TASK MATHEMATICS for ECONOMIC APPLICATIONS 15/01/2019

I M 1) If ρ and ρ^{\prime} are respectively the modulus of the complex number z and the modulus of one of its cubic roots, and if α and α^{\prime} are their arguments, it is $\rho^{\prime}=\sqrt[3]{\rho}$ and $\alpha^{\prime}=\frac{\alpha}{3}$.
Thus $\rho=\left(\rho^{\prime}\right)^{3}=3^{3}=27, \alpha=3 \alpha^{\prime}=\frac{3 \pi}{12}=\frac{\pi}{4}$ and so:
$z=27\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\frac{27}{\sqrt{2}}(1+i)$. For the cubic roots of z we have:
$\sqrt[3]{z}=\sqrt[3]{27\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)}=3\left(\cos \left(\frac{\pi}{12}+\frac{2 k \pi}{3}\right)+i \sin \left(\frac{\pi}{12}+\frac{2 k \pi}{3}\right)\right)$
with $k=0,1,2$. The three roots are:
$z_{1}=3\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)=\frac{3}{2}(\sqrt{2+\sqrt{3}}+i \sqrt{2-\sqrt{3}})$,
$z_{2}=3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)=-\frac{3}{2} \sqrt{2}(1-i)$ and
$z_{3}=3\left(\cos \frac{17 \pi}{12}+i \sin \frac{17 \pi}{12}\right)=-\frac{3}{2}(\sqrt{2-\sqrt{3}}+i \sqrt{2+\sqrt{3}})$.
I M 2) The characteristic polynomial of \mathbb{A} is $p_{\mathbb{A}}(\lambda)=|\mathbb{A}-\lambda \mathbb{I}|=\left|\begin{array}{cc}1-\lambda & -1 \\ 1 & k-\lambda\end{array}\right|=$ $=(1-\lambda)(k-\lambda)+1=\lambda^{2}-(k+1) \lambda+k+1$.
The discriminant is $\Delta=(k+1)^{2}-4(k+1)=(k+1)(k-3)$.
When $\Delta>0 \Rightarrow k<-1$ or $k>3$ the matrix \mathbb{A} has two real and distinct eigenvalues:
$\lambda_{1,2}=\frac{(k+1) \pm \sqrt{(k+1)(k-3)}}{2}$;
when $\Delta=0 \Rightarrow k=-1$ or $k=3$ the matrix \mathbb{A} has two real and equal eigenvalues:
$\lambda_{1,2}=0$ for $k=-1$ and $\lambda_{1,2}=2$ for $k=3$;
when $\Delta<0 \Rightarrow-1<k<3$ the matrix \mathbb{A} has two complex conjugated eigenvalues:
$\lambda_{1,2}=\frac{k+1 \pm i \sqrt{-(k+1)(k-3)}}{2}$.
I M 3) The three vectors $\mathbb{X}_{1}, \mathbb{X}_{2}$ and \mathbb{X}_{3} belongin to \mathbb{R}^{3} form a basis if and only if the determinant of the matrix $\left\|\mathbb{X}_{1} \quad \mathbb{X}_{2} \quad \mathbb{X}_{3}\right\|=\left\|\begin{array}{ccc}1 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right\|$ is different from zero.

$$
\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|=1 \cdot\left|\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right|+(-1) \cdot\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=2+2=4 \neq 0
$$

So $\mathbb{X}_{1}, \mathbb{X}_{2}$ and \mathbb{X}_{3} form a basis for \mathbb{R}^{3}. If α, β and γ are the coordinates of the vector \mathbb{Y} in the base $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{X}_{3}\right\}$ it is $\mathbb{Y}=\alpha \mathbb{X}_{1}+\beta \mathbb{X}_{2}+\gamma \mathbb{X}_{3}$, which leads to the system:

$$
\left\{\begin{array} { l }
{ \alpha + \beta + 2 \gamma = 1 } \\
{ \alpha - \beta = 3 } \\
{ \alpha - \gamma = 2 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \alpha + \alpha - 3 + 2 \alpha - 4 = 1 } \\
{ \beta = \alpha - 3 } \\
{ \gamma = \alpha - 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=2 \\
\beta=-1 \\
\gamma=0
\end{array}\right.\right.\right.
$$

Since the third coordinate is $\gamma=0$, this implies that the vector \mathbb{Y} belongs to the plane spanned by the vectors \mathbb{X}_{1} and \mathbb{X}_{2}.

