TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/02/2019

I M 1) Since $x^{6}+x^{2}=x^{2}\left(x^{4}+1\right)=0$ we get immediatly two roots: $x_{1}=x_{2}=0$. The remaining four roots are obtained solving $x^{4}+1=0 \Rightarrow x=\sqrt[4]{-1}$.
From $-1=\cos \pi+i \sin \pi$ we get:
$\sqrt[4]{-1}=\cos \left(\frac{\pi}{4}+k \frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{4}+k \frac{\pi}{2}\right), 0 \leq k \leq 3$.
For $k=0: x_{3}=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$,
For $k=1: x_{4}=\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$,
For $k=2: x_{5}=\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}=-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}$,
For $k=3: x_{6}=\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}$.
So $\sum_{i=1}^{6} x_{i}=0$.
I M 2) The characteristic polynomial of \mathbb{A} is :

$$
\begin{aligned}
& p_{\mathbb{A}}(\lambda)=|\mathbb{A}-\lambda \mathbb{I}|=\left|\begin{array}{ccc}
1-\lambda & 4 & 3 \\
2 & 3-\lambda & 1 \\
0 & 0 & k-\lambda
\end{array}\right|=(k-\lambda)[(1-\lambda)(3-\lambda)-8]= \\
& =(k-\lambda)\left(\lambda^{2}-4 \lambda-5\right)=0 . \text { From } \lambda^{2}-4 \lambda-5=0 \text { we get: } \\
& \lambda_{1,2}=2 \pm \sqrt{4+5}=2 \pm 3 \Rightarrow \lambda_{1}=-1, \lambda_{2}=5 .
\end{aligned}
$$

So we have multiple eigenvalues for $k=-1$ and for $k=5$.
To find m_{-1}^{g} we find the rank of the matrix $\|\mathbb{A}-(-1) \mathbb{I}\|=\left\|\begin{array}{lll}2 & 4 & 3 \\ 2 & 4 & 1 \\ 0 & 0 & 0\end{array}\right\|$;
since $\operatorname{Rank}(\|\mathbb{A}+\mathbb{I}\|)=2$ we get $m_{-1}^{g}=3-2=1 \leq 2=m_{-1}^{a}$ and the matrix is not diagonalizable.
To find m_{5}^{g} we find the rank of the matrix $\|\mathbb{A}-5 \mathbb{I}\|=\left\|\begin{array}{ccc}-4 & 4 & 3 \\ 2 & -2 & 1 \\ 0 & 0 & 0\end{array}\right\|$;
since $\operatorname{Rank}(\|\mathbb{A}-5 \mathbb{I}\|)=2$ we get $m_{5}^{g}=3-2=1 \leq 2=m_{5}^{a}$ and the matrix is not diagonalizable.

I M 3) From Rouchè-Capelli Theorem, if $\operatorname{Rank}(\mathbb{A})=\operatorname{Rank}(\mathbb{A} \mid \mathbb{Y})=k$ the system has ∞^{n-k} solutions, where n is the number of the variables; in our problem $n=4$ and so, to get ∞^{2} solutions, we need $k=2$. We study the Rank of the augmented matrix:
$\|\mathbb{A} \mid \mathbb{Y}\|=\left\|\begin{array}{cccc:c}1 & -1 & -1 & 1 & 1 \\ 2 & 1 & 2 & 1 & -1 \\ 3 & 0 & 1 & h & m\end{array}\right\|$. By elementary operations on the rows:
$\left(R_{3} \leftarrow R_{3}-R_{1}-R_{2}\right)$ we get: $\left\|\begin{array}{cccc:c}1 & -1 & -1 & 1 & 1 \\ 2 & 1 & 2 & 1 & -1 \\ 0 & 0 & 0 & h-2 & m\end{array}\right\|$.
$\operatorname{So} \operatorname{Rank}(\mathbb{A})=\operatorname{Rank}(\mathbb{A} \mid \mathbb{Y})=2$ if and only if $h=2$ and $m=0$.

