MATHEMATICS for ECONOMIC APPLICATIONS
 TASK 23/4/2020

I M 1) After having determined the complex number z which is the solution of the equation $\frac{z}{1-i}-\frac{z}{1+i}=1$, calculate its square roots \sqrt{z}.
$\frac{z}{1-i}-\frac{z}{1+i}=z\left(\frac{1}{1-i}-\frac{1}{1+i}\right)=z\left(\frac{1+i-1+i}{(1-i)(1+i)}\right)=z \frac{2 i}{2}=1 \Rightarrow z=\frac{1}{i}=-i$.
Since $-i=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}$ we get :
$\sqrt{z}=\cos \left(\frac{3 \pi}{4}+k \frac{2 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{4}+k \frac{2 \pi}{2}\right), 0 \leq k \leq 1$.
For $k=0$ we get $z_{0}=\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}=-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$;
for $k=1$ we get $z_{1}=\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}1 & 0 & 0 \\ 1 & k-1 & 0 \\ 1 & k & k\end{array}\right\|$, since $\lambda=1$ is a multiple eigenvalue for \mathbb{A}, find the values of the real parameter k and check, for such values, if \mathbb{A} is diagonalizable or not.

From $|\mathbb{A}-\lambda \mathbb{I}|=0$ we get:
$\left|\begin{array}{ccc}1-\lambda & 0 & 0 \\ 1 & k-1-\lambda & 0 \\ 1 & k & k-\lambda\end{array}\right|=(1-\lambda)(k-1-\lambda)(k-\lambda)=0$.
To get $\lambda=1$ as a multiple eigenvalue we have two possibilities:
$k-1=0 \Rightarrow k=1$ and $k-1-1=0 \Rightarrow k=2$.
For $k=1$ the matrix is $\mathbb{A}=\left\|\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right\|$ and the matrix $\|\mathbb{A}-1 \mathbb{I}\|$ is $\left\|\begin{array}{ccc}0 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 0\end{array}\right\|$;
since $\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|=2 \neq 0$ we get $\operatorname{Rank}(\mathbb{A}-1 \mathbb{I})=2 \Rightarrow m_{1}^{g}=3-2=1<m_{1}^{a}=2$ and so the matrix is not a diagonalizable one.
For $k=2$ the matrix is $\mathbb{A}=\left\|\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2\end{array}\right\|$ and the matrix $\|\mathbb{A}-1 \mathbb{I}\|$ is $\left\|\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 1\end{array}\right\|$;
since $\left|\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right|=2 \neq 0$ we get $\operatorname{Rank}(\mathbb{A}-1 \mathbb{I})=2 \Rightarrow m_{1}^{g}=3-2=1<m_{1}^{a}=2$ and so the matrix is not a diagonalizable one.

I M 3) Since the linear system $\left\{\begin{array}{l}k x_{1}+2 x_{2}-x_{3}=2 \\ 2 x_{1}-k x_{2}+x_{3}=2 \\ 3 x_{1}+x_{2}-k x_{3}=3\end{array}\right.$ has the solution $(1,1,1)$, calculate the value of the real parameter k and then find the number of the solutions of the system.

Substituting the solution we get: $\left\{\begin{array}{l}k+2-1=2 \\ 2-k+1=2 \\ 3+1-k=3\end{array} \Rightarrow k=1\right.$ and the system becomes:

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=2 \\
2 x_{1}-x_{2}+x_{3}=2 . \text { But } \\
3 x_{1}+x_{2}-x_{3}=3
\end{array}\left|\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1 \\
3 & 1 & -1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
0 & -5 & 2
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
0 & 0 & -1
\end{array}\right|=5 .\right.
$$

From Cramer's Theorem, since the determinant of the matrix is different from zero the system has one and only one solution.

I M 4) Determine all the vectors orthogonal to the vector $\mathbb{X}_{1}=(2,-1,1)$ and to the vector $\mathbb{X}_{2}=(1,1,1)$.