I M 4) For a linear map $f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$ the dimension of the Image is equal to the rank of the matrix \mathbb{A} while the dimension of the Kernel is equal to the difference between the dimension of the domain and the dimension of the Image.
To calculate the rank of \mathbb{A} we reduce the matrix by elementary operations on its lines:
By $\left(R_{3} \leftarrow R_{3}-R_{1}-R_{2}\right)$ and then $\left(R_{2} \leftarrow R_{2}-R_{1}\right)$ we get:

$$
\left\|\begin{array}{ccccc}
1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 0 & 1 \\
2 & m & 1 & 1 & k
\end{array}\right\| \rightarrow\left\|\begin{array}{ccccc}
1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 0 & 1 \\
0 & m & 0 & 0 & k
\end{array}\right\| \rightarrow\left\|\begin{array}{ccccc}
1 & -1 & 0 & 1 & -1 \\
0 & 2 & 1 & -1 & 2 \\
0 & m & 0 & 0 & k
\end{array}\right\| .
$$

From the last matrix we can conclude that $\operatorname{Rank}(\mathbb{A})$ is equal to 3 if $m \neq 0$ or $k \neq 0$, if $m=0$ and $k=0 \operatorname{Rank}(\mathbb{A})$ is equal to 2 .
So $\operatorname{Dim}(\operatorname{Imm})=\left\{\begin{array}{ll}2 & \text { if } m=k=0 \\ 3 & \text { otherwise }\end{array} \Rightarrow \operatorname{Dim}(\right.$ Ker $)=\left\{\begin{array}{ll}3 & \text { if } m=k=0 \\ 2 & \text { otherwise }\end{array}\right.$.
The dimension of the Image is minimal when $m=0$ and $k=0$.
The vector $\mathbb{Y}=(2,-1,2)$, by Rouchè-Capelli Theorem, belongs to $\operatorname{Imm}(f)$ if and only if $\operatorname{Rank}(\mathbb{A})=\operatorname{Rank}(\mathbb{A} \mid \mathbb{Y})$.
By elementary operations on $(\mathbb{A} \mid \mathbb{Y}),\left(R_{3} \leftarrow R_{3}-R_{1}-R_{2}\right)$ and $\left(R_{2} \leftarrow R_{2}-R_{1}\right)$ we get:

$$
\left\|\begin{array}{cccccc}
1 & -1 & 0 & 1 & -1 & 2 \\
1 & 1 & 1 & 0 & 1 & -1 \\
2 & 0 & 1 & 1 & 0 & 2
\end{array}\right\| \rightarrow\left\|\begin{array}{cccccc}
1 & -1 & 0 & 1 & -1 & 2 \\
0 & 2 & 1 & -1 & 2 & -3 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\| .
$$

So we see that $\operatorname{Rank}(\mathbb{A})=2$ while $\operatorname{Rank}(\mathbb{A} \mid \mathbb{Y})=3$ so \mathbb{Y} doesn't belong to $\operatorname{Imm}(f)$.
II M 1) From the equation $f(x, y, z)=x \sin y-y \cos z+x^{2} z=0$ we get:
$f(1,0,0)=0-0+0=0$ and so the point $(1,0,0)$ satisfies the equation. Then : $\nabla f(x, y, z)=\left(\sin y+2 x z, x \cos y-\cos z, y \sin z+x^{2}\right)$ and $\nabla f(1,0,0)=(0,-1,0)$.
Since only $f_{y}^{\prime}(1,0,0) \neq 0$ it is possible to define only an implicit function $(x, z) \rightarrow y$ whose derivatives are: $\frac{\partial y}{\partial x}(1,0)=-\frac{0}{-1}=0$ and $\frac{\partial y}{\partial z}(1,0)=-\frac{0}{-1}=0$.

