I M 1) To answer to the two questions the first step is to calculate the characteristic polynomial of the matrix $\mathbb{A}: p_{\mathbb{A}}(\lambda)=|\mathbb{A}-\lambda \mathbb{I}|=\left|\begin{array}{ccc}1-\lambda & 1 & 0 \\ 1 & -\lambda & k \\ 0 & -1 & 1-\lambda\end{array}\right|=$ $=(1-\lambda)\left|\begin{array}{cc}-\lambda & k \\ -1 & 1-\lambda\end{array}\right|-\left|\begin{array}{cc}1 & k \\ 0 & 1-\lambda\end{array}\right|=$ $=(1-\lambda)(-\lambda(1-\lambda)+k)-(1-\lambda)=(1-\lambda)\left(\lambda^{2}-\lambda+k-1\right)$.
The three eingenvalues of \mathbb{A} are $\lambda_{1}=1, \lambda_{2,3}=\frac{1 \pm \sqrt{1-4(k-1)}}{2}=\frac{1 \pm \sqrt{5-4 k}}{2}$.
The matrix may be not diagonalizable when it has at least a multiple eingenvalue (with algebraic multiplicity greater than 1), and this is possible in two cases:
when $5-4 k=0$ or when $\frac{1 \pm \sqrt{5-4 k}}{2}=1$.

- $5-4 k=0$ implies $k=\frac{5}{4}$;
$-\frac{1 \pm \sqrt{5-4 k}}{2}=1$ can be rewritten as $\pm \sqrt{5-4 k}=1 \Rightarrow 5-4 k=1 \Rightarrow k=1$.
For $k=\frac{5}{4}$ we get $\lambda_{2}=\lambda_{3}=\frac{1}{2}$ and so $\left\|\mathbb{A}-\frac{1}{2} \cdot \mathbb{I}\right\|=\left\|\begin{array}{ccc}\frac{1}{2} & 1 & 0 \\ 1 & -\frac{1}{2} & \frac{5}{4} \\ 0 & -1 & \frac{1}{2}\end{array}\right\|$; it's very easy to see that $\left\|\mathbb{A}-\frac{1}{2} \cdot \mathbb{I}\right\|$ has rank equal to 2 and thus the dimension of the eigenspace associated to the eigenvalue $\lambda=\frac{1}{2}$ is 1 , less than the algebraic multiplicity, and so \mathbb{A} is not diagonalizable.
For $k=1$, we get $\lambda_{1}=\lambda_{2}=1$ and $\|\mathbb{A}-1 \cdot \mathbb{I}\|=\left\|\begin{array}{ccc}0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & -1 & 0\end{array}\right\|$; as before it's easy to see that the matrix $\|\mathbb{A}-1 \cdot \mathbb{I}\|$ has rank equal to 2 and thus the dimension of the eigenspace associated to the eingenvalue $\lambda=1$ is 1 , less than the algebraic multiplicity. \mathbb{A} is not diagonalizable when $k=1$ and when $k=\frac{5}{4}$.
For the second question note that:
$\lambda=\cos \frac{\pi}{3}+i \operatorname{sen} \frac{\pi}{3}=\frac{1}{2}+i \frac{\sqrt{3}}{2}=\frac{1+i \sqrt{3}}{2}$, so λ is an eingenvalue of \mathbb{A} if and only if $5-4 k=-3 \Rightarrow 4 k=8 \Rightarrow k=2$.
I M 2) \mathbb{X} has coordinates $(2,1,2)$ in the basis \mathbb{W} if $\mathbb{X}=2 \mathbb{W}_{1}+1 \mathbb{W}_{2}+2 \mathbb{W}_{3}$.
So we get:

$$
\mathbb{W}_{3}=\frac{1}{2} \cdot\left(\mathbb{X}-2 \mathbb{W}_{1}-\mathbb{W}_{2}\right)=\frac{1}{2} \cdot\left\|\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right\|-1 \cdot\left\|\begin{array}{l}
1 \\
1 \\
0
\end{array}\right\|-\frac{1}{2} \cdot\left\|\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right\| .
$$

I M 3) $1^{\text {st }}$ Method: every eigenvector belongs to \mathbb{R}^{3} and so the matrix \mathbb{A} is a 3×3 matrix that can be written as $\mathbb{A}=\left\|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right\|$.

