QUANTITATIVE METHODS for ECONOMIC APPLICATIONS
MATHEMATICS for ECONOMIC APPLICATIONS
TASK 28/6/2021

3 2

I M 1) The polynomial equation z° —iz” — x 4+ ¢ = 0 has two real solutions and one imagi-
nary solution. Calculate the cubic roots of the product of the three solutions.

For x =i weget P(i) =i® —ii* —i+i= —i+i—i+i=0.
So x = i is the imaginary solution. By Ruffini's rule we get:

1 B =1 0

andso 2® —iz® —x +i = (z —i)(2° — 1) = 0 and we get the three solutions z; = 7,
3 3

To=1,23= —1land 1 -29-23= —1=cosS—7 +¢Sin— 7.
1 2 1 2
So v/ —i = cos (gw—l—k%) +isin<§w+k§),0§k§2.

For k=0 : zozcos§7r +isin§7r:z';

7 V31

for k=1 : zlzcoséw +isin—m = — — — 17—

6 2 2’
11 .11 3 .1
for k=2 : zzzcos€7r +Z'S11’1€7T= %—25.
2 3 -1
I M 2) Given the matrix A= |[2 1 2 ||, the linear map R® - R*:A-X=Y, and
2 5 k
1
the vector Y = || 2 ||, determine for which values of the parameters k& and m the vector Y
m

belongs to the Image of the map.

This problem corresponds perfectly to see when the linear system A - X =Y admits soluti-
ons, and so we use Rouche-Capelli Theorem and we calculate the rank of the matrix and the
rank of the augmented matrix :

2 3 -1 | 1

(AlY)=1]l2 1 2 | 2| .By eclementary operations on the rows:
2 5 kE | m
(Ry «— Ry — Ry), (R3 < R3 — Ry), and then (R3 «— R3 + Rs) we get :
2 3 -1 | 1 2 3 -1 | 1 2 3 -1 | 1
2 1 2 | 2|(=lo0o -2 3 | 1 ||=|o -2 3 | 1
25 kK | m 0 2 k+1 | m-1 0 0 k+4 | m



and so we see that:

— if K # — 4 = Rank(A) = 3 = Rank(A|Y) : the system has one and only one solution :
the vector Y is image of a unique vector X;

— if k = —4and m = 0 = Rank(A) = 2 = Rank(A|Y) : the system has oo! solutions :
the vector Y is an image of infinite vectors X

— if k= —4and m # 0 = Rank(A) = 2 < Rank(A|Y) = 3: the system has no solutions.
the vector Y does not belong to the Image of the map.

0 01 1
. : 0 01 1 : . .
I M 3) Given the matrix A = 11 0 oll determine an orthogonal matrix that diagona-
1 1.0 0

lizes it.

The matrix is symmetric and therefore diagonalizable by an orthogonal matrix.
Let's determine the eigenvalues of the matrix:

-A 0 1 1 A A 0 0
From |A —AT| = ? 1A -}A é - ? 1A -}A é -
1 1 0 —A 0 0 A - A
by elementary operations on the rows (R; < Ry — Ry), (Ry < Ry — R3)
- A 1 1 0 1 1
=(=A)-| 1 =X 0 |=x]1 =x 0 |=
0 A —A 1 0 - A
by elementary operations on the columns (Cy «— Cy 4+ C3) and (Cy < Cy — Cj) -
-\ 2 1 0 0 1
(=N 1 =X 0 |=xf1 —x o0 |=
0 0 A I A =
-\ 2 1 =
_(_)\)<_)\)‘ 1 _)\‘_)\.1.‘1 A\ ‘_

=X (N=2) =X A+ ) =2 (N=2-2) =1 (N’ —4) =0.
So the eigenvalues are A\ = Ay =0, A3 =2, \y = — 2.
To get the eigenvectors corresponding to A\; = Ay = 0 we solve the homogeneous system :

0 0 1 1 T 0
B B o0 1 1| [yl o zHw=0
JA=0-I|| X=A-X=0= 110 0 2= 1o :>{a:—|—y:():>
1 1 0 0 w 0
= Z]:_ —_:1; = (x, — x,z, — z) the eigenvectors correspondingto A = 0.

