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DIFFERENTIAL CALCULUS
FOR VECTOR-VALUED FUNCTIONS
OF A VECTOR VARIABLE

Let R" be the n-dimension vector space, whose elements are n-tuples of real numbers, or
vectors, resulting from the Cartesian product of R by itself n times.

Any function f has domain and range (codomain) contained in proper vector spaces, R" and
R™, with n >1 and m > 1; both the independent and the dependent variable may then
assume real or vector values. So we define:

f :R — R, real function of a real variable;

f:R — R" , vector valued function of a real variable;

f:R"™ — R, real function of a vector variable;

f:R" — R"™ | vector valued function of a vector variable.

TOPOLOGY IN R"

An element X = (z1, 29, ...,z,) € R" is also called a point or a vector.

Given two points X, Y € R", X = (21,22, ..., %), Y = (y1, Y2, ..., yn) We have:

Definition 1 : The (Euclidean) distance between X and Y is given by the norm (or lenght) of

their difference: d(X)Y) = | X - Y] = Z(wl —y)*.

i=1
Many are the distances that can be defined in R", and here we will only use the Euclidean
one.
Definition 2 : A neighbourhood of the point X, € R" with radius ¢ is the set:
J(Xp,e) ={XeR": dX,Xp) < e} ={XeR": |X-X|| < €}.
A neighbourhood J(Xg, €) in R? consists of the points inside a circle having X, as center and
¢ as radius; a neighbourhood J(Xp, ¢) in R? consists of the points inside a sphere having X
as center and ¢ as radius.
The topological definitions of the various types of points in R" are similar to those given in
R; given a point X and a set A C R" we have the following:
Definition 3 : X, is an accumulation (or limit) point of the set A if any neighborhood of X
has a non-empty intersection with A, different from the single point Xy, i.e. if:
Ve>0: {3(X0,5)/{X0}} NA#£0;
Definition 4 : X, € A is an isolated point of the set A if there exists at least a neighborhood
of Xy which has no common points with A, except for the point X, itself, i.e. if:
de>0: JXp,e) NA={Xp}.
Definition 5 : X, € A is an interior point of the set A if there exists at least a neighborhood
of Xy all contained in A, i.e.if: 3¢ > 0: J(Xy,e) C A.
Definition 6 : X, € C(A) is an external point of the set A if X is an interior point of the set
C(A), the complementary set of A.
Definition 7 : X is a boundary point of the set A if every neighborhood of X, has non-empty
intersection with both A and C(A), i.e. if:
Ve>0: J(Xp,e) NA#D and J(Xo,e) NC(A) #0.
To be an isolated point or an interior point of A, Xy must belong to A; this is not required to
be an accumulation point or a boundary point.
If X, is an isolated point of A then X, is also a boundary point of A; if X is an interior point
of A then X is also an accumulation point of A.

From the topological definitions of point, the topological definitions for sets follow:
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Definition 8 : A set A C R" is an open set if all its points are interior points.

Soaset A C R" is open if none of its boundary points belongs to it.

Definition 9 : A set A C R" is a closed set if its complementary set is open.

So aset A C R" is closed if all its boundary points (or all its accumulation points) belong to
it.

An interval in R" is given by the Cartesian product of n intervals of R.

If all intervals are closed : [x‘»‘ :)31-’] , the interval H [:r‘.‘ xb} will be a closed interval, if all

19 19
i=1

n
the intervals are open : |z, 2! [, the interval H} zf, z?[ will be an open interval.

1=1
Definition 10 : A set A C R" is said to be bounded if there exists a neighborhood J(X, ¢),
having center in an appropriate point X, and with appropriate radius e, such that
ACy (Xo, € ) .

Definition 11 : A closed and bounded set A C R" is also said a compact set.

VECTOR VALUED FUNCTIONS OF A REAL VARIABLE f:R — R"

Consider a vector X € R" each of whose components is a function R — R of the real varia-
ble t. We write X(t) = (z1(¢), x2(t), ..., x,(t)) or f(t) = (fi1(t), fo(t), ..., fu(t)) to indicate
such a function. Each function z;(¢) = f;(¢) isafunction f, : R —-R, 1 <i <n.

The function f :t¢ — X(¢) is called a vector valued function of a real variable, as the image
of the real variable ¢ is a vector X(¢) € R". Such type of functions are also called curves in
R". For this type of functions graph means also codomain (range). The resulting line is also
said the curve support. The field of existence of such a function is given by the intersection of
the fields of existence of the n functions z;(t) = f;(t).

Example 1 : The graph of the function f; : R — R? ¢ — (cost,sint) is the Cartesian cir-
cumference x> + y* = 1, having center in the origin and radius equal to 1. The circumferen-
ce is traveled countless counterclockwise for — oo <t < 4 0.

The graph of the function f5 : [0, 27?[ —R%t— (cos t,sint) is the same circumference co-
vered only once counterclockwise starting, for ¢ = 0, from the point (1, 0).

The graph of the function f3 : [0, 27?[ —R%t— (sint,cos t) is the same circumference co-
vered only once clockwise starting, for ¢ = 0, from the point (0, 1).

As can be seen from these examples, it is not sufficient to describe geometrically the points of
a graph, but it must also be considered how, how many times and in which direction such a
graph is covered.

Example 2 : The graph of the function f; : R — R?, t — (t, t2) is the same of the cartesian
parabola y = 2?.

The graph of the function f, : R — R? t — (tQ, t4) is only the right side of the same para-
bola, covered twice, from right to left for ¢ < 0 and from left to right for ¢ > 0.

The graph of the function f3 : R — R? ¢t — (sin t, sin” t) is the part of the parabola y = z°
included between the point ( — 1,1) and the point (1, 1), covered innumerable times to and
from between the extreme points.

Example 3 : The graph of the function f:R — R? ¢t — (cost,sint,t) is an helix that
wraps up itself, going up if £ > 0, going down if ¢ < 0, along the axis of the third variable.
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Suppose we have a function in cartesian form f: R — R,z — y = f(x);if there exists a
function I : R — R? ¢ — (z(t),y(t)), such that y(t) = f(z(t)),Vt € Dy, F(t) is called a
parametric version for y = f(x).

Example 4 : The function f:R — R% ¢t — (o + pcost,yo+ psint) is a parametric ver-
sion for the circumference with center (xy, yo) and radius p > 0.

