Task Mathematics for economic applications 12/6/2014
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I M 1) The reciprocal of 1 = IS = . = = — 4+ —1.
) P Tt T 921iS3-i73-i'31:i 10 277
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Since 3 + 5@' = the complex number has argument o = % and mo-

1 1 1
+1 ,

dulus p = 1y’ L 2— L 501+1' ! COS — + ¢ sen
P—§+§—ﬁ’§?[( isen 7).

Computing the square roots we have:

\/7——\/\/ cos — +zsen4) ﬁ(cos(ﬂ)Jﬂsen(ﬂ)):
:\/;(cos(8+k7r>+zsen(8+kw>> with £ =0,1.

The two roots are zy = \/g(congrzsen) \/7( \/2+\/+z—\/2— )
} (\/2+\/§+z’\/2—ﬁ> and
z1:";(cosg—ntzseng%):\"/j(—%\/i—z—\/z—i)
()

Note that z21= — 2.

I M 2) We put the system in matrix form and using elementary operations on the lines we get:

Ry — Ry Ry — Ry — Ry
2 18 —8 | 20| R<sR |1 9 —4 | 10 || R Rs—4R,
3 -3 6 | —6| — |1 -1 2 | -2
4 6 E | m 4 6 E | m
1 9 —4 | 10 Ry —R3+ Ry || 1 9 —4 | 10
0o —-10 6 | —-12 — Jo —10 6 | -—12
0 10 k-8 | m+38 0 0 k-2 | m—4

Using the last matrix we see that:

- if k # 2, the ranks of [A] and [A|b] are both equal to 3; so the system has only one solution;
-if k=2 and m # 4, the rank of [A] is equal to 2 while the rank of [A|b] is equal to 3; the
system has no solutions;

-if k=2 and m =4, [A] and [A|b] have both rank equal to 2; the system has an infinite
number of solutions (co!) with one degree of freedom in the choise of the variables.

I M 3) Since A and B are similar matrices, they have the same eigenvalues.

From |A — \I| = 1Z>‘ _12_)\ =X —-9=0weget \; =3 and A\, = — 3.
We have two possible matrices B.
The first is given by solving the system:



2z 2l -1
) as1 A2 :>
ai
[ el ol = =2 Joll =1
(a1 4+ a2 =3 ap = —3
as1 +ag =3 ay =0 || =3 6
Yan+0= -3~ Yan=6 :HB_H 0 3H
\(1214—0:0 CL22:3
The second is given by solving the system:
-\1H | \ | =3
asny —3 :>
a1 a12 _3. 3
L a1 0 0
'G11+G12:_3 (a1, =3
as + axp = —3 az =0 |3 —6
= ¢<a12:_6¢B_H0 —sH'
\a21+0:0 ka22:—3
—7-=A 2 5
I M 4) From ||A — XI|| = 2 —2—X —2 || wecompute the determinant:
-5 2 3—A
—T7—=A 2 5 —2-A 2 5
2 —2—-X =2 |= 0 —2—-X =2 |(C) < C1+Cy)
-5 2 3— A —2-A 2 3—A
—2-A 2 2 5
_(_Q_M‘ 2 3—)\‘+(_2_)‘)‘—2—)\ —2‘_

=(—2=-N[(N=A=2)+(6+5))] =

=(=2-N(N+4r+4) = — (A +2)*.
The characteristic polynomial of the matrix A has a multiple solution A = — 2, whose alge-
braic multiplicity is equal to 3; since the matrix is not a diagonal one, it is impossible for the
matrix to be a diagonalizable one.

-5 2 5

In fact, the matrix ||[A+ 2| = 2 0 —2|| hasrankequal to 2, so the geometric mul-
-5 2 5

tiplicity of the eingevalue A = — 2 isequal to 1.

The elements of the eingespace generated by A = — 2 are the vectors V' = (z,y, ) that are

solutions of the linear system ||A + 2I|| - V = O or
—5r+2y+952=0
20 —22=0 = {
—5r+2y+52=0

Every eigenvector V' has the form (x,0,x) and a possible base for the eingespace associated

to A= —2is{(1,0,1)}, or, using unit vectors, {(\/75,0, @) }

—5r+2y+952=0 T=2z
20 —22=0 :>{y:()'

I M 1) The equation e** ™ 4+ 2sen (x — y) — 1 = 0 is satisfied at point P = (37r; — 2m).
If we put f(x,y) = e* ™ 4 2sen (z — y) — 1 we have:
Vf(z,y) = (2% 4+ 2cos (z — y), 3> — 2co0s (z — y)) .



At point P we get Vf(P) = (0,5) and so we see that in a neighbourhood of P only an im-
plicit function of form y = y(z) can be defined from equation f(z,y) =0.

. ative : f2(P)

Its first order derivative is equal to y'(37) = — = =0.
fy(P)
For calculating its second order derivative we use the formula:
7o (P) +2f1,(P) -y + [ (P) - ()’ e (P)
y'= — Y 7 Y = — f(’ ) since ¢/ (37) = 0.
Y Y 4

Since f/, = 4e*" — 2sen (z —y), we get f (P) =4 andso ¢’ (37) = — =

- 2
So the requested polynomial is Py(z,37) = — 27 — g(:c — 3m)°.