Two vectors are orthogonal if their scalar product is equal to zero.
So a vector $\mathbb{X}=(x, y, z)$ is orthogonal to the vector $\mathbb{X}_{1}=(2,-1,1)$ if :
$(x, y, z) \cdot(2,-1,1)=2 x-y+z=0 \Rightarrow z=y-2 x$. Vector \mathbb{X} becomes $(x, y, y-2 x)$.
Now the vector $\mathbb{X}=(x, y, y-2 x)$ is orthogonal to the vector $\mathbb{X}_{2}=(1,1,1)$ if :
$(x, y, y-2 x) \cdot(1,1,1)=x+y+y-2 x=2 y-x=0 \Rightarrow x=2 y$.
So all the vectors orthogonal to the vector $\mathbb{X}_{1}=(2,-1,1)$ and to the vector $\mathbb{X}_{2}=(1,1,1)$ are the vectors $\mathbb{X}=(2 y, y,-3 y)=k(2,1,-3)$.

II M 1) Given the equation $f(x, y)=e^{x+y}-e^{x-y}=0$ satisfied at the point $(0,0)$, verify that an implicit function $x \rightarrow y(x)$ can be defined with it, and then calculate the first order derivative of this function.

The function $f(x, y)$ is a differentiable function $\forall(x, y) \in \mathbb{R}^{2}$. It also turns out : $\nabla f(x, y)=\left(e^{x+y}-e^{x-y} ; e^{x+y}+e^{x-y}\right)$ for which $\nabla f(0,0)=(0 ; 2)$.
Since $f_{y}^{\prime}(0,0)=2 \neq 0$ it is possible to define an implicit function $x \rightarrow y(x)$.
For its derivative we have: $y^{\prime}(0)=-\frac{0}{2}=0$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x-y+z \\ \text { s.v. } x^{2}+y^{2}+z^{2}=3\end{array}\right.$.
The objective function of the problem is a continuous function, the constraint defines a feasible region \mathcal{E} which is a compact set since it consists of only boundary points (the surface of a sphere) and therefore surely maximum and minimum values exist.
For a problem with equality constraints we construct the Lagrangian function and apply to it the first and second order conditions. We have:
$\Lambda(x, y, z, \lambda)=x-y+z-\lambda\left(x^{2}+y^{2}+z^{2}-3\right)$.
Applying the first order conditions we have:
$\nabla \Lambda(x, y, z, \lambda)=\mathbb{O} \Rightarrow\left\{\begin{array}{l}\Lambda_{x}^{\prime}=1-2 \lambda x=0 \\ \Lambda_{y}^{\prime}=-1-2 \lambda y=0 \\ \Lambda_{z}^{\prime}=1-2 \lambda z=0 \\ x^{2}+y^{2}+z^{2}=3\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{1}{2 \lambda} \\ y=-\frac{1}{2 \lambda} \\ z=\frac{1}{2 \lambda} \\ \frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}=3\end{array} \Rightarrow\right.\right.$

$$
\Rightarrow\left\{\begin{array} { l }
{ x = \frac { 1 } { 2 \lambda } } \\
{ y = - \frac { 1 } { 2 \lambda } } \\
{ z = \frac { 1 } { 2 \lambda } } \\
{ \frac { 3 } { 4 \lambda ^ { 2 } } = 3 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = \frac { 1 } { 2 \lambda } } \\
{ y = - \frac { 1 } { 2 \lambda } } \\
{ z = \frac { 1 } { 2 \lambda } } \\
{ \lambda ^ { 2 } = \frac { 1 } { 4 } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = 1 } \\
{ y = - 1 } \\
{ z = 1 } \\
{ \lambda = \frac { 1 } { 2 } }
\end{array} \cup \left\{\begin{array}{l}
x=-1 \\
y=1 \\
z=-1 \\
\lambda=-\frac{1}{2}
\end{array}\right.\right.\right.\right.
$$

