TASKS of MATHEMATICS
 for Economic Applications AA. 2017/18

Intermediate Test December 2017

I M 1) Using the trigonometric form of the complex numbers, calculate $\left(\frac{1+i}{1+\sqrt{3} i}\right)^{4}$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{lll}2 & 2 & 1 \\ 0 & k & 0 \\ 1 & 2 & 2\end{array}\right\|$, determine the values of the parameter k for which it admits a multiple eigenvalue and verify if, for these values of k, the matrix is a diagonalizable one.
I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{cccc}m & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & k\end{array}\right\|$, determine, on varying the parameters m and k, the dimensions of the Image and the Kernel of the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$. I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{lllc}1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 0 \\ 2 & 1 & 3 & -1\end{array}\right\|$, determine a basis for the Kernel of the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, f(\mathbb{X})=\mathbb{A}^{T} \cdot \mathbb{X}$.
I M 5) Given the matrix $\mathbb{A}=\left\|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right\|$, verify that it has two eigenvalues equal to those of the matrix $\mathbb{A}^{2}=\mathbb{A} \cdot \mathbb{A}$.

I Winter Exam Session 2018

I M 1) Calculate the fourth roots of $z=e^{\log 16-i \pi}$.
I M 2) Given $\mathbb{A}=\left\|\begin{array}{lll}0 & 0 & k \\ 0 & k & 0 \\ k & 0 & 0\end{array}\right\|$ determine, on varying k, its eigenvalues and corresponding eigenvectors, their algebraic and geometric multiplicity, a basis for the eigenspace.
I M 3) For the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ generated by the matrix $\mathbb{A}=\left\|\begin{array}{ccc}1 & x_{1} & y_{1} \\ 2 & x_{2} & y_{2} \\ -1 & x_{3} & y_{3}\end{array}\right\|$ it results $\left\{\begin{array}{l}f(1,1,1)=(3,3,1) \\ f(1,1,-1)=(-1,5,-1)\end{array}\right.$. Find the dimensions of the Image and the Kernel of such linear map.
I M 4) In the base $\mathbb{W}:\{(1,0,1) ;(1,1,0) ;(1,1,1)\}$ the vector \mathbb{X} has coordinates $(2,-1,1)$. Find its coordinates in the base $\mathbb{V}=\{(1,0,1) ;(1,1,0) ;(2,1,2)\}$.
II M 1) Given the equation $f(x, y)=y \log x+(x-1) e^{y}-y=0$ satisfied at the point $(1,0)$, verify that with it an implicit function $y=y(x)$ can be defined and then calculate, for this function, the expression of the Taylor polynomial of the second degree at the appropriate point.

II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}-y^{2} \\ \text { u.c. }\left\{\begin{array}{l}x^{2}+4 y^{2} \leq 4 \\ 2 y \leq 2-x\end{array}\right.\end{array}\right.$.
II M 3) Given the function $f(x, y)=y^{2}-x^{3}-2 x y^{2}+27 x$, analyze the nature of its stationary points.
II M 4) Given the function $f(x, y)=\alpha x^{2}+\beta y^{3}+2 x-3 y^{2}$, with $\alpha, \beta \in \mathbb{R}$, find the values of α and β if $f_{x}^{\prime}(1,1)=f_{y, y}^{\prime \prime}(1,1)$ and $f_{y}^{\prime}(-1,-1)=f_{x, x}^{\prime \prime}(-1,-1)$.

II Winter Exam Session 2018

I M 1) If $e^{z}=1+i$, determine z.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{|ccc}3 & 2 & 1 \\ 1 & 4 & -9 \\ 1 & 2 & -3\end{array}\right\|$ determine its real and complex eigenvalues, and, for the real eigenvalue, the corresponding eigenvectors.
I M 3) Given the linear homogeneous system $\left\{\begin{array}{l}x_{1}+m x_{2}+m x_{3}+2 x_{4}=0 \\ x_{1}+x_{2}+x_{3}+2 m x_{4}=0\end{array}\right.$, find, on varying the parameter m, the dimention of the linear space of its solutions, and when this dimention is maximum, find a basis for such space.
I M 4) Given the two orthogonal vectors $\mathbb{X}_{1}=(1,2,-3)$ and $\mathbb{X}_{2}=(1,1,1)$, determine a third vector \mathbb{X}_{3} orthogonal to \mathbb{X}_{1} and \mathbb{X}_{2}. With these three vectors realize a basis for \mathbb{R}^{3}. Finally determine the coordinates of the vector $\mathbb{Y}=(1,0,1)$ in such basis.
II M 1) With the system $\left\{\begin{array}{l}f(x, y, z)=x^{2}+y^{2}+z^{3}-3 x y=0 \\ g(x, y, z)=x^{3}+y^{3}-3 z^{2}+x y z=0\end{array}\right.$ satisfied at the point $\mathrm{P}=(1,1,1)$ we can define an implicit function. Calculate its first order derivatives.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x(y+1) \\ \text { u.c.: }\left\{\begin{array}{l}x+y^{2} \leq 1 \\ 0 \leq x\end{array}\right.\end{array}\right.$.
II M 3) Given the function $f(x, y)=\log \left(\frac{x-y+1}{y-x^{2}+1}\right)$ graphically represent its existence field and then calculate the gradient $\nabla f(0,0)$.
II M 4) Given the function $f(x, y)=k\left(x^{2}-y^{2}\right)+x-y$ and the unit vectors $e_{1}=(1,0)$, $e_{2}=(0,1)$, if the first order directional derivatives $D_{e_{1}} f(1,0)$ and $D_{e_{2}} f(0,1)$ are equal, find the value of k and then calculate the second order directional derivative $D_{e_{1}, e_{2}}^{2} f(1,1)$.

