
MATHEMATICS for ECONOMIC APPLICATIONS

TASK 23/4/2020
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From Cramer's Theorem, since the determinant of the matrix is different from zero the system
has one and only one solution.
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The objective function of the problem is a continuous function, the constraint defines a feasi-
ble region  which is a compact set since it consists of only boundary points (the surface of aX
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We have only two stationary points:  and .T œ "ß  "ß " T œ  "ß "ß  "" #   
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