So we have to solve the system $\left\{\begin{array}{l}x_{1}-x_{2}-x_{3}+x_{4}=1 \\ 2 x_{1}+x_{2}+2 x_{3}+x_{4}=-1 \\ 3 x_{1}+x_{3}+2 x_{4}=0\end{array}\right.$ whose augmented matrix is: $\|\mathbb{A} \mid \mathbb{Y}\|=\left\|\begin{array}{cccc:c}1 & -1 & -1 & 1 & 1 \\ 2 & 1 & 2 & 1 & -1 \\ 3 & 0 & 1 & 2 & 0\end{array}\right\|$.
By elementary operations: ($R_{2} \leftarrow R_{2}-2 R_{1}$) and ($R_{3} \leftarrow R_{3}-3 R_{1}$) we get:

$|$| 1 | -1 | -1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | 4 | -1 | -3 |
| 0 | 3 | 4 | -1 | -3 |$\|$ so the third equation is unuseful and we solve the system;

$\left\{\begin{array}{l}x_{1}-x_{2}=x_{3}-x_{4}+1 \\ 3 x_{2}=-4 x_{3}+x_{4}-3\end{array} \Rightarrow\left\{\begin{array}{l}x_{1}=x_{2}+x_{3}-x_{4}+1 \\ x_{2}=-\frac{4}{3} x_{3}+\frac{1}{3} x_{4}-1\end{array} \Rightarrow\right.\right.$
$\Rightarrow\left\{\begin{array}{l}x_{1}=-\frac{4}{3} x_{3}+\frac{1}{3} x_{4}-1+x_{3}-x_{4}+1 \\ x_{2}=-\frac{4}{3} x_{3}+\frac{1}{3} x_{4}-1\end{array} \Rightarrow\left\{\begin{array}{l}x_{1}=-\frac{1}{3} x_{3}-\frac{2}{3} x_{4} \\ x_{2}=-\frac{4}{3} x_{3}+\frac{1}{3} x_{4}-1\end{array}\right.\right.$
which is the solution of our system having ∞^{2} solutions.
I M 4) Firstly we find a vector \mathbb{X}_{2} orthogonal to \mathbb{X}_{1}. If $\mathbb{X}_{2}=(x, y, z)$ we put $\mathbb{X}_{1} \cdot \mathbb{X}_{2}=0$ to get: $(1,0,-1) \cdot(x, y, z)=x-z=0 \Rightarrow z=x$. From $\mathbb{X}_{2}=(x, y, x)$ we choose $x=1$ and $y=1$ to get $\mathbb{X}_{2}=(1,1,1)$. To find the last vector \mathbb{X}_{3} we start from (x, y, x) to find the relation for which \mathbb{X}_{3} is orthogonal to \mathbb{X}_{2}, putting $(x, y, x) \cdot(1,1,1)=x+y+x=0$ to get $y=-2 x$. So $\mathbb{X}_{3}=(x,-2 x, x) \Rightarrow \mathbb{X}_{3}=(1,-2,1)$.
The three orthogonal vectors are: $\mathbb{X}_{1}=(1,0,-1) ; \mathbb{X}_{2}=(1,1,1) ; \mathbb{X}_{3}=(1,-2,1)$.
To get an orthonormal basis for \mathbb{R}^{3} we need three orthogonal unit vectors and so:
Since $\left\|\mathbb{X}_{1}\right\|=\sqrt{2}$ we get $\mathbb{V}_{1}=\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)$;
Since $\left\|\mathbb{X}_{2}\right\|=\sqrt{3}$ we get $\mathbb{V}_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$;
Since $\left\|\mathbb{X}_{3}\right\|=\sqrt{6}$ we get $\mathbb{V}_{1}=\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$.
The orthonormal basis for \mathbb{R}^{3} is $\left\{\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right) ;\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) ;\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)\right\}$.
II M 1) From the equation $f(x, y)=x e^{x+y}+y e^{x-y}=0$ we get $f(0,0)=0+0=0$ and so the point $(0,0)$ satisfies the equation. Then :

$$
\begin{aligned}
& \nabla f(x, y)=\left(e^{x+y}+x e^{x+y}+y e^{x-y} ; x e^{x+y}+e^{x-y}-y e^{x-y}\right)= \\
& =\left((1+x) e^{x+y}+y e^{x-y} ; x e^{x+y}+(1-y) e^{x-y}\right) \Rightarrow \nabla f(0,0)=(1,1) .
\end{aligned}
$$

Since $f_{y}^{\prime}(0,0) \neq 0$ it is possible to define an implicit function $x \rightarrow y(x)$ whose derivative is: $\frac{d y}{d x}(0)=-\frac{1}{1}=-1$.

II M 2) To solve the problem: $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x y^{2}-x^{2} \\ \text { u.c. } x^{2}+y^{2} \leq 1\end{array}\right.$, we observe that the objective function of the problem is a continuous function, the feasible region \mathcal{E} is a compact set, and so maximum and minimum values surely exist. The constraint is a circumference and so it is qualified.
The Lagrangian function is: $\Lambda(x, y, \lambda)=x y^{2}-x^{2}-\lambda\left(x^{2}+y^{2}-1\right)$.

