TASKS Quantitative Methods/Mathematics for Economic Applications AA. 2020/21

Intermediate Test December 2020
NOT DONE

I Winter Exam Session 2021
I M 1) If $e^{z}=\frac{\sqrt[3]{e}}{2}(\sqrt{3}-i)$, find z.
I M 2) Given the vectors $\mathbb{X}_{1}=(1,0,-2,2), \mathbb{X}_{2}=(2,1,-1,2)$ and $\mathbb{X}_{3}=(1,2,4, k)$, check, depending on the parameter k, when they are linearly independent.
I M 3) Determine the only value of the parameter k for which the matrix $\left\|\begin{array}{lll}1 & 2 & 3 \\ 0 & k & 2 \\ 0 & 0 & 1\end{array}\right\|$ is diagonalizable.
I M 4) Consider the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathbb{Y}=\mathbb{A} \cdot \mathbb{X}$ whith $\mathbb{A}=\left\|\begin{array}{cccc}1 & -1 & m & 1 \\ 0 & 2 & 1 & k \\ 1 & 1 & 2 k & m\end{array}\right\|$.
Since $f(1,1,1,1)=(4,5,9)$, determine the values of the parameters m and k and then find the dimensions of the Kernel and of the Image of this linear map.
II M 1) Given $f(x, y)=x^{2}-3 x y+2 y^{2}, v$ and w the unit vectors of $(1,1)$ and $(1,-1)$, since $\mathcal{D}_{v} f\left(\mathrm{P}_{0}\right)=\sqrt{2}$ and $\mathcal{D}_{w} f\left(\mathrm{P}_{0}\right)=2 \sqrt{2}$, determine P_{0} and then calcolate $D_{v, w}^{2} f\left(\mathrm{P}_{0}\right)$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x(y+1) \\ \text { u.c.: }\left\{\begin{array}{l}x \leq 1-y^{2} \\ 1 \leq x+y\end{array}\right.\end{array}\right.$.
II M 3) Given the equation $f(x, y, z)=2 x y-e^{z-x}-e^{z-y}=0$, satisfied at $(1,1,1)$, verify that an implicit function $(x, y) \rightarrow z(x, y)$ can be defined with it and then calcolate the first order derivatives of such function.
II M 4) Given the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-x^{2} y-y z$, analyze the nature of its stationary points.

II Winter Exam Session 2021

I M 1) Two complex numbers are given z_{1} and z_{2} such that, written in trigonometric form, have moduli equal respectively to 4 and $\frac{1}{2}$, and arguments respectively equal to $\frac{17}{5} \pi$ and $\frac{23}{20} \pi$. Calculate their quotient $\frac{z_{1}}{z_{2}}$.
I M 2) Determine an orthogonal matrix that diagonalizes $\mathbb{A}=\left\|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right\|$.
I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right\|$, after having determined the dimensions of the Kernel and the Image of the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, find all the vectors \mathbb{X} that in this linear map coincide with their image: $f(\mathbb{X})=\mathbb{X}$.

I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{cccc}1 & -2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 5 & -4 & 2 & 1\end{array}\right\|$ and the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, $f(\mathbb{X})=\mathbb{A} \cdot \mathbb{X}$, determine if the vector $\mathbb{Y}=(1,1,4)$ belongs to the Image of that linear map. II M 1) Given the equation $f(x, y)=e^{x^{2}-y}-e^{y^{2}-x}=0$, verify that at the point $\mathrm{P}_{0}=(1,1)$ the hypotheses of Dini's Theorem are satisfied and then find the equation of the tangent line to the implicit function $y=y(x)$ so determined at $x_{0}=1$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=2 x^{2}+y^{2} \\ \text { u.c. }: x^{2}+2 y^{2} \leq 1\end{array}\right.$.
II M 3) Given the function $f(x, y)=x^{2}+y^{2}+x y$ find all directions $v=(\cos \alpha, \sin \alpha)$ for which it results $\mathcal{D}_{v} f(1,1)=0$.
II M 4) Given the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-x-x y^{2}$, determine the nature of its stationary points.