Example 5 : The function f:R — R? ¢t — (acost,bsint) = (z(t),y(t)),a, b € R, is a
parametric version for the ellipse with center (0, 0), axes parallel to the coordinate axes, and
2 2 2 N2
, ~z* y°  (acost) (bsint)”
semiaxes a and b. In fact : ) + R 22 + = =1.
f:R—R*t— (xg+acost,yy+ bsint) is instead a parametric version for the ellipse
with center (xg, yo), axes parallel to axes = and y, and semiaxes a and b.

LIMITS AND CONTINUITY FOR FUNCTIONS f:R — R"
Given f:R = R", t — f(t) = (fi(t), f2(t), ..., fu(t)) , and ty an accumulation point of D.
Definition 12 : tlir?f(t) = tlir?(fl (t), fo(t), ..., fu(t)) is defined as:

—10 —1l0

tlintlf(t) = (tlit}flfl(t),tlir?fg(t), ,thrglfn(t)) , that is the limit of a vector is defined as a
—10 —1l0 —l0 —t0

vector having as components the limits, for ¢ — ¢y, of each of the components of f(t).

To calculate the limit of a function f : R — R" consists therefore in calculating n limits for
functions R — R.

Definition 13 : We have th_g}]f(t) = £ e R", with ¢, € R, if:

Ve>036(e):0< |t—to| <b(e)=||f(t) — Ll <e.

Definition 14 : We have tlizn f(t) =L eR"if:
Ve>036(e):t<b(e)=||f(t) — L] <e.
Definition 15 : We have tlig_n f(t) =L eR"if:
Ve>036(e):t>06(e)=||f(t) — L] <e.

We shall not deal here with the concept of infinite limit.

If to is an accumulation point of Dy, and ¢y € Dy, we have the following
Definition 16 : The function f:R — R", ¢t — f(t) = (fi1(t), fo(t), ..., fu(t)) is continuous
at the point ¢ if tlir?f(t) = f(to).

—1o

This definition corresponds to requiring that:
tlijgfl(t) = fl(t())atlijgﬁ(t) = fa(to), ...,}Lrg)f7l(t) = fu(to),

that is that each of the components f;(¢) be continuous at point .
In metrical form, f(¢) is continuous at ¢ if:
Ve>036(e): |t —to] <b(e)=|f(t) — f(to)]| <e.

If y is an isolated point for D the function is defined as a continuous one at .

DERIVATIVE FOR FUNCTIONS f:R — R"

Given JTR-R"t— f(t) = (fl(t)a f?(t)7 ) fn(t)) = X(t) = (xl(t)v 372(t)7 e xn(t)) )
and considering point ¢, € Dy, we define the derivative of the function f(¢) at point .
Definition 17 : The derivative of the function f(¢) at ¢y is given by the limit:

() = f(k)

lim == — = f'(to) = X'(tg) € R", provided that this limit exists and is finite.
—ty — 10
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If a function has derivative at ¢, we say that the function is differentiable at #.

Since € R while (f(t) — f(ty)) € R":
—to
tim TO =T i (700 - s(00) =
= }gﬁﬁ (f1(t) = fi(to), fo(t) = fo(to), ..., ful(t) — fulto)) =
- (A5 PO~ 50~ i) _
t—tp t— to t—tp t— to t—ty t— to

Therefore the function f: R — R" has the derivative at point ¢, if each of its components
fi(t) has the derivative at point .

For practical calculus, the result we have found is that the derivative of a vector is still a vec-
tor, whose components are the derivatives of its components.

Example 6 : Given f: R — R*t — (t,¢%), we have f'(t) = (1,2t).
Given f:R — R*t — (#,¢'), we have f'(t) = (2t,4t").
Given f:R — R3¢t — f(t) = (cos t,sint,t), we have f'(t) = ( —sint,cost,1).

Theorem 1 : If f(¢) is differentiable at ¢, then f(¢) is continuous at #.
Proof : We must verify that tlir?f(t) = f(ty) or that tlir?(f(t) — f(ty)) =0.
—10 —10

o) — )

=0- f'(ty) = O, i.e. the thesis.o
t— 1t

But Jim(/(t) — f(to)) = Jim(t — o) -

t—ﬂfo

The definition of a differentiable function at ¢; can also be written as:

. X(t) — X(t .
fln?% = X'(ty) ; the vector X'(to) € R" is called the tangent vector to the curve
l—10 —_— 0
X(t) at ty.

We need X'(ty) # O, null vector, to get the tangent vector X' ().

Xit)

Kito)

The equation of the tangent line to the curve X(¢) at the point f(to) = X(ty) is the function:
r:R—R"t—r(t)=X(t) +t -X'(tH) or

t = (fito): fo(to)s s fulto)) + - (fi(t0), f2(to), ., fr(t0))-

Example 7: Given f:R —R? f(t) = (*,t’,¢') and t, =1, we get f(ty) = (1,1,¢€),
f(t) = (2t,3t*,¢') and so f'(ty) = (2,3,¢€). The equation of the tangent line to the curve
at top =1 isthen: t — (1,1,e) +t-(2,3,e) = (1 +2t,1 + 3t,e + et).

Given Df (t) the derivative of f(¢), we have the following:
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Theorem 2 : If f(¢) and g(t) are differentiable functions at ¢, then:

D(f(t)£g(t)) = DF (1) £Dg(t).

That is, the derivative of a sum (of a difference) of functions is equal to the sum (the differen-
ce) of the derivatives.

As for the product, since now images are vectors, we must consider two cases: the product of
a scalar and a vector and the scalar (or dot) product of two vectors.

The following theorems are valid:

5 fu(t)) and g:R — R, t — g(t)
Dy(t) - f(t) +g(t) - Df(t) .

Example 8 : Given f: R — R?, f(t) = (cost,sint,e’) and g: R — R, g(¢) = t*. Then:
g(t) - f(t) = t* (cos t,sint,e’) = (t*cost,t*sint,t* ') . And so:

D(g(t)- f(t)) = (2tcost —t*sint, 2tsint + t*cos t,2te’ +t*e') =

=2t (cos t,sint,e’) +t* (—sint,cos t,e") = Dg(t) - f(t) + g(t) - Df(2).

Theorem 3 : If f:R — R", t — f(t) = (fi(t), f2(t), ..
are differentiable functions at ¢, then D(g(t) - f(t)) =

Theorem 4 : If fand g: R — R" are differentiable functions at ¢, then:

D(f(t) - g(t)) = Df(t) - g(t) + f(t) - Dy(2).

