TASK MATHEMATICS for ECONOMIC APPLICATIONS 15/01/2019

I M 1) If ρ and ρ' are respectively the modulus of the complex number z and the modulus of one of its cubic roots, and if α and α' are their arguments, it is $\rho' = \sqrt[3]{\rho}$ and $\alpha' = \frac{\alpha}{3}$. Thus $\rho = (\rho')^3 = 3^3 = 27$, $\alpha = 3 \alpha' = \frac{3\pi}{12} = \frac{\pi}{4}$ and so: $z = 27 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \frac{27}{\sqrt{2}} (1 + i)$. For the cubic roots of z we have: $\sqrt[3]{z} = \sqrt[3]{27} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 3 \left(\cos \left(\frac{\pi}{12} + \frac{2k\pi}{3} \right) + i \sin \left(\frac{\pi}{12} + \frac{2k\pi}{3} \right) \right)$ with k = 0, 1, 2. The three roots are: $z_1 = 3 \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) = \frac{3}{2} \left(\sqrt{2 + \sqrt{3}} + i \sqrt{2 - \sqrt{3}} \right)$, $z_2 = 3 \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) = -\frac{3}{2} \sqrt{2} (1 - i)$ and $z_3 = 3 \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right) = -\frac{3}{2} \left(\sqrt{2 - \sqrt{3}} + i \sqrt{2 + \sqrt{3}} \right)$.

I M 2) The characteristic polynomial of \mathbb{A} is $p_{\mathbb{A}}(\lambda) = |\mathbb{A} - \lambda \mathbb{I}| = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & k - \lambda \end{vmatrix} = (1 - \lambda)(k - \lambda) + 1 = \lambda^2 - (k + 1)\lambda + k + 1.$

The discriminant is $\Delta = (k+1)^2 - 4(k+1) = (k+1)(k-3)$. When $\Delta > 0 \Rightarrow k < -1$ or k > 3 the matrix \mathbb{A} has two real and distinct eigenvalues: $\lambda_{1,2} = \frac{(k+1) \pm \sqrt{(k+1)(k-3)}}{2}$;

when $\Delta = 0 \Rightarrow k = -1$ or k = 3 the matrix \mathbb{A} has two real and equal eigenvalues: $\lambda_{1,2} = 0$ for k = -1 and $\lambda_{1,2} = 2$ for k = 3;

when $\Delta < 0 \Rightarrow -1 < k < 3$ the matrix \mathbb{A} has two complex conjugated eigenvalues: $\lambda_{1,2} = \frac{k+1 \pm i \sqrt{-(k+1)(k-3)}}{2}.$

I M 3) The three vectors \mathbb{X}_1 , \mathbb{X}_2 and \mathbb{X}_3 belongin to \mathbb{R}^3 form a basis if and only if the determinant of the matrix $\|\mathbb{X}_1 - \mathbb{X}_2 - \mathbb{X}_3\| = \| \begin{vmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix}$ is different from zero. $\| \begin{vmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 1 \cdot \| \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} + (-1) \cdot \| \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2 + 2 = 4 \neq 0.$ So \mathbb{X}_1 , \mathbb{X}_2 and \mathbb{X}_3 form a basis for \mathbb{R}^3 . If α , β and γ are the coordinates of the vector \mathbb{Y}

in the base $\{X_1, X_2, X_3\}$ it is $Y = \alpha X_1 + \beta X_2 + \gamma X_3$, which leads to the system: $(\alpha + \beta + 2\gamma = 1)$ $(\alpha + \alpha - 3 + 2\alpha - 4 = 1)$ $(\alpha = 2)$

$$\begin{cases} \alpha + \beta + 2\gamma = 1\\ \alpha - \beta = 3\\ \alpha - \gamma = 2 \end{cases} \Rightarrow \begin{cases} \alpha + \alpha - 3 + 2\alpha - 4 = 1\\ \beta = \alpha - 3\\ \gamma = \alpha - 2 \end{cases} \Rightarrow \begin{cases} \alpha = 2\\ \beta = -1\\ \gamma = 0 \end{cases}$$

Since the third coordinate is $\gamma = 0$, this implies that the vector \mathbb{Y} belongs to the plane spanned by the vectors \mathbb{X}_1 and \mathbb{X}_2 .