II M 2) To solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x+y \\ \text { u.c. } x^{2} \leq y \leq 1-x^{2}\end{array}\right.$ firstly we write the problem in the form: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x+y \\ \text { u.c. }\left\{\begin{array}{l}x^{2}-y \leq 0 \\ x^{2}+y-1 \leq 0\end{array} \text {; then we observe that the objective function }\right.\end{array}\right.$ of the problem is a continuous function, the feasible region \mathcal{E} is a compact set, and so maximum and minimum values surely exist. The constraints are qualified.
$\left\{\begin{array}{l}y=x^{2} \\ y=1-x^{2}\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{1}{\sqrt{2}} \\ y=\frac{1}{2}\end{array} \cup\left\{\begin{array}{l}x=-\frac{1}{\sqrt{2}} \\ y=\frac{1}{2}\end{array}\right.\right.\right.$.

The Lagrangian function is: $\Lambda(x, y, \lambda)=x+y-\lambda_{1}\left(x^{2}-y\right)-\lambda_{2}\left(x^{2}+y-1\right)$.

1) case $\lambda_{1}=0, \lambda_{2}=0$:
$\left\{\begin{array}{l}\Lambda_{x}^{\prime}=1 \neq 0 \\ \Lambda_{y}^{\prime}=1 \neq 0 \\ x^{2} \leq y \\ y \leq 1-x^{2}\end{array}:\right.$ no solutions.
2) case $\lambda_{1} \neq 0, \lambda_{2}=0$:

$$
\left\{\begin{array} { l }
{ \Lambda _ { x } ^ { \prime } = 1 - 2 \lambda _ { 1 } x = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 1 + \lambda _ { 1 } = 0 } \\
{ y = x ^ { 2 } } \\
{ y \leq 1 - x ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=-\frac{1}{2} \\
\lambda_{1}=-1 \\
y=\frac{1}{4} \\
\frac{1}{4} \leq \frac{3}{4}: \text { true }
\end{array} . \text { Since } \lambda_{1}<0 \text { the point }\left(-\frac{1}{2}, \frac{1}{4}\right)\right.\right. \text { may }
$$

be a minimum point.
3) case $\lambda_{1}=0, \lambda_{2} \neq 0$:

$$
\left\{\begin{array} { l }
{ \Lambda _ { x } ^ { \prime } = 1 - 2 \lambda _ { 2 } x = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 1 - \lambda _ { 2 } = 0 } \\
{ y = 1 - x ^ { 2 } } \\
{ x ^ { 2 } \leq y }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{1}{2} \\
\lambda_{2}=1 \\
y=\frac{3}{4} \\
\frac{1}{4} \leq \frac{3}{4}: \text { true }
\end{array} . \text { Since } \lambda_{2}>0 \text { the point }\left(\frac{1}{2}, \frac{3}{4}\right)\right.\right. \text { may be a }
$$

maximum point.
4) case $\lambda_{1} \neq 0, \lambda_{2} \neq 0$:

$$
\left\{\begin{array} { l }
{ \Lambda _ { x } ^ { \prime } = 1 - 2 \lambda _ { 1 } x - 2 \lambda _ { 2 } x = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 1 + \lambda _ { 1 } - \lambda _ { 2 } = 0 } \\
{ y = x ^ { 2 } } \\
{ y = 1 - x ^ { 2 } }
\end{array} . \text { The points solutions of } \left\{\begin{array}{l}
y=x^{2} \\
y=1-x^{2}
\end{array} \text { are }\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)\right.\right.
$$

and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ and so we get the systems:

$$
\left\{\begin{array} { l }
{ 1 - 2 \lambda _ { 1 } \frac { 1 } { \sqrt { 2 } } - 2 \lambda _ { 2 } \frac { 1 } { \sqrt { 2 } } = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 1 + \lambda _ { 1 } - \lambda _ { 2 } = 0 } \\
{ x = \frac { 1 } { \sqrt { 2 } } } \\
{ y = \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 1 - \sqrt { 2 } - 2 \sqrt { 2 } \lambda _ { 1 } = 0 } \\
{ \lambda _ { 2 } = 1 + \lambda _ { 1 } } \\
{ x = \frac { 1 } { \sqrt { 2 } } } \\
{ y = \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\lambda_{1}=\frac{1-\sqrt{2}}{2 \sqrt{2}} \\
\lambda_{2}=\frac{\sqrt{2}+1}{2 \sqrt{2}} \\
x=\frac{1}{\sqrt{2}} \\
y=\frac{1}{2}
\end{array}\right.\right.\right.
$$

