QUANTITATIVE METHODS for ECONOMIC APPLICATIONS
MATHEMATICS for ECONOMIC APPLICATIONS
TASK 15/3/2021
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IM1)If z =e(cosa +isina), since e .z = e?*? determine .

241
3 : e —(1-3i ; .y
el ?”-,z:e2+’z>z:1f32.:62+Z (1 31)261_‘_42:6(00844—2811’14).
e

Therefore o« = 4.

I M 2) In the basis for R® formed by the vectors V; = (1,2, — 1), V, =(2,1,1) and
V3 = (x1, 29, x3), the coordinates of the vector Y = (1,3,0) are (2, — 2, 1). Determine Xs.

The problem is equivalent to solving the following linear system:

1 2 =z 2 1 2—44+x=1 T =3
2 1 x| =2 =||3]|| = 4—-242x9=3 = To=1 .
-1 1 a3 1 0 —2—-24+x23=0 r3 =4

And so V3 = (5,3,0).

2 0 1

I M 3) Given the matrix A= (|2 1 2]|, determine, on varying the parameter m, the
1 m 4

existence of multiple eigenvalues and determine if, for these values, the matrix is
diagonalizable.

Let's determine the eigenvalues of the matrix:
2—-A 0 1 1—A 0 1
From |[A —AI|=| 2 1—A 2 0 1-X 2 | =0 weget:
1 m 4= ) A—=3 m 4=

(I=X[A=XNA=X)=2m]+(AN=3)(0—(1=X)) =
=1-XNN=5A+4-2m—-A+3)=(1-N) (N —-6A—2m+7) =0.
There are two ways to obtain multiple eigenvalues :
— The polynomial (A* —6A —2m + 7) vanishes for A =1 ;
— The polynomial (A* — 6\ — 2m + 7) admits two identical roots.
Firstcase. For A\=1 weget: 1 —6—-2m+7=0=2m =2 = m =1 and so:
M —6A+5=0=>A=3+v/9—-5=34+2andsoweget \=1and A =5.
For m=1 and A =1 we get:

1 0 1
IA—1.1=]2 0 2 ;»ﬁ (1)‘:27&0andsoRank(|\A—1-]IH):2andtherefo-
1 1 3

re m{ =3 —2=1<m{ =2 and si the matrix is not diagonalizable.

Second case. )\2—6)\—2m+7:O:>)\:3:|:\/9+2m—7:3:|:\/2+2m.

24 2m =0 for m = — 1 and the eigenvaluesare A\{ = 1, \s = A3 =3 .
For m = — 1 and A\ = 3 we get:



-1 0 1
|IA=3-T||=| 2 -2 2 :>‘
1 -1 1
and therefore mj = 3 —2 =1 < m§ = 2 and so the matrix is not diagonalizable.
For any other value of m we will have only simple eigenvalues and therefore the matrix will
be diagonalizable.

-1 0

) _2‘:27&0 and so Rank (||JA —3-1||) =2

Ty — X9+ 223 + 14 = 2

I M 4) Given the linear system ¢ 2x; + x9 — 3 + 224 = 1 , find the values of the parameter
$1—4$2+7$3+l‘4:]€

k for which the system has solutions.

To check if the linear system admits solutions we use the Roucheé-Capelli Theorem and we
calculate the rank of the matrix and the rank of the augmented matrix :
1 -1 2 1 | 2
(AlY) =12 1 -1 2 | 1
1 -4 7 1 | k
By elementary operations on the rows (Ry «— Ro — 2R;), (R3 «— R3 — R1), we get :

1 -1 2 1 | 2 1 -1 2 1 | 2

2 1 -1 2 | 1||—=|0 3 -5 0| -3

1 -4 7 1 | k 0 -3 5 0 | k=2
By elementary operations on the rows (R3 < R3 + Ry), we get :

1 -1 2 1 | 2 1 -1 2 1 | 2

0 3 -5 0| —=-3|—1]0 3 -5 0 | -3

0 -3 5 0 | k-2 0 0 0 0 | k=5

From this it follows that Rank (A) = 2 = Rank (A|Y) only for k£ = 5, and for this value the
system has 0o = 0o? solutions. For k # 5 it is Rank (A) =2 < Rank (A|Y) = 3 and
the system has no solutions.

II M 1) Given the equation f(z,y) = 2° — 32y + y* — 3 = 0 and the point P = ( —1,1)
that satisfies such equation, find the equation of the tangent line to the graphic of the implicit
function y = y(x) defined at the point x = — 1.