Example 9 : Given f:R — R’ f(t) = (t,sint,e’) and g:R — R’ g(t) = (£ ¢',t%),
then f(t)-g(t) = (t,sint,e') - (*,e',t’) = + e'sint + ¢* ¢’ . And so:

D(f(t)-g(t)) =3t +e'sint + el cost + 3t> e + 3! =

= (1,cost,e') - (¢*,€',t%) + (t,sint, ') - (2t,€',3t>) = Df(t) - g(t) + f(t) - Dy(t).

In both cases, therefore, independently from the product, the rule is that the derivative of a
product is the sum of two terms, each of which is the product of the derivative of a factor and
the non-derivative of the other.

As far as composite functions are concerned, at this stage we can only deal with this case:
Theorem 5 : If ¢g: R — R, ¢t — g(t) is a differentiable function at ¢ and f:R — R",
t— f(t) = (fi(t), fa(t), ..., fu(t)) is a differentiable function at g(t), then the composite

function: R % R L R", t — f(g( ) = (f1(g(t), f2(g(t)), ..., fu(g(t))) is differentiable at ¢

and: D(f(g(1))) = f'(9(1)) - 4'(1).
Proof : As Df(g(t)) = (Dfl( (1), Df2(g(t)), ... Dfnl(g(t))), we g
t !/

t >
Df(9(t) = (fi(9(t)) - 4 (), f2(9(t)) - §'(#), .. £ (9(2)) - 9 (2)) = ( () - g'(t).e
Example 10 : Given g: R — R, g(t) =t*,and f: R — R?, f(t) = (cost,sint,e') , then:
flg(t) = (cos t*, sin %, et2> . And so:
D(f(g(t)) = (= sin 2 2t,cos - 2t,¢” - 2¢) =
- (— sin 2, cos t2,et2) (28) = f(g() - 4 (1)

For a vector valued function R — R" it is meaningless to speak about reciprocal and
quotient derivative.

REAL FUNCTIONS OF A VECTOR VARIABLE f:R" — R

Since the domain is now given by R" or by an appropriate subset of its, the independent va-
riable is a vector and so functions f : R" — R are also called functions of several variables.
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These functions will be represented in the form y = f(X) = f(xy, z9, ..., x,), z; € R.
We also use notations like z = f(z,y) for f:R*> — R, while it is also commonly used
w= f(x,y,2) for f:R> = R.

The graph of a function f: R" — R,y = f(X) = f(z1,x9, ..., x,) is defined as the subset of
R" x R = R™™! consisting of points {(x1,x, ..., 2, y),y = f(T1,To, .0y Tn)} .

If n =2, being the domain a subset of the real plane, the graph of z = f(z,y) is a two-di-
mensional surface lying in R? that can be represented as in the previous figure, crushing, in
perspective, the plane of the independent variables x and y.

If n > 2 we say that the graph is an n-dimensional hypersurface in R"*1.

The existence field of a function of two variables is a subset of R?, and can therefore be
represented graphically.

1

Example 11 : Let us consider the function f: R* — R, f(z,y) = m '
r—Y

Let's determine and represent its existence field.
2 2

z—y >0 x>y

We should put d .
FonoE Rt {10g($—y2)750 e {x—y2¢1:x¢1+y2

The existence field of the function is represented by the dark region of the next figure, formed
by the points on the right of the parabola x = y*, removed the points of the parabola
r=1+1>.

Example 12 : Let us consider the function f : R* — R, f(x,y) = log<2y_—2€/> .

Let's determine and represent its existence field.
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We should put v- > 0, which is satisfied if:
2—a22—y
—e*>0 . —e’ <0 . . *
{g_ 22 i Y >0 or if {g_ 22 fy <0’ respectively equivalent to {z Z ; 2 and to

y<e'
{ y>2—a
The existence field of the given function is represented by the union of the dark regions, the
central one is the solution of the first system, the remaining two, the one on the left and the

one on the right, represent the solution of the second. The edges of the areas are dashed as
they do not belong to the field of existence, since the inequalities are tight.

1
sin (x —y)

Example 13 : Let us consider the function f : R* — R, f(z,y) =

Let's determine its existence field.

We should put sin (x —y) #0,or: x —y#kr=>y#x—km,VkE€Z.

We must therefore remove from the plane R? all the straight lines, parallel to the bisector
y = x, with equation y =z — km, k € Z.

Definition 18 : f: R" — R, y = f(X) is a bounded function on A C R" if there are two
values, y1,y2 € R, suchthat: y; < f(X) <y, VX €A.

Definition 19 : A point X; € R" is called a relative maximum (minimum) point if there
exists a neighborhood J(X, ¢) for which f(X) < f(Xy) (f(X) > f(Xp)) VX € J(Xo,¢).

LIMITS FOR FUNCTIONS f:R" — R
Let Xy € R” be an accumulation point for the domain of the function y = f(z1, 2, ..., ;) .
X = (x1,T9,...., Ty) , Xg = (x?,xg,. xo) ,and [ € R.

.oy n

Definition 20 : Xlirg flxy, zg, .y xy) =1 if:

— a0
Ve>036(e):0< X =Xp|| <6=|fX) =1 <e;
Definition 21 : Xlir% flxy, xo, ...y xy) = + 00 if :

aneN(]
Vedd(e): 0 < |X=Xg|| <6 = f(X) >¢;
Definition 22 : Xlir% flxy,zo,...yxy) = — o0 if:

a0

Vedd(e):0< X=X <= fX) <e.

For the limits of functions f :R" — R the so called "uniqueness of the limit theorem",
"permanence of the sign theorem" and "comparison theorem" apply, as for functions R — R.
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When we write X — X, that is that X takes values closer and closer to X, it means that X
belongs to a neighborhood with center X, and radius §; as X, € R", we use, in the limit defi-
nition, the Euclidean norm ||X — Xj||.

When we say that (x,y) — (x0,y0) we mean that this should be through all possible paths
(or curves) continuous (i.e. without gaps or jumps) that lead from (x,y) to (xg,yo). Limit
must always be the same for every path used to say that the limit exists. If multiple paths lead
to different results, the conclusion will be that the limit does not exist.

