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2  Methodnd : using the similarity relation between matrices, there exists a non singular
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I M 4) From the Sylvester Theorem:



Dim Ker Dim Imm , so Dim Ker  is ma-           ‘   œ $Dim Rank   $  œ 

ximum iff  is minimum.Rank 
To calculate  we reduce the matrix using elementary operations on lines:Rank                         

                        
 
 

" #  " " #  "
# " ! !  $ #
"  " 5 !  $ 5  "
 " 7  " ! 7

Ê Ê
V Ã V  #V
V Ã V V
V Ã V V

# # "

$ $ "

% % " #  #

Ê

Ê Ê
V Ã V V !  $ #
V Ã V V ! ! 5  "

" #  "

! 7 " !

 
        

        
$ $ #

% % #
.

From the last matrix it follows that Rank ; so Rank  is mi-
if 
otherwise

    œ
# 5 œ 7 œ "
$

nimum when ; in such case 5 œ 7 œ " œ

        

        
" #  "
# " !
"  " "
 " "  "

.

We find the elements of Ker  solving the linear omogeneous system:                                                     

                        
" #  " ! " #  "
# " ! ! !  $
"  " " !
 " "  " !

† œ Ê
B
B
B

"

#

$

# !
! ! ! !
! ! ! !

† œ Ê
B
B
B

!                  
 

 
"

#

$

  B  #B  B œ ! B œ B  #B B œ  #B
 $B  #B œ ! B  #B  %B œ ! B œ  $B
" # $ $ " # # "

# $ # " # $ "
Ê Ê

 $
.

Every element of basis for Ker  has the form . So a Ker   
                   

B "
œ 5 †  #

 $

"

 #B
 $B

"

"

is .  "ß  #ß  $

To find a basis for Imm , we must remember that every element  of    C ß C ß C ß C" # $ %

Imm  must satisfy the linear system:                                     

        
" #  " C
# " ! C
"  " " C
 " "  " C

† œ
B
B
B

"

#

$

"

#

$

%

. Using the augmented matrix we have:

        

        
" #  " l C
# " ! l C
"  " " l C
 " "  " l C

"

#

$

%

 and using the same elementary operations we get:

                        

                        
" #  " l C " #  " l C
!  $ # l C  #C !  $ # l C  #C
!  $ # l C  C ! ! ! l C 
! $  # l C  C

Ê

" "

# " # "

$ " $

% "

C  C
! ! ! l C  C  C

" #

% " #

.

Every element of Imm  must satisfy the system: 



   C  C  C C
C  C  C C

Ê C ß C ß ß$ " #

% " #
" #

œ ! œ C  C
œ ! œ C  C

C  C C  C$ # "

% " #
# " " #, so it is a vector like .

For  and  we have the vector ; for  and C œ " C œ ! œ "ß !ß  "ß " C œ ! C œ "" # " " #˜  
we have the vector ; so  is a basis for Imm .˜ ˜ ˜ # " #œ !ß "ß "ß  " ß     
I M 5) An orthogonal matrix that diagonalizes  is given by:
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The eigenvectors associated to  are the solutions of the omogeneous system:- œ !
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