Since $\mathbb{X}_{1}=(1,1,0)$ is the eigenvector associated to $\lambda_{1}=0$ we get:

$$
\left\|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right\| \cdot\|\cdot\| \begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}\|=0 \cdot\| \begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}\|=\| \begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned} \| \Rightarrow\left\{\begin{array} { l }
{ a + b = 0 } \\
{ d + e = 0 } \\
{ g + h = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
b=-a \\
e=-d \\
h=-g
\end{array}\right.\right.
$$

and the matrix \mathbb{A} becomes $\mathbb{A}=\left\|\begin{array}{lll}a & -a & c \\ d & -d & f \\ g & -g & i\end{array}\right\|$.
Since $\mathbb{X}_{2}=(1,0,1)$ is the eigenvector associated to $\lambda_{2}=1$ we get:
$\left\|\begin{array}{lll}a & -a & c \\ d & -d & f \\ g & -g & i\end{array}\right\| \cdot\left\|\begin{array}{l}1 \\ 0 \\ 1\end{array}\right\|=1 \cdot\left\|\left\lvert\, \begin{array}{l}1 \\ 0 \\ 1\end{array}\right.\right\|=\left\|\begin{array}{l}1 \\ 0 \\ 1\end{array}\right\| \Rightarrow\left\{\begin{array}{l}a+c=1 \\ d+f=0 \\ g+i=1\end{array} \Rightarrow\left\{\begin{array}{l}c=1-a \\ f=-d \\ i=1-g\end{array}\right.\right.$
and the matrix \mathbb{A} becomes $\mathbb{A}=\left\|\begin{array}{lll}a & -a & 1-a \\ d & -d & -d \\ g & -g & 1-g\end{array}\right\|$.
Since $\mathbb{X}_{3}=(0,1,1)$ is the eigenvector associated to $\lambda_{3}=-1$ we get:
$\left\|\begin{array}{llc}a & -a & 1-a \\ d & -d & -d \\ g & -g & 1-g\end{array}\right\| \cdot\left\|\left\lvert\, \begin{array}{l}0 \\ 1 \\ 1\end{array}\right.\right\|=-1 \cdot\left\|\begin{array}{c}0 \\ 1 \\ 1\end{array}\right\|=\left\|\begin{array}{c}0 \\ -1 \\ -1\end{array}\right\| \Rightarrow\left\{\begin{array}{c}1-2 a=0 \\ -2 d=-1 \\ 1-2 g=-1\end{array} \Rightarrow\left\{\begin{array}{l}a=\frac{1}{2} \\ d=\frac{1}{2} \\ g=1\end{array}\right.\right.$
and so the matrix \mathbb{A} becomes $\mathbb{A}=\left\lvert\, \begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 1 & -1 & 0\end{array}\right. \|$.
$2^{\text {nd }}$ Method: using the similarity relation between matrices, there exists a non singular matrix \mathbb{P} such that $\mathbb{P}^{-1} \cdot \mathbb{A} \cdot \mathbb{P}=\mathbb{D}$ or $\mathbb{A}=\mathbb{P} \cdot \mathbb{D} \cdot \mathbb{P}^{-1}$ where $\mathbb{P}=\left\|\mathbb{X}_{1} \quad \mathbb{X}_{2} \quad \mathbb{X}_{3}\right\|$, with $\mathbb{X}_{1}, \mathbb{X}_{2}$ and \mathbb{X}_{3} linearly independent eigenvectors of \mathbb{A} and \mathbb{D} is a diagonal 3×3 matrix with elements $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,1,-1)$.
From $\mathbb{P}=\left\|\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right\|$ we have:
$\mathbb{P}^{-1}=\frac{1}{|\mathbb{P}|}(\operatorname{Adj}(\mathbb{P}))^{T}=\frac{1}{-2}\left\|\begin{array}{ccc}-1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & -1\end{array}\right\|^{T}=-\frac{1}{2}\left\|\begin{array}{ccc}-1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & -1\end{array}\right\|=$ $=\left\|\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right\|$. So we get:
$\mathbb{A}=\left\|\begin{array}{lll}1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1\end{array}\right\| \cdot\left\|\begin{array}{lll}0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1\end{array}\right\| \cdot\left\|\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right\|=$
\(=\left\|$$
\begin{array}{lll}1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1\end{array}
$$\right\| \cdot\|\cdot\| \begin{array}{ccc}0 \& 0 \& 0 \\
\frac{1}{2} \& -\frac{1}{2} \& \frac{1}{2} \\

\frac{1}{2} \& -\frac{1}{2} \& -\frac{1}{2}\end{array}\|=\|\)| $\frac{1}{2}$ | $-\frac{1}{2}$ | $\frac{1}{2}$ |
| :---: | :---: | :---: |
| $\frac{1}{2}$ | $-\frac{1}{2}$ | $-\frac{1}{2}$ |
| 1 | -1 | 0 |$\|.$