Since $\lambda_{1}<0$ and $\lambda_{2}>0$ the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is nor a maximum nor a minimum point.

$$
\left\{\begin{array} { l }
{ 1 + 2 \lambda _ { 1 } \frac { 1 } { \sqrt { 2 } } + 2 \lambda _ { 2 } \frac { 1 } { \sqrt { 2 } } = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 1 + \lambda _ { 1 } - \lambda _ { 2 } = 0 } \\
{ x = - \frac { 1 } { \sqrt { 2 } } } \\
{ y = \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 1 + \sqrt { 2 } + 2 \sqrt { 2 } \lambda _ { 1 } = 0 } \\
{ \lambda _ { 2 } = 1 + \lambda _ { 1 } } \\
{ x = \frac { 1 } { \sqrt { 2 } } } \\
{ y = \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\lambda_{1}=-\frac{1+\sqrt{2}}{2 \sqrt{2}} \\
\lambda_{2}=\frac{\sqrt{2}-1}{2 \sqrt{2}} \\
x=\frac{1}{\sqrt{2}} \\
y=\frac{1}{2}
\end{array} .\right.\right.\right.
$$

Since $\lambda_{1}<0$ and $\lambda_{2}>0$ the point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is nor a maximum nor a minimum point.
So, from Weierstrass Theorem, $\left(\frac{1}{2}, \frac{3}{4}\right)$ is the maximum point with $f\left(\frac{1}{2}, \frac{3}{4}\right)=\frac{5}{4}$ while $\left(-\frac{1}{2}, \frac{1}{4}\right)$ is the minimum point with $f\left(-\frac{1}{2}, \frac{3}{4}\right)=\frac{1}{4}$.

II M 3) Since the function $f(x, y)=x e^{y-x}$ is clearly a differentiable function $\forall(x, y) \in \mathbb{R}^{2}$, we simply calculate $D_{v} f(1,1)=\nabla f(1,1) \cdot v$.
Since $\nabla f(x, y)=\left(e^{y-x}-x e^{y-x}, x e^{y-x}\right) \Rightarrow \nabla f(1,1)=(0,1)$. And so:
$D_{v} f(1,1)=\nabla f(1,1) \cdot v=(0,1) \cdot(\cos \alpha, \sin \alpha)=\sin \alpha=0$ for $\alpha=0$ and $\alpha=\pi$.
II M 4) We study the leading principal minors of the matrix $\mathbb{H}=\left\|\begin{array}{cc}k & 0 \\ 0 & k-1\end{array}\right\|$.
The leading principal minors of the first order are:
$\left|\mathbb{H}_{1}\right|=k \geq 0$ for $k \geq 0 ;\left|\mathbb{H}_{1}\right|=k-1 \geq 0$ for $k \geq 1$.
The leading principal minor of the second order is:
$\left|\mathbb{H}_{2}\right|=k \cdot(k-1) \geq 0$ for $k \leq 0$ or $k \geq 1$.
And so:
For $k<0:\left|\mathbb{H}_{1}\right|<0$ and $\left|\mathbb{H}_{2}\right|>0$: the point is a Maximum point;
For $k>1:\left|\mathbb{H}_{1}\right|>0$ and $\left|\mathbb{H}_{2}\right|>0$: the point is a Minimum point;
For $0<k<1:\left|\mathbb{H}_{2}\right|<0$: the point is a Saddle point;
For $k=0$ and $k=1$ we have a semidefinite quadratic form and so we cannot decide.

$$
\begin{array}{ll}
\left|H_{1}\right|=k & -------0 \\
\left|H_{1}\right|=k-1 & ----------0 \\
\left|H_{2}\right|=k \cdot(k-1) &
\end{array}
$$