To get two orthogonal eigenvectors we choose  =1,2=0 and then z =0,z =1:
X;=(1, —1,0,0) and Xy = (0,0,1, — 1).
To get the eigenvectors corresponding to A3 = 2 we solve the homogeneous system :

-2 0 1 1 @ 0
B 0 -2 1 1 yll o
lA-2-1-X=0=| | 7 T, 1=1loll=
11 0 =2| ||w 0



-2 0 1 1 x 0 —2z+z24+w=0
N 2 -2 0 0 Yl _ 0 N 20 — 2y =0 N
1 1 -2 0 z 0 rT+y—22=0
0 0 2 -2 w 0 22 2w =0
(
e - y=a | |
= < D S et Bk = (x,z,x,z) the eigenvectors corresponding to A = 2
|22 -2:=0 wes
and so, for x = 1 we get X3 = (1,1,1,1).
To get the eigenvectors corresponding to Ay = — 2 we solve the homogeneous system :
2 011 x 0
0 2 1 1 Y 0
JA+2-1| - X=0= 112 0 =0l =
1 1 0 2 w 0
2 0 1 1 T 0 (20 +24+w=0
-2 2 0 0 Y 0 —2x+2y=20
1 o1 o2 ol |z T ol T Ye+y+r2:=0
0O 0 —2 2 w 0 | —22+2w=0
(
e - y=1 . .
= < or42,—0 7 = % = (z,z, —z, — ) the eigenvectors corresponding to
2x + 22 = w=z

\
A= —2andso, for z =1 weget Xy = (1,1, -1, — 1).
To obtain an orthogonal matrix, we finally calculate the unit vectors of the four eigenvectors
found that we use as columns of the orthogonal matrix and we will have:

1 1 1

2 0 2 2

1 1 1

u_ll TV 0 2 3
=1 o 11 1
V2 2 2
1 1 1
0 - 3z —3

I M 4) Find the coordinates of the vector X in the basis A = {(1,1,1),(1,1,0),(1,0,1)} ifit
1

1)
has coordinates (2, 1, 2) in the basis B = {(1,0,0), (1,1,0), (1,1,1)}

Since X has coordinates (2, 1, 2) in the basis B = {(1,0,0), (1,1,0),(1,1,1)} we get:

1 1 1 2 24+1+2 5

X=1]0 1 1 1{|=104+1+2]| =||3]|; to find the coordinates of the vector X in
0 0 1 2 0+0+2 2

the basis A = {(1,1,1),(1,1,0),(1,0,1)} we must solve the system:

1 1 1 T 5) T+y+z=2>5 r+3—-—x+2—-2=5

1 1 0 yll=13]|=qx+y=3 = qy=3—-= =

1 0 1 z 2 T4+ z=2 z2=2—z
z=0

= ¢ y =3 are the coordinates of vector X in the basis A = {(1,1,1),(1,1,0),(1,0,1)}.
z=2



flr,y,2) ="V +e" 7 =267 =0
g(x,y,2) =23 + 3 + 22 — 3wyz =0
int satisfying it, an implicit function is determined x — (y, z) ; of this function calculate the
derivatives in the considered point.

II M 1) Given the system { and P=(1,1,1), po-

The functions f(z,y,2) and g(z,y, z) are differentiable V (x,7.2) € R3.
Furthermore {f (1,
g(1

L)=1+1-2=0
) =14141-3=0" rom:
O(f.9) e’ et —etTY —2eY7F —etTF 426977
J(xayaz) = 2 2
(z,y,2) 3x” — 3yz 3y* — 3xz 2z — 3xy
a(f.9) 2 -3 1
t —————(1,1,1) = .
Ve By Y -1
Since _03 _11 ‘ = 3 # 0 it is possible to define an implicit function = — (y, z) whose
derivatives are:
‘2 1 ‘ ‘—3 2‘
dy 0 -1 -2 2 dz 0 O
)= -1 2 _Zand 2(1)= — —0.
azV 3 1 5 3 W) —3 1
0 —1 0 —1

Max/min f(z,y) =y (z — 1)
II M 2) Solve the problem - rz<1
Sl PR

The objective function of the problem is a continuous function, the constraints define a feasi-

ble region which is a closed and bounded (compact) set, and so we can apply Weierstrass

Theorem. Surely the function admits maximum value and minimum value.

If we study the sign of the function we get:
z>1 r<l1

f(way)_y(w_1)>0:>{y>0 {y<0

In all the points = = 1 the objective function is equal to zero.

r<l1
:>y(x—1)>0for{y<0.



S

To solve the problem we use the Kuhn-Tucker conditions.
Max/min f(z,y) =y (z — 1)
We write the problem as we.: { yP—2 <0
T le—=1<0
We form the Lagrangian function:
Az, y,\) =2y —y — Al(y2 —z) — Xz —1).