I Additional Exam Session 2018

I M 1) Find the cubic (third) roots of z if $z=e^{1+4 \pi i} \cdot e^{-1+3 \pi i}$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}x+1 & x & x \\ y & y+1 & y \\ -y & -y & 1-y\end{array}\right\|$, find the relationship that must exist between x and y so that the matrix admits an eigenvalue whose algebraic multiplicity is equal to 3 .
I M 3) Given the linear map:
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with $f\left(x_{1}, x_{2}, x_{3}\right)=\left(a x_{1}, x_{1}+b x_{2}, x_{1}+x_{2}+c x_{3}\right)$,
since $f(1,1,1)=(0,1,2)$, calculate the values of the parametrs a, b and c and then find a basis for the kernel and a basis for the image of f.

I M 4) Given the matrices $\mathbb{A}=\left\|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right\|$ and $\mathbb{B}=\left\|\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1\end{array}\right\|$, calculate the matrix $\left(\mathbb{A}+\mathbb{B}^{T}\right)^{-1}$, the inverse of the sum of the matrix \mathbb{A} with the transpose of the matrix \mathbb{B}.
II M 1) Given the equation $f(x, y, z)=x e^{y-z}-y e^{z-x}+z e^{x-y}=0$ satisfied at point $(0,0,0)$, verify that an implicit function $z=z(x, y)$ can be defined and then calculate the equation of the tangent plane for this function at the point $(0,0)$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}-y^{2} \\ \text { u.c.: } x^{2}+4 y^{2} \leq 4\end{array}\right.$.
II M 3) Given $f(x, y)=x \cdot e^{y}+y \cdot e^{x}$ and the unit vector $v=(\cos \alpha, \sin \alpha)$, determine the values for α for which the directional derivatives $\mathcal{D}_{v} f(0,0)$ are equal to zero and then calculate $\mathcal{D}_{v, v}^{2} f(0,0), \forall \alpha$.
II M 4) Given $f: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \rightarrow\left(\sin \left(t^{2}\right), e^{2 t}, \log (1+t)\right)$, determine the equation of the tangent line to this curve at the point $t=0$.

I Summer Exam Session 2018

I M 1) Find the square roots of the complex number $z=\frac{1+i}{1-i}-\frac{1-i}{1+i}$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1\end{array}\right\|$, find its eigenvalues and study the corresponding associated eigenspaces.
I M 3) Given the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A}=\left\|\begin{array}{ccc}1 & 0 & 1 \\ 0 & k & -1 \\ 1 & -1 & 2\end{array}\right\|$, since the dimension of the Kernel of such map is equal to 1 , check if the matrix is a diagonalizable one.
I M 4) Check if, on varying the parameters m and k, the vector $\mathbb{Y}=(-1,1, k)$ can be expressed with a linear combination of the vectors $\mathbb{X}_{1}=(1,1,0), \mathbb{X}_{2}=(-1,0,-1)$, $\mathbb{X}_{3}=(1,1, m)$ and $\mathbb{X}_{4}=(-1,1,-2)$.
II M 1) Given the equation $f(x, y, z)=x^{3}+y^{3}+z^{3}+3 x y+3 y z=1$, satisfied at the point $P=(1,1,-1)$, determine the first order partial derivatives of the implicit function defined by such equation having z as its dependent variable.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{4}+y^{4} \\ \text { u.c.: } x^{2}+y^{2} \leq 1\end{array}\right.$.
II M 3) Given the vectors $v=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $w=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and the function $f(x, y)=\log \left(e^{x^{2}+y^{2}}+e^{x^{2}-y^{2}}\right)$, calculate the first order directional derivatives $\mathcal{D}_{v} f(0,0)$ and $\mathcal{D}_{w} f(-1,1)$.
II M 4) Given the function $f(x, y)=(x-y)^{2}+(y-3 x)^{2}$ analyze the nature of its stationary points.