2

Example 14 : Let us compute  lim vy
(2)—(0.0) T + 4

Since the numerator is an infinitesimal polynomial of the third degree, while the denominator

is of the second degree, we assume that the limit is 0 and we try to verify this result using the
2

. The function is defined in R*\ {(0,0)} .

definition. It must result ﬁ — 0| < € in a neighborhood of (0, 0).
L Y
But ‘“ = |a|- ~ < |2, as Y <1V (@) € R\ {(0,0))
u = x|, >~ 4, €, ) .
x? ~|— y? x? 4+ 92 Y

2

Then it is sufficient to impose |z| < & to obtain <e.

Ty
z? + y?
But |z| < e & —e <z < g, that is we get a vertical strip inside which it is always possible

to find a neighborhood of (0, 0): just take 6 < €.

L . xy°
So it is verified that  lim -5 = 0.
(z,y)—(0,0)x* + Yy

1
xsm; 'y#o,letuscompute lim f(x OF

Example 15 : Given f(z,y) =
0 =0 (r.0)~(0.0)

As x approaches 0, while sin — is bounded, also now let us assume that the limit is 0, consi-
Yy

stent, moreover, with the behavior of the function along the = axis. Then let us check that:

xsin —| = |z| -

xsin — — 0| <e in a neighborhood of (0,0). But

Y

1
sm—‘ <lz|, as
Yy

sin —| < 1. Imposing |z| < & we find the solution as in the previous example. For the =

axis points we have instead: |f(z,y) — 0] = |0 — 0] < e, which is always verified.

So lim T =0.
o )(Oof( ,Y)

2
x
Example 16 : Let us compute lim ———. As (z,y) — (0,0), let us use as approa-
p pute. lim ErgE (z,y) — (0,0) pp
ching paths the straight lines passing through the origin, whose equation is y=mux.
Studying the limit along these paths with the substitution y = m z, we get:
2

) 1 1 . .
}g% m = ilil’(l) T 12+ 3 The result depends on m, varying with the

function line used. So lim ——— does not exist.
(@9)—(0,0) 22 4 32

2

Example 17 : Let us compute  lim 2$7 Operating as in the previous example, gi-
(x,y)—(0, 0) z? +y!

x? 1
= t 1 ——  =lim——=1.Th 1 |
ven y = mx, we compute lim L a;lg(l)l—f—m‘lx? en moving along any
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line passing through the origin the limit is 1. However is not strictly correct to deduct from
this that lim ——— =
(z)—(00) 2 + y*
In fact, if we use different paths to get closer to (0,0), such as parabolas like x = kiy?,
studing the limit with these restrictions, we have:
k2 y4 ]{?2 kQ
lim ————— =1 = :
yl—I%ka‘l—Fy‘l ylg(leQ—Fl k2 4+ 1

2

Varying the parabolas, the result is different, and then  lim % does not exist.
(z.y)—(0,0) T + Y

ITERATED LIMITS

We should note that to calculate ( )lir(n : f(x,y), it is incorrect to calculate the two li-
x?y - :L'O7yU

mits: lim lim f(z,y) and lim lim f(x,y). These two limits, called iterated limits, consist
&0 Y=o Y=o T—mg

in the successive calculation of two limits of functions of a single variable, holding the other
as a constant.

Should both exist and be equal, however, this would not allow us to conclude anything about
lim  f(z,y).
(,y)—(z0.50)

Even if lim lim f(z,y) = lim lim f(x,y) = [, it is incorrect to attribute the resulting value
T—=To Y—Yo Y—Yo T—To

l[to  lim )f(sc,y).

(@.y)— (20,50

2

Example 18 : We have already seen that lim % does not exist. Moreover:
()00 + ¥y
T N A
limlim ——— =1lim — =Ilim1=1 and
z—0y—0 x* + y2 z—0 2 z—0
2 0
limlim —— = lim — = lim0 =

2

y—0x—0 2 —+ y2 y—0 Y
consistently with the non-existence of the limit.

1
:1:s1n§ .y;«éOit
0 cy =0

Example 19 : We have already seen that for the function f(z,y) =

results  lim z,y) =0.
(ﬂcvy)ﬂ(oﬂ)f( v)

. .1 ) N .1 .
Yet we have that: lim lim zsin — = lim 0 = 0, whereas lim lim z sin — does not exist. In

y—02x—0 Yy y—0 x—0y—0 Yy
fact the existence of ( 1)1m( : f(x,y) does not imply the existence of the limit along all pos-
z,y)—(0,0

sible paths from (z, y) to (0, 0).

Example 20 : Using the iterated limits for  lim % , we get:
(z.y)—(0,0) T +y

0
lim lim —>— = lim — = lim0 = 0, and
r—0y—0 T* + y2 1—0 2 —0
. Yy .
lim lim =lim —=1m0=0
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If we use the straight lines passing through the origin y =max, we get instead

me

lim = , and therefore the given limit does not exist, even though the two
e—0 12 +m222 14+ m?

iterated limits exist and have the same value.

LIMITS FOR FUNCTIONS f : R? — R USING POLAR COORDINATES

It may be useful, but only for functions of two variables, to change from Cartesian to polar
coordinates to calculate a limit. Each point (z,y) € R? can be expressed, referred to a given
T = x0+ pcos v

y=uyo+psind

These are the polar coordinates of the point (z, y) compared to the point (xg, o).

point (xg, yo), as: {

_ . x = pcos
If (z0,y0) = (0,0), we get, as a special case, Y= psind
(&, )
y——— — e = = = = = = = = = e =
Ip-seni&‘
Wb — — -
(zo,y0),
gy =

Operating the substitution, we have:

lim  f(z,y) = lim f(pcos ¥, psin ) = lim F(p, V).
(@,9)—(x0,30) p—0 p—0
The limit as (x,y) — (xo,y0) becomes a limit in the single variable p, as p — 0, since
p=(z,y) — (zo, yo)]| -
But the value of the limit should not depend on the particular path used, and this requires that
,l;if(l)F( p, ), if it exists, should not depend on the particular direction, i.e. from 1J; we say that

convergence (or divergence) of lin%F(p, Y) must be uniform with respect to 9, i.e. that §
p—
depends only on ¢, not on 4.
We have, using polar coordinates, the following limit definitions:
Definition 23 : It is lin?)F(p7 ¥)=1€eRif
p—
Ve>036(e) : V9, 0<p<éd=|F(p,v¥) -1 <e;
Definition 24 : It is liII(l)F(p, ¥) = + o0 if
p—
Vedd(e):VI,0<p<d= F(p,¥) >e¢;
Definition 25 : It is lin?)F(p7 ¥) = — oo if
p—

Veddé(e):VI,0<p<bd= F(p,V) <e.
Uniform convergence is expressed by: Ve > 036(¢) : VoI, which expresses precisely the

independence from ¥ in the choice of §(¢).
So if lin%F (p,¥) =1 (or + 0o or — 0o) uniformly with respect to 1}, we have that:
p—

lim  f(z,y) = limF (p, ).

