INTERMEDIATE TEST MATHEMATICS

for ECONOMIC APPLICATIONS 7/12/2018

IM 1) $z=e^{1+3 \pi i}=e \cdot e^{3 \pi i}=e(\cos 3 \pi+i \sin 3 \pi)=e(\cos 3 \pi+i \sin 3 \pi)=$ $=e(\cos \pi+i \sin \pi)=-e$. The two square roots of z are:
$\sqrt{z}=\sqrt{e(\cos \pi+i \sin \pi)}=\sqrt{e}\left(\cos \left(\frac{\pi}{2}+k \pi\right)+i \sin \left(\frac{\pi}{2}+k \pi\right)\right)$ with $k=0,1$.
The two roots are:
$z_{1}=\sqrt{e}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=\sqrt{e} i$ and
$z_{2}=\sqrt{e}\left(\cos \frac{3}{2} \pi+i \sin \frac{3}{2} \pi\right)=-\sqrt{e} i=-z_{1}$.

I M 2) The characteristic polynomial of \mathbb{A} is $p_{\mathbb{A}}(\lambda)=|\mathbb{A}-\lambda \mathbb{I}|=$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & k-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right|=(k-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(k-\lambda)\left((1-\lambda)^{2}-1\right)= \\
& =(k-\lambda)\left(\lambda^{2}-2 \lambda\right)=\lambda(\lambda-2)(k-\lambda) .
\end{aligned}
$$

Matrix \mathbb{A} has the eingevalues $\lambda_{1}=0, \lambda_{2}=2$ and $\lambda_{3}=k$, thus \mathbb{A} admits multiple eigenvalues if and only if $k=0$ or $k=2$.
If $k=0$, an eigenvector associated to the eigenvalue $\lambda=0$ is a vector $\mathbb{X}=\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\|$
satisfying the condition $\|\mathbb{A}-0 \mathbb{I}\| \cdot \mathbb{X}=\mathbb{O} \Rightarrow\left\|\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right\| \cdot\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\|=\left\|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\|$
or, in system form:
$\left\{\begin{array}{l}x_{1}+x_{3}=0 \\ 0=0 \\ x_{1}+x_{3}=0\end{array} \Rightarrow x_{3}=-x_{1}\right.$, and so $\mathbb{X}=\left\|\begin{array}{c}x_{1} \\ x_{2} \\ -x_{1}\end{array}\right\| \forall x_{1}, x_{2}$.
If $k=2$, an eigenvector associated to the eigenvalue $\lambda=2$ is a vector $\mathbb{X}=\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\|$
satisfying the condition $\|\mathbb{A}-2 \mathbb{I}\| \cdot \mathbb{X}=\mathbb{O} \Rightarrow\left\|\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right\| \cdot\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\|=\left\|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\|$
or, in system form:
$\left\{\begin{array}{l}-x_{1}+x_{3}=0 \\ 0=0 \\ x_{1}-x_{3}=0\end{array} \Rightarrow x_{3}=x_{1}\right.$, and so $\mathbb{X}=\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{1}\end{array}\right\| \forall x_{1}, x_{2}$.

IM 3) From $f(1,1,1)=(3,6,-3,9) \Rightarrow \mathbb{A} \cdot(1,1,1)=(3,6,-3,9)$ we get:

$$
\begin{aligned}
& \left\|\begin{array}{ccc}
1 & x_{1} & y_{1} \\
2 & x_{2} & y_{2} \\
-1 & x_{3} & y_{3} \\
3 & x_{4} & y_{4}
\end{array}\right\| \cdot\left\|\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\|=\left\|\begin{array}{c}
1+x_{1}+y_{1} \\
2+x_{2}+y_{2} \\
-1+x_{3}+y_{3} \\
3+x_{4}+y_{4}
\end{array}\right\|=\left\|\begin{array}{c}
3 \\
6 \\
-3 \\
9
\end{array}\right\|, \text { so the system: } \\
& \left\{\begin{array}{l}
1+x_{1}+y_{1}=3 \\
2+x_{2}+y_{2}=6 \\
-1+x_{3}+y_{3}=-3 \\
3+x_{4}+y_{4}=9
\end{array}\right.
\end{aligned} \Rightarrow\left\{\begin{array}{l}
y_{1}=2-x_{1} \\
y_{2}=4-x_{2} \\
y_{3}=-2-x_{3} \\
y_{4}=6-x_{4}
\end{array} .\right.
$$

From $f(1,-1,1)=(3,4,-7,5) \Rightarrow \mathbb{A} \cdot(1,-1,1)=(3,4,-7,5)$ we get:
$\left\|\begin{array}{cll}1 & x_{1} & y_{1} \\ 2 & x_{2} & y_{2} \\ -1 & x_{3} & y_{3} \\ 3 & x_{4} & y_{4}\end{array}\right\| \cdot\left\|\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\|=\left\|\begin{array}{c}1-x_{1}+y_{1} \\ 2-x_{2}+y_{2} \\ -1-x_{3}+y_{3} \\ 3-x_{4}+y_{4}\end{array}\right\|=\left\|\begin{array}{c}3 \\ 4 \\ -7 \\ 5\end{array}\right\|$. From