$$
\text { I Additional Exam Session QMfEA } 2021
$$

I M 1) If $z=e(\cos \alpha+i \sin \alpha)$, since $e^{1-3 i} \cdot z=e^{2+i}$, determine α.
I M 2) In the basis for \mathbb{R}^{3} formed by the vectors $\mathbb{V}_{1}=(1,2,-1), \mathbb{V}_{2}=(2,1,1)$ and $\mathbb{V}_{3}=\left(x_{1}, x_{2}, x_{3}\right)$, the coordinates of the vector $\mathbb{Y}=(1,3,0)$ are $(2,-2,1)$. Determine \mathbb{X}_{3}. I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{lcc}2 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & m & 4\end{array}\right\|$, determine, on varying the parameter m, the existence of multiple eigenvalues and determine if, for these values, the matrix is diagonalizable.
I M 4) Given the linear system $\left\{\begin{array}{l}x_{1}-x_{2}+2 x_{3}+x_{4}=2 \\ 2 x_{1}+x_{2}-x_{3}+2 x_{4}=1 \\ x_{1}-4 x_{2}+7 x_{3}+x_{4}=k\end{array}\right.$, find the values of the parameter k for which the system has solutions.
II M 1) Given the equation $f(x, y)=x^{3}-3 x y+y^{3}-3=0$ and the point $P=(-1,1)$ that satisfies such equation, find the equation of the tangent line to the graphic of the implicit function $y=y(x)$ defined at the point $x=-1$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x-y \\ \text { u.c.: } y^{2}-1 \leq x \leq 1\end{array}\right.$.
II M 3) Given $f(x, y)=x y-2 x+y$, let v and w be the unit vectors of $(1,1)$ and $(1,-1)$; determine if there are points P where $\mathcal{D}_{v} f(P)=\sqrt{2}$ and $\mathcal{D}_{w} f(P)=-\sqrt{2}$.
II M 4) Find the pair (x, y) for which the determinant of the matrix $\mathbb{A}=\left\|\begin{array}{cc}x y & y \\ x & x+y\end{array}\right\|$ has a minimum value.

I Summer Exam Session 2021

I M 1) Find z if $z^{3}=1-i$.
I M 2) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}1 & 3 & -1 \\ 2 & 0 & 1 \\ 1 & -3 & 2\end{array}\right\|$ and linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}: \mathbb{A} \cdot \mathbb{X}=\mathbb{Y}$, calculate the dimensions of its Kernel and its Image. Then given the two linearly independent
vectors $\mathbb{X}_{1}=(2,1,0)$ and $\mathbb{X}_{2}=(1,2,2)$ determine if $\mathbb{Y}_{1}=\mathbb{A} \cdot \mathbb{X}_{1}$ and $\mathbb{Y}_{2}=\mathbb{A} \cdot \mathbb{X}_{2}$ are also linearly independent.
I M 3) Given the linear system $\left\{\begin{array}{l}2 x+3 y-z=1 \\ 2 x+y+2 z=2 \\ 2 x+5 y+k z=m\end{array}\right.$, determine for which values of the parameters k and m it admits none, only one or infinite solutions.
I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{lll}3 & 2 & 1 \\ 1 & 4 & 4 \\ 1 & 2 & 5\end{array}\right\|$, knowing that it admits the eigenvalue $\lambda=2$, determine if it is diagonalizable and if it admits orthogonal eigenvectors.
II M 1) Given the equation $f(x, y)=e^{(x-1) y}-y^{2} e^{x-1}=0$, find all the points $(1, y)$ that satisfy this equation, verify in these points the applicability of the Dini's Theorem to obtain an implicit function $y=y(x)$, and calculate the first derivative of this function at the points found.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x(y-1) \\ \text { u.c.: }\left\{\begin{array}{l}y^{2}+x-1 \leq 0 \\ x \geq 0\end{array}\right.\end{array}\right.$. It may be useful to study the sign of the function.
II M 3) Given $f(x, y)=x y^{2}-x^{2}$, calculate $\mathcal{D}_{v} f\left(P_{0}\right)$, where v represents the direction from $P_{0}=(1,2)$ to the origin $(0,0)$.
II M 4) Determine the value of x that minimizes the value of the determinant of the matrix $\mathbb{A}=\left\|\begin{array}{ccc}2 x-1 & 2 & x-5 \\ 2 x & 1 & x+1 \\ x+1 & 3 & x+2\end{array}\right\|$.

II Summer Exam Session 2021

I M 1) The polynomial equation $x^{3}-i x^{2}-x+i=0$ has two real solutions and one imaginary solution. Calculate the cubic roots of the product of the three solutions.
I M 2) Given the matrix $\mathbb{A}=\left|\begin{array}{llc}2 & 3 & -1 \\ 2 & 1 & 2 \\ 2 & 5 & k\end{array}\right|$, the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}: \mathbb{A} \cdot \mathbb{X}=\mathbb{Y}$, and the vector $\mathbb{Y}=\left\|\begin{array}{c}1 \\ 2 \\ m\end{array}\right\|$, determine for which values of the parameters k and m the vector \mathbb{Y} belongs to the Image of the map.
I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right\|$, determine an orthogonal matrix that diagonalizes it.
I M 4) Find the coordinates of the vector \mathbb{X} in the basis $\mathbb{A}=\{(1,1,1),(1,1,0),(1,0,1)\}$ if it has coordinates $(2,1,2)$ in the basis $\mathbb{B}=\{(1,0,0),(1,1,0),(1,1,1)\}$
II M 1) Given the system $\left\{\begin{array}{l}f(x, y, z)=e^{x-y}+e^{x-z}-2 e^{y-z}=0 \\ g(x, y, z)=x^{3}+y^{3}+z^{2}-3 x y z=0\end{array}\right.$ and $\mathrm{P}=(1,1,1)$, point satisfying it, an implicit function is determined $x \rightarrow(y, z)$; of this function calculate the derivatives in the considered point .