(z,y)—(0,y0)
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4

Example 21 : Letus compute  lim ——— * 5 using polar coordinates.
(2.9)—(0,0) T + Y

From{x:pcpsﬁ we get lim (pcosq?) —hmp cos' 9 =0.
y = psind p—=0 (pcos )’ + (psin¥)>  p—0

Let us see whether the convergence to 0 is uniform with respect to ¥.

From the limit definition, it results that: |p*cos’ 9| < e in 3(0, 6(¢)).

But [p®cos’ 9| <p® as cos'¥ <1, and so, if pP<e, ie. —\e<p<ife, (or

0<p< \/E as p is always posmve) if 6(e \/_ we get:
0<p<é(e)=+e=|pcos’d| <e, and S0 llmF(p,é‘) = 0 and the convergence of the

|
limit is uniform. Then lim ——— =0.

(2.9)—(0,0) T2 + y?

: 2y . :

Example 22 : Let us compute  lim ——— using polar coordinates.
(e)—(0.0) 2" + 1/
2 3

Using the lines y = max we get:  lim TV im T i = ,

(z,y)—(0,0) Tt + y2 —0 xt + m? x2 a—0 T2 + m?
but we know that this is not enough to guarantee the existence of the limit.

From {x:pcpsﬂ we get:

y = psin
2 o2 . 2 .
. p cos” ¥ - psind ) cos” 1 - sin ¢
lim - =limp- - = 0, as the first factor p approaches
p—0 ptcost ¥ + p?sin? ¢ p—0 P p? cos* ¥ + sin? ¥ ' P app

cos?
sin?d
, . . z’y
So limF'(p,¥) = 0, but it is not true that  lim ———
p—0 (z,9)—(0,0) % + Y
not uniform. In fact, from the limit definition it must result that:
cos® 9 - sin ¥ cos® ¥ - |sin o]

. - —0l=p- - < ¢. The fact that the convergence is
P p? cos* ¥ + sin? ¥ P p? cos* ¥ + sin? ¥ c vere

to 0 while the second factor approaches to

= 0, because the convergence is

cos? ¥ - |sin 9|
p? cost ¥ + sin?
ly large values, for values of ¥} near to 0 or to m, when p — 0; so we cannot find a greater

cos? o - |sin 9|
P> cos4219 + sin? ¢

So lim % does not exist.
(z,y)—(0,0)2% + Yy

not uniform can be explained noticing that the quantity can take arbitrari-

term for

being indipendent from .

CONTINUOUS FUNCTIONS
Similarly to f : R — R, also for functions f : R" — R we have the following:
Definition 26 : Given X; € R" an accumulation point belonging to the domain of f(X), the
function f(X) is continuous at X if Xlir% fX) = f(Xp).
a0

3

Example 23 : Let us verify that lim ——— v = 0. In fact, since:
(2.9)—(0,0) T2 + y?
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3 2 3

z . x
PR = |z|- 7:52-1—342 < x|, if |x] < 6 =€, we get m —O‘ < g, and then the
3
T
limit is 0. We can then define the function f(z,y) = 22 4+ 2 (z,y) # (0,0),
0 (z,y) = (0,0)

Since ( l)in%0 O)f(a:, y) = f£(0,0) = 0, the function f(z,y) is continuous at (0, 0)
a,y)—(0,

For continuous functions f : R" — R theorems similar to those established for continuous
functions of only one variable apply, namely:

- Adding, subtracting and multiplying continuous functions we obtain continuous functions;

- The reciprocal and the quotient of continuous functions (with no infinitesimal denominator)
are continuous functions;

- Composing continuous functions we obtain continuous functions.

And also:
Theorem 6 : (Weierstrass) If f:R"™ — R is continuous in a compact set, then it admits
absolute maximum and minimum values.

Important Note: The terminology used in Italy is different from that used in the Anglo-Saxon
literature. In Italy derivable function means a function that has the derivative at a point; diffe-
rentiable function means a function that can be linearly approximated. In Anglo-Saxon litera-
ture the term differentiable function is used in both cases. For real functions of a real variable
being derivable implies being differentiable and vice versa, but this does not apply to real fun-
ctions of a vector variable.

PARTIAL DERIVATIVES
For a function f : R — R we try to determine the instantaneous rate of change (i.e. the deri-
vative) at a point x( giving to the independent variable values on the left and on the right of
X, since the domain of f is contained in R, which is a one dimension space. The derivative,
denoted by f’(x), is defined as the limit:

im £ @) = flzo) _ . fl@o+h) — f(zo)
T—x xr — X h—0 h
finite, and it gives us the slope of the tangent at the point (z¢, f(x)) to the graph of the fun-
ction.
For functions f : R" — R, being the domain a subset of an n-dimensional space, taken X,
we must choose one of the infinite directions (straight lines) passing through the point X; to
determine the instantaneous rate of change of the function f at X, relative to the chosen di-
rection.
If point X is interior to Dy, it is possible to develope this analysis in any direction, while, if
point X is on the boundary of Dy, this is possible only in some directions.
The above leads us to the definition of directional derivative.
If X 1s an interior point of D, we have the following:
Definition 27 : Choosen a unit vector v € R" (||v|| = 1), the directional derivative of f in

Xg+tv) — f(X
the direction of v at the point X is the limit %in&f( 0+ :) (%) =D, f(Xy), provided

that this limit exists and is finite. We note that in this definition ¢ € R..

= f'(xy), provided that this limit exists and is

Since the graph of f is a (hyper)surface, Xy + ¢t v being a segment that, varying ¢, starting
from X leads in the direction of v, the projection through f of this segment generates a curve
r(t), lying on the (hyper)surface rapresenting the graph; to this curve we can draw the tangent
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line at (X, f(Xp)), which will form an angle a with the line passing through X, in the
direction of v. As a result, is D, f(Xy) = tg , which represents the slope of the tangent line.