1) case $\lambda=0$:

$$
\left\{\begin{array} { l }
{ \Lambda _ { x } ^ { \prime } = y ^ { 2 } - 2 x = 0 } \\
{ \Lambda _ { y } ^ { \prime } = 2 x y = 0 } \\
{ x ^ { 2 } + y ^ { 2 } \leq 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
0+0 \leq 1
\end{array} . \mathbb{H}(x, y)=\left\|\begin{array}{cc}
-2 & 2 y \\
2 y & 2 x
\end{array}\right\| \Rightarrow \mathbb{H}(0,0)=\left\|\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right\| .\right.\right.
$$

Surely $(0,0)$ is not a minimum point (since $-2<0$).
Studying the sign of the function in a neighborhood of $(0,0)$ we get: $f(x, y)=0$ and $f(x, y)=x y^{2}-x^{2}=x\left(y^{2}-x\right) \Rightarrow f(x, y) \geq 0$ for $\left\{\begin{array}{l}x \geq 0 \\ y^{2} \geq x\end{array}\right.$ or $\left\{\begin{array}{l}x \leq 0 \\ y^{2} \leq x\end{array}\right.$ (impossible).
As we see in the next figure, in every neighborhood of $(0,0)$ we have both negative and positive values and so the point $(0,0)$ is a saddle point.

2) case $\lambda \neq 0$:
$\left\{\begin{array}{l}\Lambda_{x}^{\prime}=y^{2}-2 x-2 \lambda x=0 \\ \Lambda_{y}^{\prime}=2 x y-2 \lambda y=2 y(x-\lambda)=0 \text { from which we have two possible systems. } \\ x^{2}+y^{2}=1\end{array}\right.$
I) $\left\{\begin{array}{l}2 x+2 \lambda x=2 x(1+\lambda)=0 \\ y=0 \\ x^{2}+y^{2}=1\end{array} \Rightarrow\left\{\begin{array}{l}x=0 \\ y=0 \\ 0+0=1: \text { impossible }\end{array}\right.\right.$ and
$\left\{\begin{array}{l}1+\lambda=0 \\ y=0 \\ x^{2}=1\end{array} \Rightarrow\left\{\begin{array}{l}x=1 \\ y=0 \\ \lambda=-1\end{array}\right.\right.$ and $\left\{\begin{array}{l}x=-1 \\ y=0 \\ \lambda=-1\end{array}:\right.$ since $\lambda<0$ these two points may be minimum points;
II) $\left\{\begin{array}{l}y^{2}-2 \lambda-2 \lambda^{2}=0 \\ x=\lambda \\ x^{2}+y^{2}=1\end{array} \Rightarrow\left\{\begin{array}{l}x=\lambda \\ y^{2}=2 \lambda+2 \lambda^{2} \\ \lambda^{2}+2 \lambda+2 \lambda^{2}=1\end{array} \Rightarrow\left\{\begin{array}{l}x=\lambda \\ y^{2}=2 \lambda+2 \lambda^{2} \\ 3 \lambda^{2}+2 \lambda-1=0\end{array} \Rightarrow\right.\right.\right.$
$3 \lambda^{2}+2 \lambda-1=0 \Rightarrow \lambda=\frac{-1 \pm \sqrt{1+3}}{3}=\frac{-1 \pm 2}{3} \Rightarrow \lambda_{1}=-1, \lambda_{2}=\frac{1}{3}$.
So we get three other solutions:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x = - 1 } \\
{ y ^ { 2 } = 0 } \\
{ \lambda = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=-1 \\
y=0 \\
\lambda=-1
\end{array}\right.\right. \text { already seen, it may be a minimum point; } \\
& \left\{\begin{array}{l}
x=\frac{1}{3} \\
y^{2}=\frac{2}{3}+\frac{2}{9}=\frac{8}{9} \Rightarrow\left\{\begin{array}{l}
x=\frac{1}{3} \\
\lambda=\frac{1}{3}
\end{array}\right. \\
y=\frac{2 \sqrt{2}}{3} \text { since } \lambda>0 \text { these two points may be maximum points. } \\
\lambda=\frac{1}{3}
\end{array}\right.
\end{aligned}
$$

Since $f(1,0)=f(-1,0)=-1$ we see that $(1,0)$ and $(-1,0)$ are minumum points;
since $f\left(\frac{1}{3}, \frac{2 \sqrt{2}}{3}\right)=f\left(\frac{1}{3},-\frac{2 \sqrt{2}}{3}\right)=\frac{5}{27}$ we see that $\left(\frac{1}{3}, \frac{2 \sqrt{2}}{3}\right)$ and $\left(\frac{1}{3},-\frac{2 \sqrt{2}}{3}\right)$ are maximum points.