II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=y(x-1) \\ \text { u.c.: }\left\{\begin{array}{l}x \leq 1 \\ x \geq y^{2}\end{array}\right.\end{array}\right.$.
II M 3) Given $f(x, y)=2 x y-x^{2}$, calculate $\mathcal{D}_{v} f(1,1)$, where v represents the direction from $(1,1)$ to $P_{0}=(1,2)$.
II M 4) Determine, on varying the parameter k, the nature of the stationary points of the function $f(x, y)=x^{3}-3 k x y+y^{2}$.

I Autumn Exam Session 2021

I M 1) Calculate the square roots of the number $z=\frac{1}{1+i}$.
I M 2) Given the two orthogonal vectors $\mathbb{X}_{1}=(1,1,-2)$ and $\mathbb{X}_{2}=(1,1,1)$, determine a third vector \mathbb{X}_{3} orthogonal to both them and, with their unit vectors, form an orthogonal matrix. Finally, determine the inverse of this orthogonal matrix.
I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{ccc}k & 0 & k \\ 0 & -1 & 0 \\ k & 0 & k\end{array}\right\|$, determine the values of k for which the matrix admits a multiple eigenvalue .
I M 4) Given the matrix $\mathbb{A}=\left\|\begin{array}{cccc}1 & m & -1 & 1 \\ 2 & 1 & 1 & 2 \\ 1 & -1 & -4 & 1\end{array}\right\|$ and the vector $\mathbb{Y}=(2,6, m)$, determine for which value of m the vector \mathbb{Y} belongs to the Image of the linear map generated by \mathbb{A}. II M 1) Given $f(x, y)=x e^{y}$ and $\mathrm{P}_{0}=(1,0)$, find all the directions $v=(\cos \alpha, \sin \alpha)$ for which it is: $\mathcal{D}_{v} f\left(\mathrm{P}_{0}\right)=0$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=2 x-3 y \\ \text { u.c. }: x^{2}+y^{2} \leq 4\end{array}\right.$.
II M 3) Given the function $f(x, y, z)=x e^{y-z}+x \log (2 y-x)$, calculate its gradient at the point $P_{0}=(1,1,1)$.
II M 4) Given the equation $f(x, y)=x^{3}-2 y^{3}-3 x+4 y=0$, satisfied at the point $(1,1)$, verify that the hypotheses of Dini's theorem for defining an implicit function $x \rightarrow y(x)$ are satisfied and then calculate $y^{\prime}(1)$.

II Autumn Exam Session 2021

I M 1) The two complex numbers z_{1} and z_{2} have both modulus equal to 1 , while the first has for argument $\frac{\pi}{4}$ and the second has as its argument $\frac{\pi}{3}$. From this informations, deduce the values of $\cos \frac{7 \pi}{12}$ and of $\sin \frac{7 \pi}{12}$.
I M 2) Given the linear map $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathbb{Y}=\mathbb{A} \cdot \mathbb{X}$, with $\mathbb{A}=\left\|\begin{array}{cccc}1 & -1 & 2 & -2 \\ 2 & 2 & 1 & m \\ 4 & 0 & 5 & k\end{array}\right\|$, determine the values of m and k for which are equal the dimensions of the Kernel and the Image of this map, and for which the image of the vector $(1,1,1,1)$ is the vector $(0,4,4)$.

I M 3) Given the matrix $\mathbb{A}=\left\|\begin{array}{lll}0 & 1 & m \\ 1 & 0 & 2 \\ 1 & k & 0\end{array}\right\|$, determine some value of m and k for which the eigenvectors of the matrix are all orthogonal each other.
I M 4) Determine the eigenvalues of the matrix $\mathbb{A}=\left\|\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & k\end{array}\right\|$, knowing that the matrix has no inverse matrix.
II M 1) Given the equation $f(x, y)=e^{x-y}+e^{y-x}-2 e^{x+y-2}=0$ satisfied at the point $\mathrm{P}=(1,1)$, an implicit function $x \rightarrow y(x)$ is determined; of this function calculate the first derivative at the point $x=1$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x y \\ \text { u.c. : }\left\{\begin{array}{l}x^{2}-2 x-y \leq 0 \\ y-x \leq 0\end{array}\right.\end{array}\right.$.
II M 3) Given the function $f(x, y)=x e^{y-x}-y e^{x-y}$, calculate $\mathcal{D}_{v} f(1,1)$, with v the unit vector of the vector from the point $(1,1)$ to the point $(2,2)$.
II M 4) Given the function $f(x, y, z)=x^{3} e^{x y-z}+\log \left(2 y z-x^{2}\right)$, calculate its gradient at the point $P_{0}=(1,1,1)$.