If f:R? =R, z= f(x,y), every unit vector v € R®> can be expressed in the form
v = (cos a,sin o), with 0 < o < 27. The directional derivative D, f(X;) can then be ex-
f(xo + teos a,yo + tsin ) — f(xo, Yo)

pressed as: D, f(Xy) = %ing ; :

The figure shows the example for a function f: R? — R.

F o)
/-‘l
r(f)

X

SN L e
s

If we compute the directional derivative using an unit vector of the canonical (also called
natural or standard) basis £ = {ej, e, ..., €,} we obtain the partial derivative with respect to
the variable z;:

Definition 28 : Chosen e; € F, the partial derivative of a function f in the direction e; (or

Xo+te) — f(X X
respect to the variable z;) at X is defined as %irr(}f( 0+ et) f(Xo) = 82( 0)

, provided

that this limit exists and is finite.

If Xy = (21,2, ...,z,) this limit can also be written:

limf(xl,:cg, s T F ey ) — f21, @0, oy Ty oy ) _ af(Xop) '
h—0) h Ox;

X
We use also other notations such as: % = f1.(Xo) = f{(Xo) = Dy, f(Xg) = D; f(Xp) .

7
To move in a direction parallel to an axis means to increase only one variable and to keep all

the other constant.

If we consider a function of two variables f(x,y), we have two possible partial derivatives at

point (zo, yo):

-the partial derivative with respect to x, defined as :
- f(@o+h,yo) — f(mo,0) _ Of (w0, 50) /
1 = =

hllr(l) h ox fI <$0, yO)

-the partial derivative with respect to y, defined as :

y f(wo,y0+h) — f(zo,0)  Of (w0, )
im =

h—0 h Jy

if these limits exist and are finite.

If we consider a function of three variables f(x,y, z) we have three possible partial derivati-

ves, defined as :

y f(xo 4 h,yo, 20) — f(z0,90,20) _ Of(x0, Yo, 20)
im =

h—0 h 0x

y f(@o,y0 + h,20) — f(x0,90,20) O f (0,0, 20)
im =

h—0 h Jy

= [, (0, y0)

= fx/(x()a Yo, ZO)

- fy/(x(h Yo, ZO)
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. f(xo, 0,20 + h) — f(x0,90,20) _ Of(x0,%0,20) _ ,,
}11{}% h - 82’ _fz (930790720)

if these limits exist and are finite.
For a function f:R" — R at Xy, interior point of the domain, we can have then, if they
exist, exactly n partial derivatives.

If a function is differentiable at X with respect to all its variables, then there exists a vector,
called the gradient of the function, denoted by V f(X), whose components are the partial
derivatives of the function at the point X:
d f(Xo) 9 f(Xo) 9 f(Xo)
VIXy) = ) eens
F(Xo) ( 0 11 0 o 0 x,

> . The symbol V f is read "del f ".

As the partial derivatives are defined by the limit of a difference quotient in which only one
variable increases while all others remain constant, we have an important consequence for the
practical calculus of partial derivatives: it is sufficient to apply the usual rules to find the deri-
vative for functions of only one variable, the one with respect to which we derive, treating all
other variables as constant.

Example 24 : Given f:R?> — R, f(z,y) = x¥ we have:
8f y—1

oz ¥
of
dy

(derivative of a power, as x is the variable while y is a constant)

=zYlogx (derivative of an exponential, as y is the variable while x is a constant).

Example 25 : Given f:R?> — R, f(z,y) = rarctg T we have:
Y

of x 1 1
- =l-arctg— 42— - —;
O y (m) y
I+{-
Y
of _ 1

1
.x. _ —
12

- r  —

) 2

T (Y)
)

Example 26 : Given f : R? — R, f(x,y) = 4" ¥ we have:
of

9 y“ Y -logy (derivative of an exponential, as x is the variable while y is a constant)
x

Z_;; = D, el Woey — v ( —1-logy+ x_;y) (derivative of a f(y)?™)).
Example 27 : Given f : R® — R, f(x,y,2) = z — sin (x:;? ) we have:
§—§:O—cos (:1:56—2,2) - :BQ_ZZAS:B_Z) ;

8_3/ =0 as the given function is constant with respect to y ;

gzl—cos (:1:;2/)%(_1)

Example 28 : Given f:R?* — R, f(x,y) = ¢"*¥, we calculate the directional derivative at
point (x, y) in the direction of the vector w = (1,1).
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As ||w|| = V2, we have v = (7 —) and so:

( ! it) — f(z,y)
fl(w,y) +tv) — f(z V2 ’

D,f(x = lim —
of (z,y) = lim . HO .

. ea:-Q—ﬁ t+y+ﬁt _ ety ‘ et Ty ( )
= lim = lim

t—0 t t—0

— Y. /2. imS— — - —¢
t—0 \/§t w—0

DIFFERENTIABILITY AND CONTINUITY

For functions of only one variable we know that continuity is a necessary condition for diffe-
rentiability, and therefore also that differentiability is a sufficient condition for continuity.
This does not apply, however, to functions R" — R.

— f ex—i—y

1: zy=0

te it tial ivati-
0: acy;é()’wecompuelsparla derivati

Example 29 : Given the function f(z,y) = {
ves at (0,0). We get:

9£(0,0) _ . <0+h0) f0.0 =t g,
Ox h—0 h—0 h

01(0,0) _ .o (00+h) SO0 _ 11 _
ay h—0 h—0

So the function has partial derlvatlves at (0, 0) although it is clearly discontinuous, as in every
neighborhood of (0, 0) there are points where f(z,y) = 1 and points where f(z,y) =0.

2

Yy
Example 30 : For f(z,y) = { 24+ ¢2 (,y) # (0, 0), lim f(z,y) does non exist,
O ( ) (0’ O) (17y)_’(070)
see Example 22, so the function is not continuous at (0, 0). Let us check, however, if the fun-

ction at (0, 0) has derivatives in some direction v = (cos a, sin «) .
We must then calculate:

f£((0,0) +twv) — £(0,0) f(tcos a,tsina) — 0 _

lim = lim
t—0 t t—0 t
1 t2cos? - tsin « . t3 cos? o - sin « cos?a-sina cos? «
= lim 1ol 25in? o = lim 75— o N T ) = o ’
—0 t t*cost o+ {2 sin t—0¢3 (2 cos* a + sin? ) sIn“ o sin «v

provided that sina # 0, i.e. « ;é Oea#m.
If « =0 or o« = 7, the direction is the one of the x axis, so the directional derivative is the
partial derivative with respect to z, for which:
2
limf(O—Hf,O)—f(O 0) liml 70
t—0 t t—0 t t4 + O
So this function has derivatives in every direction without being continuous at (0, 0). It is no
longer so necessary to be a continuous function to have derivatives.

