QUANTITATIVE METHODS for ECONOMIC APPLICATIONS
MATHEMATICS for ECONOMIC APPLICATIONS
TASK 9/2/2021

I M 1) Two complex numbers are given z; and 25 such that, written in trigonometric form,

. ) 1 . 17
have moduli equal respectively to 4 and R and arguments respectively equal to = 7 and

23
20" Calculate their quotient L

Z9
Itis:
17 177
o A4 (cos X isin 1) 177 287\ . (177 23«
=7 53 53 =8 [ cos = T30 + 7 sin 5 20 =
22 5 ( cos 20” + i sin 20”)

_3 457T+ in457T _3 97r+ ln97r —8( 7T+,in7r>_
cos 78 20 = cos4 78 )= cos4 78 1) =

(\/5 \/_)_4\/_ (1+7).

1 0 0
I M 2) Determine an orthogonal matrix that diagonalizes A = ||0 1 -1
0o —1 1

The matrix is a symmetric one and therefore certainly diagonalizable by means of an orthogo-
nal matrix.

1—A 0 0
From |[A - Xl =] 0 1—-X —1]=0 we get:

0 -1 1-A
T=N((1=2)"=1)=1-N)N=-2)=21-N)A-2)=0.

So the eigenvalues Ay =0, Ao =1, A3 = 2.
To find an eigenvector relative to A\; = 0 we solve the system:

1 0 0 x 0 x=0 .
0 1 —1{l-flyll=10||=Qy—2=0 { and so the eigenvector:
0o —1 1 z 0 —y+2=0 a

. . 1 1
(0,1, 1) and its unit vector | 0, —=, —=
V2 /2

To find an eigenvector relative to A\; = 1 we solve the system:

0 O 0 x 0 0=0 vV
0 0 —1{-llyl|=0] =< 2=0 = ¢ y=0 and so the eigenvector:
0O -1 0 z 0 y=20 z=0

(1,0, 0) which is an unit vector.
To find an eigenvector relative to A; = 2 we solve the system:



T 0 T = v =0
0 -1 —=1{-llyl|=0|l=<Ky+2=0 :>{y_ , and so the eigen-
z 0

1
vector: (0,1, — 1) and its unit vector | 0, NG

0 1 0
I S S
So the orthogonal matrix is U = || /2 V2
1
0 =

2 2
1 0 1
I M 3) Given the matrix A= [|0 2 0]/, after having determined the dimensions of the
1 0 1

Kernel and the Image of the linear map f:R?® — R?, f(X) = A - X, find all the vectors X
that in this linear map coincide with their image: f(X) = X.

1 0 1
To solve the problem firstly we calculate the rank of the matrix A = ||0 2 0
1 0 1
L0 1 1 1 0
Since |[A|=(0 2 0 :2~‘ ‘:Obut ‘:2%0:>Rank(A):2.
1 0 1 1 1 0 2

So Dim(Imm) = 2 and Dim(Ker) =3 -2 =1.
To solve the equality f(X) = X we have to solve the system:

1 0 1 x x r+z==x r=0
0 2 Ol|-|lyll=1|lyll=1<2y=y =Qy=0.
1 0 1 z z r+z=2=z2 z=0

Only the null vector satisfies the given equation.

1 -2 0 1
I M 4) Given the matrix A= |1 1 1 —1|| and the linear map f:R*— R?,
5 —4 2 1

f(X) = A - X, determine if the vector Y = (1,1,4) belongs to the Image of that linear map.

To check if a vector belongs to the Image of a linear map corresponds perfectly to seeing if
the linear system having that matrix as its coefficient matrix admits solutions when the vector
of the known terms is the given vector. So we use the Rouche-Capelli Theorem and we
calculate the rank of the matrix and the rank of the augmented matrix .

1 -2 0 1 | 1
AY)=11 1 1 -1 | 1
5 —4 2 1 | 4
By elementary operations on the rows (Ry «— Re — Ry), (R3 «+ R3 — 5Ry), we get :
1 -2 0 1 | 1 1 -2 0 1 | 1
1 1 1 -1 | 1fl=fo 3 1 -2 | o0
5 —4 2 1 | 4 0 6 2 -4 | -1

By elementary operations on the rows (R3 < R3 — 2Ry), we get :



1 -2 0 1 | 1 1 -2 0 1 | 1
0 3 1 -2 1] o0fl—=lo0o 3 1 -2 o0
0 6 2 —4 | -1 o 0 0 0 | -1

From this it immediately follows that Rank(A) = 2 < 3 = Rank(A|Y), therefore the system
has no solutions and the vector Y = (1, 1,4) does not belong to the Image of the linear map.

I1 M 1) Given the equation f(z,y) = e” ¥ — ¥ " = 0, verify that at the point Py = (1,1)
the hypotheses of Dini's Theorem are satisfied and then find the equation of the tangent line to
the implicit function y = y(z) so determined at zp = 1.

The function f(z,y) =e* ¥ — ¥ " is differentiable V (z,y) € R?.

From Vf(z,y) = (29: er Y+ eyzf‘”; — ey — 2y eyzf‘”) we get Vf(1,1) = (3; —3).

Since f,(1,1) = —3# 0 it is possible to define an implicit function y = y(x) whose first
!/

order derivative is equal to: %(1) = — fzg:i; = — _33 =1.

So the equation of the tangent line to the function y = y(x) at zp=1is y—1=1(x — 1)

thatis y =z .