I M 4) For a linear map $f(X) = A \cdot X$ the dimension of the Image is equal to the rank of the matrix \mathbb{A} while the dimension of the Kernel is equal to the difference between the dimension of the domain and the dimension of the Image.

To calculate the rank of \mathbb{A} we reduce the matrix by elementary operations on its lines:

 $\begin{array}{c|c} \text{By } (R_3 \leftarrow R_3 - R_1 - R_2) \text{ and then } (R_2 \leftarrow R_2 - R_1) \text{ we get:} \\ \left\| \begin{array}{c} 1 & -1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 0 & 1 \\ 2 & m & 1 & 1 & k \end{array} \right\| \rightarrow \left\| \begin{array}{c} 1 & -1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & m & 0 & 0 & k \end{array} \right\| \rightarrow \left\| \begin{array}{c} 1 & -1 & 0 & 1 & -1 \\ 0 & 2 & 1 & -1 & 2 \\ 0 & m & 0 & 0 & k \end{array} \right\| \end{array} \right\|.$ From the last matrix we can conclude that $\operatorname{Rank}(\mathbb{A})$ is equal to 3 if $m \neq 0$ m = 0 and k = 0 Rank(A) is equal to 2.

So $\text{Dim}(\text{Imm}) = \begin{cases} 2 & \text{if } m = k = 0 \\ 3 & \text{otherwise} \end{cases} \Rightarrow \text{Dim}(\text{Ker}) = \begin{cases} 3 & \text{if } m = k = 0 \\ 2 & \text{otherwise} \end{cases}$.

The dimension of the Image is minimal when m = 0 and k = 0

The vector $\mathbb{Y} = (2, -1, 2)$, by Rouchè-Capelli Theorem, belongs to Imm(f) if and only if $\operatorname{Rank}(\mathbb{A}) = \operatorname{Rank}(\mathbb{A}|\mathbb{Y})$.

By elementary operations on $(\mathbb{A}|\mathbb{Y})$, $(R_3 \leftarrow R_3 - R_1 - R_2)$ and $(R_2 \leftarrow R_2 - R_1)$ we get:

	1	-1	0	1	-1	2		1	-1	0	1	-1	$2 \parallel$	
	1	1	1	0	1	-1	\rightarrow	0	2	1	-1	2	-3	
	2	0	1	1	0	2		0	0	0	0	0	$\begin{array}{c}2\\-3\\1\end{array}$	
-				_					(

So we see that $\operatorname{Rank}(\mathbb{A}) = 2$ while $\operatorname{Rank}(\mathbb{A}|\mathbb{Y}) = 3$ so \mathbb{Y} doesn't belong to $\operatorname{Imm}(f)$.

II M 1) From the equation $f(x, y, z) = x \sin y - y \cos z + x^2 z = 0$ we get: f(1,0,0) = 0 - 0 + 0 = 0 and so the point (1,0,0) satisfies the equation. Then : $\nabla f(x, y, z) = (\sin y + 2xz, x \cos y - \cos z, y \sin z + x^2)$ and $\nabla f(1, 0, 0) = (0, -1, 0)$. Since only $f'_y(1,0,0) \neq 0$ it is possible to define only an implicit function $(x,z) \to y$ whose derivatives are: $\frac{\partial y}{\partial r}(1,0) = -\frac{0}{-1} = 0$ and $\frac{\partial y}{\partial z}(1,0) = -\frac{0}{-1} = 0$.