DIFFERENTIABLE FUNCTIONS

Let us recall the concept of differentiable functions for f : R — R, to extend it to functions
f:R"—=R.

Given f:R — R and z interior point of Dy, the function f(x) is differentiable at x( if
there exists a constant o« € R for which the following relation is valid:
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f(@) = f(zo) + a(z — m) + o(x — 20) .

Some important theorems apply:

- a differentiable function at x is continuous at x;

- a differentiable function at zy has derivative at xy and o = f'(xy) .

So we have: f(z) = f(xo) + f'(x0) (x — z0) + o(z — x0) .

To be differentiable means, therefore, that the function can be linearly approximated by the
tangent line to the graph of f(z) in xy, with an error, o(x — (), which is negligible
— )

=0.

. : . o(z
compared with (z — ), i.e. such that lim
w—w) T — X

For functions f : R" — R the following applies:

Definition 29 : Given f:R" — R and X interior point of D, f(X) is differentiable at X
if there is one constant terms vector K € R" for which:

FX) = f(Xo) + K- (X = Xp) + of||X = Xol]),

where K - (X — X) is the scalar (or dot) product of two vectors of R".

The error that arises from this approximation should be negligible compared to ||X — Xj||, the
norm (or lenght) of X — X.

The definition of differentiable function can also be written so:
fim LX) — FXo) —K-(X-Xo) _

X—Xo I1X — Xo|

We note that K - (X — X)) is a linear application R" — R.

Let us consider the relationship between differentiability and continuity, differentiability and
the existence of partial derivatives, differentiability and the existence of directional
derivatives. The following applies:
Theorem 7 : If f is differentiable at X, then f is continuous at X.
Proof : Since by hypothesis f is differentiable at X, then:
F(X) = f(Xo) =K (X = Xo) + o([|X = Xol]).
We need to show that Xlir% f(X) = f(Xg), or that Xlin}g fX) = f(Xp) =0.But
— X — X

Xlirr%)% fX) = f(Xp) = Xlin;g (K- (X —X) + o X —Xp]|)) = 0, since:

A S|

lim K- (X —Xy) =0, as K is a constant vector while X — Xy — O, while by hypothesis

X—>X0
o(||IX = Xg||) — 0, and then the theorem is proved.e

Being a continuous function is therefore a necessary condition to be a differentiable function.
Also the following applies:

Theorem 8 : If f is differentiable at X, interior point of Dy, then f has all its partial deriva-
tives at Xy, so exists Vf(Xj), and K = Vf(X).

Furthermore f has directional derivatives V v at X, and also: D, f(Xy) = Vf(Xy) - v.

Proof : First of all, we prove that f has all its partial derivatives at X.

If K= (ki, kg, ..., kp) : 07(X0) zlimf( o ttei) = F(Xo) — lim ei + o(l[t eill) _
Ox; =0 t t—0 t
= tim b B (00 Lo O oD TR 0AlD)

t t
= lim (l{:Z + O(L |)) = k;,as }ina@ = 0 by definition.

t—0
0f(Xo)
89@

Being k; € R, the limit exists finite, so = k; and then K = V f(X,).
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Therefore, differentiability for f at X can be expressed as:

F(X) = f(Xo) + VI(Xo) - (X =Xp) + of[|X = Xol]).

The gradient of a function f : R" — R at a point X, characterizes the best linear approxima-
tion for f at X.

y = f(Xg) + VF(Xp) - (X = Xg) gives the equation of the tangent plane (if f : R* — R) or
of the hyperplane (if n > 2) tangent to the (hyper)surface at (X, f(Xy)).

To be differentiable means, therefore, to be approximated by tangent plane (or hyperplane)
with an error that is negligible compared to ||X — Xj||.

Finally let us calculate the derivative of f at X in any direction v. We have:
Xo+tv) — f(X K- (Xg+tv—X Xo+tv—X
Duf(Xo)Z%ir%f( 0+ ?;) J( O)ZPH& (Xo+tov o)JtrO(H 0o+t —%Xl)) _

=t VTGl 0Ol (Vf(Xo) et "(f')) — VF(X0) 0 = Do f (%),

Then the function is differentiable in every direction v, and we also see that to calculate dire-
ctional derivatives we need not to compute the limit set by the definition, but rather just to
compute the scalar (or dot) product of the gradient of f at point X, and the unit vector v, so it
is sufficient to know the n partial derivatives of f at X,. This of course if the function is
differentiable at X.

THE MEANING OF THE GRADIENT

From Schwarz's formula we know that: XY = ||X]|| - [|Y]| - cos o, where a: 0 < a < 7 is
the angle between the vectors X and Y. If f is differentiable at X, as v is a unit vector we
get: D, f(Xo) = Vf(Xo) - v = [[VF(Xo)l| - [lv]| - cos a = [V f(Xp)]| - cos .

If « =0, then cosa=1 and so D, f(Xy) = ||[Vf(Xp)||, and this is the maximum possible
value D, f(X) can take; but « = 0 means that V f(X) and v are on the same straight line
and are oriented towards the same side; as v is the direction of the derivative, and as V f (X))
expresses the same direction, we can deduce that V f (X)) expresses the direction of the maxi-
mum growth (or maximum change) of f at X;,. The gradient of a real function is a vector that
points towards the direction of the greatest rate of increase of the function, and whose norm is
the greatest rate of change.

Similarly, if « = 7, V f(X) and v are on the same straight line but are oriented towards op-
posite directions, and as cos « = — 1 it follows that D, f(Xy) = — ||V f(Xo)||, and this is
the minimum value that D, f (X)) can take.

CONDITIONS FOR DIFFERENTIABILITY
The existence of the gradient at a certain point is a necessary but not sufficient condition to
ensure the differentiability of the function at the same point.

. 1: zy=0
Function f(z,y) = {O: vy 0
that has all its partial derivatives at (0, 0), and therefore it has the gradient, but it is not conti-
nuous, and so, following Theorem 7, it is not differentiable.