The function f(x,y) = 2* — 3zy + y* — 3 is differentiable V (z,y) € R?.
From Vf(z,y) = (32° — 3y;3y> — 3z) we get Vf(—1,1) = (0;6).
Since f,(—1,1) =6 # 0 it is possible to define an implicit function y = y(x) whose first

d (—1,1 0
order derivative is equal to: %( -1)= - % = 5= 0. So the equation of the
tangent line to the function y = y(x) at zp = —1isy—1=0-(z+ 1) thatis y = 1.

Max/min f(z,y) =z —vy
IT M 2) Solve the problem {u.c.: Pol<z<1 .
The objective function of the problem is a continuous function, the constraint defines a feasi-
ble region which is a closed and bounded (compact) set, and so we can apply Weierstrass
Theorem. Surely the function admits maximum value and minimum value.
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To solve the problem we use the Kuhn-Tucker conditions.
Max/min f(z,y) =x — vy
We write the problem as - —-1<0
u.c.:
r—1<0
We form the Lagrangian function:
Az, y, \) :x—y—)\l(QQ—x—l) — Xz —1).

By applying the first order conditions we have:

I)case Ay =0, =0 :

A =1+#£0

N =—1#0

2y 7 = no solutions .
yv—r—1<0

r—1<0

2)case A\1 0, =0 :

N=14X\ =0 A= —1<0
A;:—1—2)\1y:0 y:§
2 = 1 35
r <1 3
< —=2<1
. : 31 .. .
Since Ay = — 1 < 0 the point | — 15 could be a minimum point.



3)case A\ =0, #0 :

AN.=1-X=0
= —-1#0

r=1

P —r—-1<0

4)case A\ 0, N #£0 :

= no solutions .

AN.=14+X—-X=0 AN =1+ —-X=0
A;:—1—2)\1y:0: A;J:—l—Q)qy:O:>
r=1y>—1 =2
N y=12 U y=—v2 .
1+A =X =0 1+ — X =0
—1-2\y=0 —1-2\y=0
] (2 =1
:]_ Tr =
, V2 y=+2 v=V2
y= =77 ={ A =--1-<0
T4\ —A =0 1+ A— A =0 Y ME TS
—1-20y=0 —1-2/2)M =0 _ _ 2v/2-1
k)\2—1—1—)\1— 2\/5 >0
1 2v/2 -1
Since A = — ——= < 0 and Ang—>0 the point (1,\/5) it is neither a maxi-
2v/2 2v/2
mum nor a minimum point .
. (z=1
x:l Tr =
y= -2
y=—2 = y= -2 ={ N =-->0
1+A =X =0 14+XA =X =0 2\/5
—1-2\y=0 —1+2\/§/\1:0 )\2:1+)\1:2\/§+1>0
\ 2./2
2v/2+1
Since \; = —~= >0 and )\2:7\/_+ > 0 the point (1, —\/5) could be a maximum
2v/2 2v/2
point.

However, having found only two solutions,

(1)

is the minimum point, with f ( —

for the Weierstrass Theorem, the point
31

—) = —Z while the point (1, — \/5)

4’9

is the maximum point with f(l, — \/5) =1+ \/5

I1 M 3) Given f(z,y) = zy — 2z + y, let v and w be the unit vectors of (1, 1) and (1, — 1);

determine if there are points P where D, f(P) =

\/Eande 2.

The function f(z,y) = xy — 2z + y is differentiable V (:13, y) € R?.

So D,f(P) =

From Vf(z,y) =

Vf(P)-v and D,f(P) =

(y—2;2+1), v

Vf( )-
V)



Ty Y
x x+yH has

I1 M 4) Find the pair (z,y) for which the determinant of the matrix A =

a minimum value.

Y Y
r Tty
We determine the stationary points of the function. Applying the first order conditions
Vf(z,y) = O we have:

! — 2 2 _ — 0 — =
{ ;a/: - xfizgy - i 0 { Z((?Ex-:—QZ B }1)) _ (()) . So four possible cases:
y

From |A| = = oy (z +y) — zy we get f(z,y) = 2>y + 2> — ay.

{x:OU{x+2y—1:0U{x:O Uz +2y—1=0 Mdse
1

{yzOU{y:OU{yzlU{:c+2—43c—1=02>{y:%'

_ 2y 20 + 2y — 1 )
From H(x,y)—‘2x+2y_1 9 we get:
H(0,0) = _01 _01 H : since |Hy| = — 1 < 0 the point (0, 0) is a saddle point;
H(1,0) = (1) ;H : since |Hy| = — 1 < 0 the point (1, 0) is a saddle point;
H(0,1) = ? éH : since |Hy| = — 1 < 0 the point (1,0) is a saddle point;

2 1 2

11 7 7 Hy|=%5>0 11

H<§,§>: i’ % :since{| . 2 L1 the point (g,g) is a minimum

3 3 [l =5-5=3>

point, the solution of the problem.



