UNIVERSITA' DEGLI STUDI DI SIENA

Facoltà di Economia "R. Goodwin" A.A. 2019/20

Prova finale recupero OFA

Compito lettera A

COGNOME e NOME:
Matricola:
Per rispondere alle domande barrare il quadrato corrispondente alla risposta ritenuta esatta. Se volete correggere una risposta già data, che ritenete invece errata, fate un cerchio intorno al quadrato di quella errata e barrate la nuova risposta. E' consentita UNA SOLA correzione: Esempio 1: La risposta fornita è la 60b)
\square 60a) sen $\alpha < \cos \alpha$
\blacktriangle 60b) sen $\alpha < \cos \beta$
\square 60c) $\cos \alpha < \text{sen } \alpha$
\square 60d) sen β < sen α
Esempio 2: E' stata data la risposta 60b), ma volendo correggerla, è stata cerchiata e si fornisce come risposta ufficiale la 60d).
\square 60a) sen $\alpha < \cos \alpha$
(260b) sen $\alpha < \cos \beta$
\square 60c) $\cos \alpha < \operatorname{sen} \alpha$
(60d) sen $\beta < \text{sen } \alpha$

- 1) Nel piano cartesiano, le rette x + y = 1 e x + y = -1 sono
- □ 1a) coincidenti
- □ 1b) perpendicolari
- \square 1c) si incontrano nel punto (1, 0)
- □ 1d) parallele
- 2) Nel piano cartesiano, l'equazione $x^2 + y^2 = 2x 4y 4$
- ☐ 2a) non rappresenta una circonferenza
- \square 2b) rappresenta una circonferenza di centro (1, -2) e raggio pari a 1
- \square 2c) rappresenta una circonferenza di centro (-1,2) e raggio pari a 1
- \square 2d) rappresenta una circonferenza di centro (-1, 2) e raggio pari a 2
- 3) Nel piano cartesiano, l'equazione $y = x^2 2x$ rappresenta
- \square 3a) una retta passante per i punti (0, 0) e (1, -1)
- \square 3b) una retta passante per i punti (-1, 3), (0, 0) e (1, -1)
- \square 3c) una parabola passante per i punti (0, -2) e (0, 0)
- \square 3d) una parabola con il vertice nel punto (1, -1)
- 4) La disequazione $x^2 3x + 2 \ge 0$ è soddisfatta :
- \square 4a) per $x \le 1$ oppure per $x \ge 2$
- \square 4b) per $1 \le x \le 2$
- \square 4c) per $2 \le x \le 3$
- \square 4d) per 1 < x < 2
- 5) La disequazione $\frac{x+1}{x-1} \ge 2$ è soddisfatta :
- \square 5a) per $1 < x \le 3$
- \square 5b) per $x \ge 1$ oppure $x \le 3$
- \square 5c) per $x \ge 1$ oppure per $x \ge 3$
- \square 5d) per x < 3
- 6) La disequazione : $3 \cdot 2^x > 0$ risulta soddisfatta per
- \square 6a) $2^x > \frac{1}{3}$, ovvero per $x > \sqrt{\frac{1}{3}}$
- \Box 6b) ogni valore di x
- □ 6c) $x > \sqrt{3}$
- \square 6d) $x > \log_2 \frac{1}{3}$

- 7) Dati due numeri a > 0 e b > 0, l'espressione $\log_{10} a^n + \log_{10} b^n$ è uguale a :
- \square 7a) $n \cdot \log_{10} (a b)$
- \Box 7b) $\log_{10}(a+b)^n$
- \square 7c) $n \cdot \log_{10} a \cdot \log_{10} b$
- \square 7d) $n \cdot \log_{10}(a+b)$
- 8) Dati gli angoli $\alpha = \frac{\pi}{6}$ (30°) e $\beta = \frac{\pi}{3}$ (60°), quale tra le seguenti relazioni è vera:
- \square 8a) sen β < sen α
- \square 8b) sen $\alpha + \cos \beta = 1$
- \square 8c) cos α < sen α
- \square 8d) sen $\alpha < \cos \alpha$
- 9) L'espressione $\frac{a^2x^2\cdot(y^2-1)}{a^2x^3y^4-a^2x^3}$ risulta uguale a :
- \Box 9a) $x^3y^2 1$
- $\square 9b) \frac{1}{x \cdot (y^2 + 1)}$
- \square 9c) $\frac{a\tilde{x}}{\tilde{y}^4 1}$
- \square 9d) $\frac{x}{n^2}$
- 10) Se $\left(\frac{3}{2}\right)^x = \sqrt[5]{\frac{8}{27}}$ allora:
- $\square 10a) \ x = \frac{5}{3}$ $\square 10b) \ x = \frac{3}{5}$
- $\Box 10c) \ x = -\frac{5}{3}$ $\Box 10d) \ x = -\frac{5}{5}$

Risposte:

1) D 6) B

2) B 7) A

4) A 9) B

3) D 8) B e D

5) A 10) D