By applying the first order conditions we have:

I)case Ay =0, =0 :

Y _ . . .
P —x <0 = 0-1<0" But f(1,0) =0 and since in every neighborhood of
r <1 1<1

the point (1,0) there are both points where the function is positive and points where it is ne-
gative, the point (1, 0) is a saddle point.

2)case A\ 0, =0 :



AN=y+X2=0 y= —X\ r=1-2)\
Ay=2-1-20y=0_ Jo-1+2{=0_ Jy=—-XN

=
z =y r =1y 1-2)2 =\
r<1 r<1 r<1
(o1 (1
z=1-2)2 r=1-2)\ 5 3
e S O U V3 S
3)‘1:1 )‘123 )\1:% )\1———3
\531 \ggl

1 1 1
The point (5, — —) , since A\; = —= > 0, may be a maximum point, the point

V3 V3
1 i since \; = — i < 0, may be a minimum point
3, \/g I 1 — \/§ s y p .

3)case \y =0, #0 :

A;:y—AQZO ;U:l
1 = =X : we know that for all points where = = 1 the function is
v < A<

equal to 0. So in the first quadrant, where the function is negative, these are maximum points
while in the fourth quadrant, where the function is positive, these are minimum points.
The point (1,0), as already seen, is a saddle point.

4)case \1 0, #0 :

Ag:y—k)\l—)\Q:O A/I:y—i—)\l—)\Q:O
A;/:I—1—2>\1y:0:> A;/:I—1—2>\1y:0:>
2 __ —
y- =1 y==*1
r=1 r=1
y=1 y=1 y=—1 y= —
= 1-|—)\1—)\2:O:> )\1:0U —1-|->\1—>\2:O:> A =0
201 =0 Ay =1 201 =0 A= —1

As we have already seen, the point (1, 1) is reported as a maximum point while the point
(1, — 1) is reported as a minimum point.

In all the points x = 1 the objective function is equal to zero.
In the points = =y the objective function becomes f(y*,y) =y (y* — 1) = y* — y and so:

1 1
() =3y — 1= f'(y) >0fory < — —— and for — < v.
f(y) =3y fy) > y < 7 \/g_y

| 1
—1 vV E 0 \ E I
;
e M -0

We get the same results found with the case A\ # 0, Ay = 0.



The point | - ! ith f 2 ! 2_ isth i int, the point
€ poin -, — —F—= W1 -, — — = = —=—= 1S € maximum point, € poin
3 3 3 /3] 33

11 (L 2 -
-, — w1 -, —F= = — 1S Th¢ minimum point.
3 \/3 3" \/3 3v/3

0

minimum points.
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I M 3) Given f(z,y) =2xy — x*, calculate D,f(1,1), where v represents the direction
from (1,1) to Py = (1,2).

(1,2)
A
’L\

(1 1)

The function f(x,y) = 2xy — 2* is differentiable and so D, f(1,1) = Vf(1,1) - v.
From Vf(z,y) = (2y — 2z,2x) we get Vf(1,1) = (0,2), since v = (0,1) itis ||v]| =1
and finally D, f(1,1) =V f(1,1)-v=(0,2) - (0,1) = 2.

II M 4) Determine, on varying the parameter k£, the nature of the stationary points of the func-
tion f(x,y) = 2® — 3kxy + 9.

We apply first order conditions:

B fl =32 —3ky =0 3(x* —ky) =0
Vf(:c,y)—@i{f;:%_gkx:(): y:%]m =
_ 3<x2—%k2x) :3x(x—%k2) =0 N {:1::0 U{:Ezg%k:Q
y=73ka y=0"|y=7#
and so we get two possible solutions: (0, 0) and (% k%, % k:3).
For the second order conditions we construct the Hessian matrix:
6x — 3k
H(.CC, y) - _ 3k 92
: 0 -3k . . 9 . :
Since H(0,0) = || 3k 9 itis |Hy| = —9k* < 0ifk # 0 and so (0,0) is a saddle

point; if k=0 we get f(z,y) = 2° 4+ 9* = f(0,0) = 0 and it is easy to see how in every
neighborhood of (0, 0) the function assumes both positive and negative values, and therefore
again (0, 0) is a saddle point.

3 9
Since ]HI(§ k2, 1 k3) = and so the

9k> -3k |Hy| =9k* > 0;|H;| =2 >0
-3k 2 |Hs| =9k? > 0ifk # 0

point (% k2, % k:3) is a minimum point; the case & = 0 has just been studied.