I M 4) From the Sylvester Theorem:
$\operatorname{Dim}(\operatorname{Ker}(\mathbb{A}))=\operatorname{Dim}\left(\mathbb{R}^{3}\right)-\operatorname{Dim}(\operatorname{Imm}(\mathbb{A}))=3-\operatorname{Rank}(\mathbb{A})$, so $\operatorname{Dim}(\operatorname{Ker}(\mathbb{A}))$ is maximum iff $\operatorname{Rank}(\mathbb{A})$ is minimum.
To calculate $\operatorname{Rank}(\mathbb{A})$ we reduce the matrix using elementary operations on lines:

$$
\begin{aligned}
& \left\|\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 0 \\
1 & -1 & k \\
-1 & m & -1
\end{array}\right\| \Rightarrow\left(\begin{array}{c}
R_{2} \leftarrow R_{2}-2 R_{1} \\
R_{3} \leftarrow R_{3}-R_{1} \\
R_{4} \leftarrow R_{4}+R_{1}
\end{array}\right) \Rightarrow\left\|\begin{array}{ccc}
1 & 2 & -1 \\
0 & -3 & 2 \\
0 & -3 & k+1 \\
0 & m+2 & -2
\end{array}\right\| \Rightarrow \\
& \Rightarrow\binom{R_{3} \leftarrow R_{3}-R_{2}}{R_{4} \leftarrow R_{4}+R_{2}} \Rightarrow\left\|\begin{array}{ccc}
1 & 2 & -1 \\
0 & -3 & 2 \\
0 & 0 & k-1 \\
0 & m-1 & 0
\end{array}\right\| .
\end{aligned}
$$

From the last matrix it follows that $\operatorname{Rank}(\mathbb{A})=\left\{\begin{array}{ll}2 & \text { if } k=m=1 \\ 3 & \text { otherwise }\end{array}\right.$; so $\operatorname{Rank}(\mathbb{A})$ is minimum when $k=m=1 ;$ in such case $\mathbb{A}=\left\|\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right\|$.
We find the elements of $\operatorname{Ker}(\mathbb{A})$ solving the linear omogeneous system:

$$
\begin{aligned}
& \left\|\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 0 \\
1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right\|
\end{aligned}\|\cdot\| \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\|=\| \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}\|\Rightarrow\| \begin{array}{ccc}
1 & 2 & -1 \\
0 & -3 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\|\cdot\| \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\|=\|\left\|\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\| \Rightarrow \text { ? } \begin{aligned}
& x_{1}+2 x_{2}-x_{3}=0 \\
& -3 x_{2}+2 x_{3}=0
\end{aligned} \Rightarrow\left\{\begin{array} { l }
{ x _ { 3 } = x _ { 1 } + 2 x _ { 2 } } \\
{ - 3 x _ { 2 } + 2 x _ { 1 } + 4 x _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{2}=-2 x_{1} \\
x_{3}=-3 x_{1}
\end{array} .\right.\right.
$$

Every element of $\operatorname{Ker}(\mathbb{A})$ has the form $\left\|\begin{array}{c}x_{1} \\ -2 x_{1} \\ -3 x_{1}\end{array}\right\|=k \cdot\left\|\begin{array}{c}1 \\ -2 \\ -3\end{array}\right\|$. So a basis for $\operatorname{Ker}(\mathbb{A})$ is $\{(1,-2,-3)\}$.
To find a basis for $\operatorname{Imm}(\mathbb{A})$, we must remember that every element $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ of $\operatorname{Imm}(\mathbb{A})$ must satisfy the linear system:
$\left\|\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right\| \cdot\left\|\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\|=\left\|\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right\|$. Using the augmented matrix we have:

$|$| 1 | 2 | -1 | y_{1} |
| :---: | :---: | :---: | :---: |
| 2 | 1 | 0 | y_{2} |
| 1 | -1 | 1 | y_{3} |
| -1 | 1 | -1 | y_{4} |$\|$

and using the same elementary operations we get:

$$
\left\|\begin{array}{ccc:c}
1 & 2 & -1 & y_{1} \\
0 & -3 & 2 & y_{2}-2 y_{1} \\
0 & -3 & 2 & y_{3}-y_{1} \\
0 & 3 & -2 & y_{4}+y_{1}
\end{array}\right\| \Rightarrow\left\|\begin{array}{ccc:c}
1 & 2 & -1 & y_{1} \\
0 & -3 & 2 & y_{2}-2 y_{1} \\
0 & 0 & 0 & y_{3}+y_{1}-y_{2} \\
0 & 0 & 0 & y_{4}-y_{1}+y_{2}
\end{array}\right\| .
$$