$$
\left\{\begin{array} { l }
{ y _ { 1 } = 2 - x _ { 1 } } \\
{ y _ { 2 } = 4 - x _ { 2 } } \\
{ y _ { 3 } = - 2 - x _ { 3 } } \\
{ y _ { 4 } = 6 - x _ { 4 } }
\end{array} \text { we get } \left\{\begin{array} { l }
{ 3 - 2 x _ { 1 } = 3 } \\
{ 6 - 2 x _ { 2 } = 4 } \\
{ - 3 - 2 x _ { 3 } = - 7 } \\
{ 9 - 2 x _ { 4 } = 5 }
\end{array} \text { and so } \left\{\begin{array}{l}
x_{1}=0 \text { and } y_{1}=2 \\
x_{2}=1 \text { and } y_{2}=3 \\
x_{3}=2 \text { and } y_{3}=-4 \\
x_{4}=2 \text { and } y_{4}=4
\end{array} .\right.\right.\right.
$$

So we get $\mathbb{A}=\left\|\begin{array}{ccc}1 & 0 & 2 \\ 2 & 1 & 3 \\ -1 & 2 & -4 \\ 3 & 2 & 4\end{array}\right\|$.
The dimension of the Image of the linear map is equal to the Rank k of the matrix \mathbb{A} while the dimension of its Kernel is equal to $n-k$, the difference between the dimension of the domain of the linear map and the Rank of the matrix \mathbb{A}.
For the Rank of \mathbb{A}, note that $C_{3}=2 C_{1}-C_{2}$, thus the matrix has not full rank while the determinant of the sub-matrix $\left\|\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right\|$ is different from zero.
So the Rank of \mathbb{A} is 2 , the dimension of the Image of f is 2 and the dimension of the Kernel of f is 1 .

I M 4) The three vectors $\mathbb{X}_{1}, \mathbb{X}_{2}$ and \mathbb{X}_{3} are linearly dependent if and only if the determinant of the matrix $\mathbb{X}=\left\|\mathbb{X}_{1} \quad \mathbb{X}_{2} \quad \mathbb{X}_{3}\right\|$ is equal to 0 .
$|\mathbb{X}|=\left|\begin{array}{ccc}6 & 4 & 2 \\ 2 & 8 & k \\ 2 & 4 & -6\end{array}\right|=6\left|\begin{array}{cc}8 & k \\ 4 & -6\end{array}\right|-4\left|\begin{array}{cc}2 & k \\ 2 & -6\end{array}\right|+2\left|\begin{array}{ll}2 & 8 \\ 2 & 4\end{array}\right|=$ $=-288-24 k+48+8 k-16=-256-16 k$; thus the three vectors are linearly dependent if and only if $k=-16$. For $k=-16$ we get $\mathbb{X}_{3}=(2,-16,-6)$. From $\alpha \mathbb{X}_{1}+\beta \mathbb{X}_{2}+\gamma \mathbb{X}_{3}=\mathbb{O}$ we get:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 6 \alpha + 4 \beta + 2 \gamma = 0 } \\
{ 2 \alpha + 8 \beta - 1 6 \gamma = 0 } \\
{ 2 \alpha + 4 \beta - 6 \gamma = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 3 \alpha + 2 \beta + \gamma = 0 } \\
{ \alpha + 4 \beta - 8 \gamma = 0 } \\
{ \alpha + 2 \beta - 3 \gamma = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\gamma=-3 \alpha-2 \beta \\
2 \beta-5 \gamma=0 \\
\alpha+2 \beta+9 \alpha+6 \beta=0
\end{array} \Rightarrow\right.\right.\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ \gamma = - 3 \alpha - 2 \beta } \\
{ 2 \beta - 5 \gamma = 0 } \\
{ 5 \alpha + 4 \beta = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{2}{5} \beta=\frac{12}{5} \beta-2 \beta=\frac{2}{5} \beta \\
\gamma=\frac{2}{5} \beta \\
\alpha=-\frac{4}{5} \beta
\end{array} . \text { So, for } \beta=5\right.\right. \text { we get: } \\
& (\alpha, \beta, \gamma)=(-4,5,2) \Rightarrow 4 \mathbb{X}_{1}-5 \mathbb{X}_{2}-2 \mathbb{X}_{3}=\mathbb{O} .
\end{aligned}
$$

I M 5) Matrices \mathbb{A} and \mathbb{B} are similar if : $\mathbb{A} \cdot \mathbb{P}=\mathbb{P} \cdot \mathbb{B} \Rightarrow \mathbb{B}=\mathbb{P}^{-1} \cdot \mathbb{A} \cdot \mathbb{P}$.

$$
\begin{aligned}
& |\mathbb{P}|=1, \mathbb{P}^{-1}=\frac{1}{|\mathbb{P}|} \cdot(\operatorname{Adj}(\mathbb{P}))^{T}=1 \cdot\left\|\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right\|^{T}=\left\|\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right\| . \\
& \text { So } \mathbb{B}=\left\|\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right\| \cdot\left\|\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right\| \cdot\left\|\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right\|=\left\|\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right\| \cdot\left\|\begin{array}{cc}
5 & 4 \\
5 & 3
\end{array}\right\|= \\
& =\left\|\begin{array}{cc}
-5 & -2 \\
10 & 5
\end{array}\right\| .
\end{aligned}
$$