II M 2) To solve the problem $\begin{cases} \operatorname{Max/min} f(x,y) = x + y \\ \operatorname{u.c.} x^2 \le y \le 1 - x^2 \end{cases}$ firstly we write the problem in the form: $\begin{cases} \operatorname{Max/min} f(x,y) = x + y \\ \operatorname{u.c.} \begin{cases} x^2 - y \le 0 \\ x^2 + y - 1 \le 0 \end{cases}$; then we observe that the objective function

of the problem is a continuous function, the feasible region \mathcal{E} is a compact set, and so maximum and minimum values surely exist. The constraints are qualified.

$$\begin{cases} y = x^2 \\ y = 1 - x^2 \end{cases} \Rightarrow \begin{cases} x = \frac{1}{\sqrt{2}} \\ y = \frac{1}{2} \end{cases} \cup \begin{cases} x = -\frac{1}{\sqrt{2}} \\ y = \frac{1}{2} \end{cases}$$

The Lagrangian function is: $\Lambda(x, y, \lambda) = x + y - \lambda_1 (x^2 - y) - \lambda_2 (x^2 + y - 1)$. 1) case $\lambda_1 = 0, \lambda_2 = 0$:

$$\begin{cases} \Lambda'_{x} = 1 \neq 0 \\ \Lambda'_{y} = 1 \neq 0 \\ x^{2} \leq y \\ y \leq 1 - x^{2} \end{cases} \text{ : no solutions.} \\ \begin{cases} \chi^{2} \leq y \\ y \leq 1 - x^{2} \end{cases} \text{ : no solutions.} \\ 2) \text{ case } \lambda_{1} \neq 0, \lambda_{2} = 0 \\ \lambda_{1} \neq 0, \lambda_{2} = 0 \\ \lambda_{2} = 1 + \lambda_{1} = 0 \\ y = x^{2} \\ y \leq 1 - x^{2} \end{cases} \Rightarrow \begin{cases} x = -\frac{1}{2} \\ \lambda_{1} = -1 \\ y = \frac{1}{4} \\ \frac{1}{4} \leq \frac{3}{4} \text{ : true} \end{cases} \text{ . Since } \lambda_{1} < 0 \text{ the point } \left(-\frac{1}{2}, \frac{1}{4}\right) \text{ may} \end{cases}$$

be a minimum point. 3) case $\lambda_1 = 0, \lambda_2 \neq 0$

3) case
$$\lambda_1 = 0, \lambda_2 \neq 0$$
:

$$\begin{cases}
\Lambda'_x = 1 - 2\lambda_2 x = 0 \\
\Lambda'_y = 1 - \lambda_2 = 0 \\
y = 1 - x^2 \\
x^2 \leq y
\end{cases} \Rightarrow \begin{cases}
x = \frac{1}{2} \\
\lambda_2 = 1 \\
y = \frac{3}{4} \\
\frac{1}{4} \leq \frac{3}{4} : \text{true}
\end{cases}$$
Since $\lambda_2 > 0$ the point $\left(\frac{1}{2}, \frac{3}{4}\right)$ may be a

maximum point.

4) case
$$\lambda_1 \neq 0, \lambda_2 \neq 0$$
:

$$\begin{cases}
\Lambda'_x = 1 - 2\lambda_1 x - 2\lambda_2 x = 0 \\
\Lambda'_y = 1 + \lambda_1 - \lambda_2 = 0 \\
y = x^2 \\
y = 1 - x^2
\end{cases}$$
The points solutions of $\begin{cases}
y = x^2 \\
y = 1 - x^2
\end{cases}$ are $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$

and $\left(-\frac{1}{\sqrt{2}},\frac{1}{2}\right)$ and so we get the systems:

$$\begin{cases} 1 - 2\lambda_1 \frac{1}{\sqrt{2}} - 2\lambda_2 \frac{1}{\sqrt{2}} = 0\\ \Lambda'_y = 1 + \lambda_1 - \lambda_2 = 0\\ x = \frac{1}{\sqrt{2}}\\ y = \frac{1}{2} \end{cases} \Rightarrow \begin{cases} 1 - \sqrt{2} - 2\sqrt{2}\lambda_1 = 0\\ \lambda_2 = 1 + \lambda_1\\ x = \frac{1}{\sqrt{2}}\\ y = \frac{1}{2} \end{cases} \Rightarrow \begin{cases} \lambda_1 = \frac{1 - \sqrt{2}}{2\sqrt{2}}\\ \lambda_2 = \frac{\sqrt{2} + 1}{2\sqrt{2}}\\ x = \frac{1}{\sqrt{2}}\\ y = \frac{1}{2} \end{cases}$$