We have only two stationary points: $P_{1}=(1,-1,1)$ and $P_{2}=(-1,1,-1)$.
By Weierstrass' theorem, since $f(1,-1,1)=3$ and $f(-1,1,-1)=-3$ it obviously turns out that P_{1} is the maximum point while P_{2} is the minimum point.
If we want to apply the second order conditions we have to built the bordered Hessian matrix:
$\overline{\mathbb{H}}(x, y, z, \lambda)=\left\|\begin{array}{cccc}0 & 2 x & 2 y & 2 z \\ 2 x & -2 \lambda & 0 & 0 \\ 2 y & 0 & -2 \lambda & 0 \\ 2 z & 0 & 0 & -2 \lambda\end{array}\right\|$ to calculate then, in the points P_{1} and P_{2}, the
minors $\overline{\mathbb{H}}_{3}$ and $\overline{\mathbb{H}}_{4}$.
Since $\overline{\mathbb{H}}\left(P_{1}\right)=\left\|\begin{array}{cccc}0 & 2 & -2 & 2 \\ 2 & -1 & 0 & 0 \\ -2 & 0 & -1 & 0 \\ 2 & 0 & 0 & -1\end{array}\right\|$ it is :
$\overline{\mathbb{H}}_{3}\left(P_{1}\right)=8>0$ and $\overline{\mathbb{H}}_{4}\left(P_{1}\right)=-12<0$ and so P_{1} is the maximum point;
since $\overline{\mathbb{H}}\left(P_{2}\right)=\left\|\begin{array}{cccc}0 & -2 & 2 & -2 \\ -2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1\end{array}\right\|$ it is :
$\overline{\mathbb{H}}_{3}\left(P_{2}\right)=-8<0$ and $\overline{\mathbb{H}}_{4}\left(P_{2}\right)=-12<0$ and so P_{2} is the minimum point.
II M 3) Given $f(x, y)=x y$ and $g(x, y)=x-y$ determine for which values of parameter α it is $\mathcal{D}_{v} f(1,1)=\mathcal{D}_{v} g(1,1)$, with $v=(\cos \alpha, \sin \alpha)$.

The functions $f(x, y)=x y$ and $g(x, y)=x-y$ are polynomials and therefore are differentiable in any order $\forall(x, y) \in \mathbb{R}^{2}$.
So $D_{v} f(1,1)=\nabla f(1,1) \cdot v$ and $D_{v} g(1,1)=\nabla g(1,1) \cdot v$. Since:
$\nabla f(x, y)=(y ; x) \Rightarrow \nabla f(1,1)=(1,1)$ and $\nabla g(x, y)=(1 ;-1) \Rightarrow \nabla g(1,1)=(1 ;-1)$, to get $\mathcal{D}_{v} f(1,1)=\mathcal{D}_{v} g(1,1)$ it will be:
$(1,1)(\cos \alpha, \sin \alpha)=(1 ;-1)(\cos \alpha, \sin \alpha) \Rightarrow \cos \alpha+\sin \alpha=\cos \alpha-\sin \alpha \Rightarrow \sin \alpha=0$ and so $\alpha=0$ or $\alpha=\pi$.

II M 4) Given the function $f(x, y, z)=x^{2} y^{3} z+\log (z-x)-e^{y-z}$, determine the gradient vector of the function at $P_{0}=(1,2,2)$.

It is $\nabla f(x, y, z)=\left(2 x y^{3} z+\frac{-1}{z-x} ; 3 x^{2} y^{2} z-e^{y-z} ; x^{2} y^{3}+\frac{1}{z-x}+e^{y-z}\right)$ and so:
$\nabla f(1,2,2)=\left(32+\frac{-1}{2-1} ; 24-e^{2-2} ; 8+1+e^{2-2}\right)=(31 ; 23 ; 10)$.

