MATHEMATICS for ECONOMIC APPLICATIONS
TASK 23/4/2020

I M 1) After having determined the complex number z which is the solution of the equation
z
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Since —z:cos7+zsm7 we get :
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= 1, calculate its square roots /2.
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I M 2) Given the matrix A= |1 k£—1 0]}, since A =1 is a multiple eigenvalue for A,
1 k k

find the values of the real parameter £ and check, for such values, if A is diagonalizable or
not.

From |[A — AI| =0 we get:

1A 0 0
1 k—1-X 0 |=(1=-NE-1-N(k-\) =
1 k k— A\

To get A = 1 as a multiple eigenvalue we have two possibilities:
k—1=0=k=1andk—-1-1=0=>k=2.

1 00 0o 0 0
For K =1 thematrixis A=||1 0 0} andthe matrix ||[A — 11| is [[1 —1 O0f;
1 1 1 1 1 0
since 1 _11‘ =2#0 weget Rank(A—11)=2=m{=3-2=1<m{ =2 andso
the matrix is not a diagonalizable one.
1 0 0 0 0 O
For k =2 thematrixis A= ||1 1 0} andthe matrix ||[A— 11| is ||[1 0 O0];
1 2 2 1 2 1
since 1 g‘ =2#0 weget Rank(A—11) =2=m{=3-2=1<m{ =2 andso the

matrix is not a diagonalizable one.

kxi + 219 —x3 =2

I M 3) Since the linear system ¢ 2x; — kxa + 23 = 2 has the solution (1, 1, 1), calculate the
3$1+$2 —]{J._'Eg =3

value of the real parameter k and then find the number of the solutions of the system.



k+2-1=2
Substituting the solution we get: ¢ 2 —k +1 =2 = k =1 and the system becomes:

3+1—-k=3
Ty + 279 — T3 = 2 1 2 -1 1 2 -1 1 2 -1
201 —xo+2x3=2.But |2 —1 1 =0 =5 3 |=|0 =5 3 |=5.
3331+.732—£I?3:3 3 1 —1 0 -5 2 0 0 —1

From Cramer's Theorem, since the determinant of the matrix is different from zero the system
has one and only one solution.

I M 4) Determine all the vectors orthogonal to the vector X; = (2, — 1,1) and to the
vector Xo = (1,1,1).

Two vectors are orthogonal if their scalar product is equal to zero.

So a vector X = (z,v, ) is orthogonal to the vector X; = (2, — 1,1) if:

(x,y,2)- (2, —1,1) =2x —y+ 2 =0= z =y — 2x. Vector X becomes (z,y,y — 2z).
Now the vector X = (z,y,y — 2x) is orthogonal to the vector Xy = (1,1,1) if:
(z,y,y—2x)- (L, ) =zx+y+y—22c=2y—x=0=2=2y.

So all the vectors orthogonal to the vector X; = (2, — 1,1) and to the vector X, = (1,1,1)
are the vectors X = (2y,y, —3y) =k (2,1, — 3).

II M 1) Given the equation f(z,y) = "™ — " ¥ = 0 satisfied at the point (0, 0), verify that
an implicit function = — y(x) can be defined with it, and then calculate the first order deri-
vative of this function.

The function f(z,y) is a differentiable function V (z,y) € R?. It also turns out :
Vf(z,y) = (" —e"¥;e" + e Y) for which Vf(0,0) = (0;2).
Since f,(0,0) = 2 # 0 it is possible to define an implicit function 2 — y(z).
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For its derivative we have: 3/ (0) = —

II M 2) Solve the problem { Max/2rn1n {@’ y2) =royte

s.v.z* 4y + 2 =3
The objective function of the problem is a continuous function, the constraint defines a feasi-
ble region £ which is a compact set since it consists of only boundary points (the surface of a
sphere) and therefore surely maximum and minimum values exist.
For a problem with equality constraints we construct the Lagrangian function and apply to it
the first and second order conditions. We have:
Az,y,z,\) =z —y+2-A(2*+y* +2°—3).
Applying the first order conditions we have:
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We have only two stationary points: P, = (1, —1,1) and P, =(—1,1, — 1).
By Weierstrass' theorem, since f(1, —1,1) =3 and f(—1,1, — 1) = — 3 it obviously

turns out that P; is the maximum point while P is the minimum point.
If we want to apply the second order conditions we have to built the bordered Hessian matrix:
0 2z 2y 2z

H(z,y,2,\) = 3;5 _02)\ _02 A\ 8 to calculate then, in the points P, and P», the
2z 0 0 — 2\
minors Hs and Hj, .
0 2 -2 2
Since H(P;) = _22 _01 _01 8 it is
2 0 0 -1
Hs(P;) =8 >0 and Hy(P;) = — 12 < 0 and so P, is the maximum point;
0 -2 2 =2
since H(P,) = _22 é (1) g itis :
-2 0 0 1
H3;(P,) = —8 <0 and Hy(P) = — 12 < 0 and so P, is the minimum point.

IIM 3) Given f(z,y) =xy and g(z,y) =  — y determine for which values of parameter «
itis D,f(1,1) = D,g(1,1), with v = (cosa, sina) .

The functions f(z,y) = zy and g(x,y) = x — y are polynomials and therefore are differen-
tiable in any order (z,y) € R?.

So D,f(1,1) =V f(1,1)-v and D,g(1,1) = Vg(1,1) - v. Since:

Vi(ey) = (y:2) = VA(1L1) = (1,1) and Vg(z,y) = (1; - 1) = Vg(1,1) = (15 — 1),
to get D, f(1, 1) Dvg(l, ) it will be

(1,1)(cos e, sinar) = (1; — 1)(cos v, sin) = cos v + sina = cos v — sina = sina = 0
andso a=0or a=m.

II M 4) Given the function f(z,v,2) = 2°y®z + log (z — ) — €%, determine the gradient
vector of the function at Py = (1,2,2).

—1 , 1
Itis Vf(x,y,z2) = (ny z —|— Bx —eh P+ —— ey_z) and so:
z—

1
V£(1,2,2) = (32+ﬁ 24—«32 284+ 1+¢* 2) = (31;23;10).