Since $\lambda_1 < 0$ and $\lambda_2 > 0$ the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is nor a maximum nor a minimum point.

$$\begin{cases} 1+2\lambda_1\frac{1}{\sqrt{2}}+2\lambda_2\frac{1}{\sqrt{2}}=0\\ \lambda'_y=1+\lambda_1-\lambda_2=0\\ x=-\frac{1}{\sqrt{2}}\\ y=\frac{1}{2} \end{cases} \Rightarrow \begin{cases} 1+\sqrt{2}+2\sqrt{2}\lambda_1=0\\ \lambda_2=1+\lambda_1\\ x=\frac{1}{\sqrt{2}}\\ y=\frac{1}{2} \end{cases} \Rightarrow \begin{cases} \lambda_1=-\frac{1+\sqrt{2}}{2\sqrt{2}}\\ \lambda_2=\frac{\sqrt{2}-1}{2\sqrt{2}}\\ x=\frac{1}{\sqrt{2}}\\ y=\frac{1}{2} \end{cases}$$

Since $\lambda_1 < 0$ and $\lambda_2 > 0$ the point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is nor a maximum nor a minimum point.

So, from Weierstrass Theorem, $\left(\frac{1}{2}, \frac{3}{4}\right)$ is the maximum point with $f\left(\frac{1}{2}, \frac{3}{4}\right) = \frac{5}{4}$ while $\left(-\frac{1}{2}, \frac{1}{4}\right)$ is the minimum point with $f\left(-\frac{1}{2}, \frac{3}{4}\right) = \frac{1}{4}$.

II M 3) Since the function $f(x, y) = x e^{y-x}$ is clearly a differentiable function $\forall (x, y) \in \mathbb{R}^2$, we simply calculate $D_v f(1, 1) = \nabla f(1, 1) \cdot v$. Since $\nabla f(x, y) = (e^{y-x} - x e^{y-x}, x e^{y-x}) \Rightarrow \nabla f(1, 1) = (0, 1)$. And so: $D_v f(1, 1) = \nabla f(1, 1) \cdot v = (0, 1) \cdot (\cos \alpha, \sin \alpha) = \sin \alpha = 0$ for $\alpha = 0$ and $\alpha = \pi$.

II M 4) We study the leading principal minors of the matrix $\mathbb{H} = \begin{vmatrix} k & 0 \\ 0 & k-1 \end{vmatrix}$.

The leading principal minors of the first order are: $|\mathbb{H}_1| = k \ge 0$ for $k \ge 0$; $|\mathbb{H}_1| = k - 1 \ge 0$ for $k \ge 1$. The leading principal minor of the second order is: $|\mathbb{H}_2| = k \cdot (k - 1) \ge 0$ for $k \le 0$ or $k \ge 1$. And so: For k < 0: $|\mathbb{H}_1| < 0$ and $|\mathbb{H}_2| > 0$: the point is a Maximum point; For k > 1: $|\mathbb{H}_1| > 0$ and $|\mathbb{H}_2| > 0$: the point is a Minimum point; For 0 < k < 1: $|\mathbb{H}_2| < 0$: the point is a Saddle point; For k = 0 and k = 1 we have a semidefinite quadratic form and so we cannot decide.

$$\begin{aligned} |\mathbb{H}_{1}| &= k & & -1 & & - & - & - & 0 \\ |\mathbb{H}_{1}| &= k - 1 & & - & - & - & - & - & 0 \\ |\mathbb{H}_{2}| &= k \cdot (k - 1) & & - & 0 & - & 0 \\ \end{aligned}$$