette tangenti ai grafici delle due funzioni $f(x) = 15x^2 36x + 10$ e $g(x) = 2x^3 + 9x^2 30x + 12$.
- 8) Analizzare la natura dei punti stazionari della funzione $f(x,y)=x^2-xy^2+y^2$.
- 9) Determinare dominio, codominio ed espressione dell'inversa di $f(x) = \log_3(1 2^{x-1})$.
- 10) Determinare verità o falsità della proposizione $P_1:(\mathbb{A}\Leftrightarrow non\,\mathbb{C})$ supponendo che la proposizione $P_2:(\mathbb{A}\,o\,\mathbb{B})\Rightarrow\mathbb{C}$ sia falsa.