II M 3) Since the function $f(x, y)=x e^{y-x}-y e^{x-y}$ is clearly a differentiable function in \mathbb{R}^{2}, we simply calculate $D_{v} f(x, y)=\nabla f(x, y) \cdot v$.

$$
\begin{aligned}
& \nabla f(x, y)=\left(e^{y-x}-x e^{y-x}-y e^{x-y} ; x e^{y-x}-e^{x-y}+y e^{x-y}\right)= \\
& =\left((1-x) e^{y-x}-y e^{x-y} ; x e^{y-x}+(y-1) e^{x-y}\right) .
\end{aligned}
$$

So $\nabla f(0,0)=(1,-1)$ and $\nabla f(1,1)=(-1,1)$. From this we get:
$D_{v} f(0,0)=\nabla f(0,0) \cdot v=(1,-1) \cdot(\cos \alpha, \sin \alpha)=\cos \alpha-\sin \alpha$
$D_{v} f(1,1)=\nabla f(1,1) \cdot v=(-1,1) \cdot(\cos \alpha, \sin \alpha)=\sin \alpha-\cos \alpha$.
From $D_{v} f(0,0)=D_{v} f(1,1)$ we get $\cos \alpha-\sin \alpha=\sin \alpha-\cos \alpha \Rightarrow \sin \alpha=\cos \alpha$ which is satisfied for $\alpha=\frac{\pi}{4}$ and $\alpha=\frac{5 \pi}{4}$.

II M 4) To analyze the nature of the stationary points of the function we apply first and second order conditions. For the first order conditions we pose:
$\nabla f(x, y, z)=\mathbb{O} \Rightarrow\left\{\begin{array}{l}f_{x}^{\prime}=y^{2}-2 x=0 \\ f_{y}^{\prime}=2 x y-2 y=2 y(x-1)=0 \text { from which we get two systems: } \\ f_{z}^{\prime}=-2 z=0\end{array}\right.$
I) $\left\{\begin{array}{l}x=0 \\ y=0 \\ z=0\end{array}\right.$ and II) $\left\{\begin{array}{l}x=1 \\ y^{2}=2 \\ z=0\end{array} \Rightarrow\left\{\begin{array}{l}x=1 \\ y=\sqrt{2} \\ z=0\end{array}\right.\right.$ and $\Rightarrow\left\{\begin{array}{l}x=1 \\ y=-\sqrt{2} . \\ z=0\end{array}\right.$.

For the second order conditions we construct the Hessian matrix:
$\mathbb{H}=\left\|\begin{array}{ccc}-2 & 2 y & 0 \\ 2 y & 2 x-2 & 0 \\ 0 & 0 & -2\end{array}\right\|$. So we get:
$\mathbb{H}(0,0,0)=\left\|\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right\| \Rightarrow\left\{\begin{array}{l}\left|\mathbb{H}_{1}\right|=-2<0 \\ \left|\mathbb{H}_{2}\right|=4>0 \\ \left|\mathbb{H}_{3}\right|=-8<0\end{array}\right.$ so $(0,0,0)$ is a maximum point;
$\mathbb{H}(1, \sqrt{2}, 0)=\| \begin{array}{ccc}-2 & 2 \sqrt{2} & 0 \\ 2 \sqrt{2} & 0 & 0 \\ 0 & 0 & -2\end{array}|\Rightarrow| \mathbb{H}_{2}\left|=\left|\begin{array}{cc}-2 & 2 \sqrt{2} \\ 2 \sqrt{2} & 0\end{array}\right|=-8<0\right.$
$\mathbb{H}(1,-\sqrt{2}, 0)=\left\|\begin{array}{ccc}-2 & -2 \sqrt{2} & 0 \\ -2 \sqrt{2} & 0 & 0 \\ 0 & 0 & -2\end{array}|\| \Rightarrow| \mathbb{H}_{2}\left|=\left|\begin{array}{cc}-2 & -2 \sqrt{2} \\ -2 \sqrt{2} & 0\end{array}\right|=-8<0\right.\right.$
and so $(1, \sqrt{2}, 0)$ and $(1,-\sqrt{2}, 0)$ are saddle points.