II M 2) Solve the problem { Max/min f(:z:éy<)

wce. 24 2y 1
The objective function of the problem is a continuous function, the constraint defines a feasi-
ble region (ellipse) which is a closed and bounded (compact) set, and so we can apply Weier-
strass Theorem. Surely the function admits maximum value and minimum value.

To solve the problem we use the Kuhn-Tucker conditions.

Max/min f(z,y) = 2% + 3>

sv.ix?+22—-1<0 '

We form the Lagrangian function:

Az, y,\) = 222 +o° — )\(:z:2 + 21 — 1).

We write the problem as {

By applying the first order conditions we have:

I)case A =0 :

A;,:4:L‘:0 x=0

A, =2y=0 =< y=0 ;H(0,0)zHé (2) and so (0, 0) is a minimum point in-
z? 42y <1 0+0<1

ternal to the feasible region .

2)case A #0 :

N =dz -2 x=2x(2-X) =0 =0 A=2

A, =2y—4dy=2y(1-20)=0={ y=0 U )\:% or
2+ 22 =1 0+ 0 = 1 impossible impossible

N, =2z(2=X) =0 z =0 y=0

A, =2y(1-2))=0 = )\:% U< A =2 hence the four solutions:
42y =1 yQZ% =1



z=0 z=0

— 1 - _ 1
Yy \/§U Yy \/§U
=1 A=1

Since the values of A are positive, these points could be maximum points.

-1
0
2

> 8
Il

N O =
C

> 8
Il

Given the presence of only one constraint, we can check the nature of these points using the
bordered Hessian matrix.

B 0 2z 4y
Itis H(xz,y,\) = || 2z 4 — 2\ 0 . So:
4y 0 2 —4)\
0 0 2

2
‘E(Qjﬁ%>== 0 3 0 |=3 3_2V5
V2 2/Z 0 0 22 0

point would be reported as a minimum point while the multiplier indicates it as a maximum

=3(—8) <0 therefore the

point . So | 0, L , 1) it is neither a maximum nor a minimum point.
V22

L1 0 0 —2v2
Hfo, - —, =
0-73)

—| 0 3 0 :3w 0 =2V2_5 g g
therefore the point would be reported as a minimum point while the multiplier indicates it as a

—2v/2 0 0 -2/2 0

maximum point. So ( 0, — %, %) it is neither a maximum nor a minimum point.

B 0 2 0 0 92

|H(1,0,2)|=1(2 0 0 |=(-6)- ‘ ‘ = (—6)(—4) > 0 then the point is repor-

2 0
0 0 —6

ted as a maximum point as reported by the multiplier. So (1,0, 2) is a maximum point.

B 0 -2 0 0 9

H(—-1,0,2)|=|—-2 0 0 |=(—-6)- =(—6)(—4) >0 then the

0 0 -6 -2 0

point is reported as a maximum point as reported by the multiplier. So ( — 1,0, 2) is a maxi-
mum point.

In conclusion, (0, 0) is the minimum point with f(0,0) = 0 while (1,0) and ( — 1, 0) are the
maximum points with f(1,0) = f(—1,0) = 2.

I1 M 3) Given the function f(zx,7) = 2* + y* + xy find all directions v = (cos a, sin ) for
which it results D, f(1,1) =0.

The function f(x,y) = 2 + y*> + xy is differentiable V (z,y) € R?.
So D,f(Py) = Vf(Py) - v.From V f(z,y) = (22 + y; 2y + x) we get :
Vf(1,1)=(3;3) andso D,f(1,1) = (3;3) - (cos v, sinar) = 3cosa + 3sina = 0

from which we get cosa = — sina valid for a = Zﬁ and for a = % .

II M 4) Given the function f(z,v,2) = 2 + y*> + 2° — & — 23>, determine the nature of its
stationary points.



We determine the stationary points of the function. Applying the first order conditions
Vf(z,y,z) = O we have:

fl=20—-1-132=0 20 —1—9>=0 20 —1—1y>=0
fo=2y—22y=2y(l-2)=0=< y=0 U z=1
fl=22=0 z=10 z=0
From the first system:

20 —1—12=0 20 —1=0 x:%
=< y=0 =< y=0 =93y=0:

z=0 z=0 2 =0
From the second system:
20— 11—y =0 v =1 r=1 r=1
r=1 =< z=1 =qy=1Ugy=—1.
z=0 z=0 z=0 z=0

We have then found three stationary points: (%, 0, O) ,(1,1,0) and (1, — 1,0).

2 -2y 0
We apply the second order conditions. From H(z,y,z) = || —2y 2—2z 0]| we get:
0 0 2
’H1’:2>0;|H1|:1>0
2 0 0 2 0 1 0
H(%,0,0): 01 0f = |H2|:‘0 1‘>0;|H2|:‘0 2‘>0;
oo yﬂgyzz.‘g (1)‘>o
|H1|>0
since ¢ |Hy| > 0 the point (%, 0, 0) is a minimum point;
’H3’>O
2 -2 0 s g
H(1,1,0)=|| -2 0 0 :>|H2|:‘_2 0‘<0’
0 0 2
since |Hjy| < 0 the point (1, 1,0) is a saddle point;
2 2 0 9 9
H(1, —1,0)=(|2 0 0 :>|H2|:‘2 0‘<0;
0 0 2

since |Hy| < 0 the point (1, — 1,0) is a saddle point.