Every element of $\operatorname{Imm}(\mathbb{A})$ must satisfy the system:
$\left\{\begin{array}{l}y_{3}+y_{1}-y_{2}=0 \\ y_{4}-y_{1}+y_{2}=0\end{array} \Rightarrow\left\{\begin{array}{l}y_{3}=y_{2}-y_{1} \\ y_{4}=y_{1}-y_{2}\end{array}\right.\right.$, so it is a vector like $\left(y_{1}, y_{2}, y_{2}-y_{1}, y_{1}-y_{2}\right)$.
For $y_{1}=1$ and $y_{2}=0$ we have the vector $\mathbb{Y}_{1}=(1,0,-1,1)$; for $y_{1}=0$ and $y_{2}=1$ we have the vector $\mathbb{Y}_{2}=(0,1,1,-1)$; so $\left\{\mathbb{Y}_{1}, \mathbb{Y}_{2}\right\}$ is a basis for $\operatorname{Imm}(\mathbb{A})$.
IM 5) An orthogonal matrix that diagonalizes \mathbb{A} is given by:
$\mathbb{U}=\left\|\mathbb{X}_{1} \quad \mathbb{X}_{2} \quad \mathbb{X}_{3} \quad \mathbb{X}_{4}\right\|$ where $\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{X}_{3}, \mathbb{X}_{4}$ are linear indipendent unit eigenvectors of \mathbb{A}.

$$
\begin{aligned}
& p_{\mathbb{A}}(\lambda)=|\mathbb{A}-\lambda \mathbb{I}|=\left|\begin{array}{cccc}
1-\lambda & 0 & 0 & 1 \\
0 & 1-\lambda & 1 & 0 \\
0 & 1 & 1-\lambda & 0 \\
1 & 0 & 0 & 1-\lambda
\end{array}\right|= \\
& =(1-\lambda)\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|-\left|\begin{array}{ccc}
0 & 1-\lambda & 1 \\
0 & 1 & 1-\lambda \\
1 & 0 & 0
\end{array}\right|= \\
& =(1-\lambda)^{2}\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|= \\
& =(1-\lambda)^{2}\left((1-\lambda)^{2}-1\right)-\left((1-\lambda)^{2}-1\right)=\left((1-\lambda)^{2}-1\right)^{2}=\left(\lambda^{2}-2 \lambda\right)^{2}= \\
& =\lambda^{2}(\lambda-2)^{2}=0 . \text { The eigenvalues are } \lambda_{1}=\lambda_{2}=0 \quad \lambda_{3}=\lambda_{4}=2 .
\end{aligned}
$$

The eigenvectors associated to $\lambda=0$ are the solutions of the omogeneous system:

$$
\begin{aligned}
& \|\mathbb{A}-0 \cdot \mathbb{I}\| \cdot \mathbb{X}=\mathbb{O} \Rightarrow\left\|\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right\| \cdot\left\|\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\|=\left\|\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\| \Rightarrow\left\{\begin{array}{l}
x_{1}+x_{4}=0 \\
x_{2}+x_{3}=0
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{l}
x_{4}=-x_{1} \\
x_{3}=-x_{2}
\end{array}\right.
\end{aligned}
$$

Every eigenvector associated to $\lambda=0$ is an eigenvector like $\left(x_{1}, x_{2},-x_{2},-x_{1}\right)$.
For $x_{1}=1$ and $x_{2}=0$ we have the eigenvector $(1,0,0,-1)$; for $x_{1}=0$ and $x_{2}=1$ we have the eigenvector $(0,1,-1,0)$. So we have the two unit eigenvectors $\mathbb{X}_{1}=\left(\frac{1}{\sqrt{2}}, 0,0,-\frac{1}{\sqrt{2}}\right)$ and $\mathbb{X}_{2}=\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$.
The eigenvectors associated to $\lambda=2$ are the solutions of the omogeneous system:

$$
\begin{aligned}
& \|\mathbb{A}-2 \cdot \mathbb{I}\| \cdot \mathbb{X}=\mathbb{O} \Rightarrow\left\|\begin{array}{|cccc}
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1
\end{array}\right\| \cdot\left\|\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\|=\| \| \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array} \| \Rightarrow \\
& \left\{\begin{array} { l }
{ - x _ { 1 } + x _ { 4 } = 0 } \\
{ - x _ { 2 } + x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{4}=x_{1} \\
x_{3}=x_{2} .
\end{array}\right.\right.
\end{aligned}
$$

Every eigenvector associated to $\lambda=2$ is an eigenvector like ($x_{1}, x_{2}, x_{2}, x_{1}$).
For $x_{1}=1$ and $x_{2}=0$ we have the eigenvector $(1,0,0,1)$; for $x_{1}=0$ and $x_{2}=1$ we have the eigenvector $(0,1,1,0)$. So we have the two unit eigenvectors $\mathbb{X}_{3}=\left(\frac{1}{\sqrt{2}}, 0,0, \frac{1}{\sqrt{2}}\right)$ and $\mathbb{X}_{4}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.

So an orthogonal matrix that diagonalizes \mathbb{A} is $\mathbb{U}=\left\|\begin{array}{cccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\end{array}\right\|$.