11 M 2) From f(z,y) = (ax + by) - cos (z + y) we get:
Vf(z,y) = (acos(x +y) — (ax + by) sen(z + y); bcos(z + y) — (ax + by) sen(z + y)) .
So V£(0,0) = (a,b). From condition Vf(0,0) = (1, — 2) we get (a,b) = (1, —2) and so
f(z,y) = (x — 2y) cos (x + y) and finally:

(z — 2y)*cos?(z + )

g(z,y) = Ry (z,y) # (0,0)

To check the differentiability of g(x, y) at point (0, 0) we consider the limit:
lim 9@ y) —9(0,0) — T(z,y)
(,9)—(0,0) Va2 +y?
Using polar coordinates, since ¢(0,0) = 0, we have:
(pcos¥—2psen)>-cos? (pcosd+psen )

where 7' is a linear operator: T'(z,y) = ax + [y.

_ — (apcosd + Bpsend)
lim £ =
p—0 p

. p* (cos—2sen¥)*-cos? (pcos+psend) p(Oz cos®d + [sen 19)

lim £ =
p—0 P

Iirré [(cos® — 2sen¥)” - cos® (pcos® + psendd) — (acosdd + Bsend)] =
p—

= (cos® — 2sen ) — (acosV + Bsend).
The result of the limit is not always equal to zero, so the given function is not differentiable at
point (0, 0).

Il M 3) By the next grafic we can observ that the feasible region £ (in yellow, constraints in
red) is closed and bounded, the objective function (in blue its level curves) is continuos, thus
from Weierstrass Theorem the problem admits absolute M AX and min. It is easy to prove
that in the feasible region £ the Jacobian of the constraints has always full rank and so con-
straints are everywhere qualified.
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The Lagrange function of the problem is :
Az, y, A p) = zy+y— Ay* — 2y — x) — p(x — 2y)
and its gradient is:

y+A—p
r+1-2\y+2\+2u

— (¥ —2y—x)
— (v —2y)

We solve the problem using Kuhn-Tucker Conditions.
Firstcase: A=pu=0

VA =

(A=pu=0 A=pu=0

y=20 y=20

Lx+1=0 =><r=-1 = (—-1,00¢¢.

v —2y—x<0 1<0

(2 —2y<0 —1<0

Secondcase: A # 0; =0

(=0 pw=20 pw=70

y+A=0 y=—2A y=—A
{z+1-22y4+22 =0 =>{z=—-1-2X2-2\ = az= —1-2X2-2\ =
v —2y—x=0 BN +4N+1=0 BA+1)(A+1)=0
\x—2y§0 rx—2y<0 r—2y<0

4

S

¥y=3 y=1

{o=—-2ord z=—

A= —3 A= —

— U<y -3<0

\ 9 —
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9'3" 3
missible solution ( — 1,1, — 1,0) ; both points are possible min.
Third case: A =0;u # 0

The first system has the admissible solution ( , O) , While the second has the ad-

A=0 A=0 (A=0 1

y—pu=0 y=p y:_g 11
r+14+2=0 = x=—-1-2pu = r=—5 = (—5, 4>¢8
rz—2y=0 —1-2u—-24=0 “:_i

P —2y—x<0 P —2y—x<0 \%SO

Fourtcase: A #0;u #0

y+A—pn=20 y+A—pn=0
T+ 1-2 y+22+21 =0 r+1-=2 \y+2X+24 =0

= =
-2y —z=0 Y’ —dy=yly—4) =0
r—2y=20 T =2y
_ 1 _ 17
A= -1 (a=I
_ 1 _ 33
P="Tord #™
y=0 y=4
z=0 r=38
. .. . 1 1 .
The first system has the admissible solution (0, 0, — yi Z) , While the second has the ad-
. . 17 33
missible solution (8,4, R Z) :

The first point is a possible min, the second is a possible M AX.

Summarizing, we have found only one possible point of M AX: (8,4) and three possible

points of min: (— g,%) , (=1,1), (0,0).

(8,4) isthe M AX point with f(8,4) = 36.

Examining the objective function on the constraint = = > — 2y, by replacing we get:
. 1 : .
f) =y =22 +y = fy) =3y —4y+1>0if 0<y< 3 and if 1 <y <4 while

o 1 . . . .
f'(y) <0 if 3 <y < 1. With regard to the only border points, ( IS @ maximum

R
point while by Kuhn-Tucker conditions it may be a minimum point, and so (— g, §) is a
saddle point.

With regard to the only border points, (— 1,1) and (0,0) are minimum points as well as by
Kuhn-Tucker conditions. Moreover f( —1,1) = f(0,0) = 0 and so we get two min points.
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min \ Z
saddle p. \
(_§ l) T 0.0

93 min

‘ 1
11 M 4) From g(f(t)) = g(t2,1—t) = (2 —#3,e" ! t:
) g(f(t) = g(t*,1-1¢) ( T ) e e
dg(f(t At 4 2t — 2
IUW) _ (g g2 g1y, - A2
dt (4 + 12 — 2t + 2)

dt
The equation of the tangent line in parametric form is:

W =(0e2)+t (0 ! 0 Y
T = — . — — — — — — .
7672 ) 672 76 672 2

with ML_O — (0, —e,%) and g(f(0)) = (O,e, %)