(see Example 29) provides us an example of a function

Example 31 : Let us check if f(x,y) = +/|zy| is differentiable at (0,0). First we calculate
V£(0,0):
_ B -0l —
oz h—0 h h—0 h
_ 10 - M —

ay h—0 h h—0 h
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So Vf(0,0) = (0,0). If the function were differentiable at (0, 0) it should be:

) = 50,0 = LR -0+ TR0y oV 07+ - 0)

f(a:,y)—0:0+0+0(\/(x—0)2+(y—0)2)

ie itshouldbe lim 2y

(24)—(00) /7% + 12

- 9
fim V172005 U - sin |—hm\/m /Toos 7 -sin 9], whose value is 0 only
p—0 \/p

when 9 = k ~ 3 .Even if V f(0, 0) exists, the function is therefore not differentiable at (0, 0).

= (; using polar coordinates we have:

However, if the partial derivatives are continuous functions at X, this condition is sufficient
to ensure differentiability at Xj. In fact, the following applies:

Theorem 9 (Total differential) : If the function has all its partial derivatives at X, that is if
Vf(Xy) exists, and if partial derivatives are continuous functions at X, then f is
differentiable at X.

We do not give the proof of this theorem.

We observe, however, that to have continuous partial derivatives at X is only sufficient but
not necessary condition to be a differentiable function at X.

1 1
Example 32 : For f(z,y) = ¢" Y we compute D, f(0,0) when v = <% , — E) :
The function is the result of the composition of an exponential with the polynomial x — y,
therefore it is continuous and differentiable V (z,y) € R?.

0 0

As w =e"Y and w = —e" Y, also the two partial derivatives are
T Y

continuous functions V (x,y) € R, and then the given function is differentiable
Y (x,y) € R?.

af(0,0 af(0,0
As 10, )_1andM:—l,weget:

ox oy

D,.f(0,0) = V£(0,0) - (f f) (1,_1>.<%,_%):¢5_

PARTIAL AND DIRECTIONAL DERIVATIVES OF HIGHER ORDER
If f:R"—R has its n partial derivatives, each of these is still a function

of(X
1) : R" — R, which, if differentiable, can be derived with respect to each of its n varia-

ox;
af(X)

bl .

. 8:1:] ( ox;
So we get n? = n -n second order partial derivatives, which, if differentiable, can be derived
with respect to its n variables, giving course to n> = n? - n third order partial derivatives and
SO on.
Therefore we can draw the following scheme, valid for f : R* — R, (z,y) — f(x,7):
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' ( [ Pfley) _ Pflxy) L
O f(z,y) Ay 0r Ox dx  Oz3 T
ox? oo a3f($>y) _ a3f($>y) — m
of(z,y) Ny [ Oz dxdy  0z? Oy ey
ox ( a3f<$ay) _fm
0 f(z,y) " Ox Oy Oz ™"
oz oy Of(x,y) _ Pf(@,y) _ L
L ( Oz Oy Oy oz 0y? i
T =3 ( (S PPy .,
82f($ y) " = ¢ 8y 8x 81’ - 8y 8x2 -y
oyox W Pf(xy) L.
JICINN | Dy oz oy
89 ( a3f($>y) _ a3f($>y) _em
0 f(z,y) _ oydydxr  Oy*dx W
oyr W Pfly)  Pflxy) L,
\ \ Oy 283/ dy oy3 Wi
Note the different position of the pseudo-exponent 2: in % it means to derive 2 times

(02 f) the function f with respect to the variable x both times (Ox?), thus explaining the dif-

ferent position.
Of(@y) 4 @y

92 an I are called

The derivatives made with respect to the same variable,

2 2
O f(y) L OSy)
oz Oy 0y Ox

pure derivatives, while are called mixed derivatives.

For f:R" — R, similarly to the partial derivatives of the second and subsequent orders, we
can define the directional derivatives of the second and subsequent orders.

We formally define a second order partial derivative as:
0%f(Xo) _ lim L. Of(Xo+te) 9f(Xo)
8.%1‘ 8:0]- t—0 ¢ 81‘1 81@

We formally define a second order directional derivative as:
Duf(Xog+tw) —D,f(X : .
Duw(D, f(Xp)) = )lfirré f(Xo +tw) (%) =D?,f(Xy), provided that this limit

t vw
exists and is finite.
In the same way we define partial and directional derivatives of higher orders.

0’f(Xo)  9*f(Xy) ) )
Ox; Ox; a Ox; Ox; nor that D;, f(Xo) = Dy, f(X0) -

However, the following applies:

> , provided that this limit exists and is finite.

It is not generally true that

0*f(X
Theorem 10 (Schwarz) : If f:R"™ — R has second order mixed derivatives 5 f(8 ) and
T OFj
*f(X) . . . . .
97 O in a neighborhood of X, and if they are continuous functions at X, then they are
J 7

0%f(Xo) _ 9*f(Xo)
6562' 6:1:j (9£Ej 61‘1 '
We omit the proof of this theorem.

equal:
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There is also a more general form of this theorem, whose assumptions include existence and
continuity of only one of the two second order mixed derivatives, then it proves that the other
second order mixed derivative exists, is continuous and is equal to the first.

Example 33 : Let f(z,y) = xe’ — ye”, then we have:

" z
= —ye
I 1 T T Y
fo=e'—yet =% _ e
_ y x Ty d no__ pn
f(a:,y)—xe —ye = " — oY _ o , and so fxy_fyx
fy’:xey—e”’=>{ R
yy—xe

Schwarz's theorem expresses a sufficient and not necessary condition, however, for the equa-
lity of the second order mixed derivatives.

Remark 1 : Schwarz's theorem applies not only to the second order partial derivatives, but al-
so to mixed derivatives of any order, since a derivative of order n is still the second order de-
rivative of a derivative of order n —2 : 0" f =92(0"*f).

Extending the hypotheses of Schwarz's theorem to the continuity of mixed derivatives of the
0" f(X)
oz} dxf’
denote the mixed partial derivative of order m, obtained by differentiating p times with
respect to x; and ¢ times with respect to x;, without specifying the order with respect to
which we have derived with respect to x; and x;, since this is irrelevant using Schwarz's
theorem.

proper order, we can write, for a function of two variables, with p+qg=m, to

Example 34 : Given f : R" — R, if its third order derivatives are continuous, it results:
FIX) P P P P

Remark 2 : Schwarz's theorem applies not only to partial derivatives but also to all directio-
nal derivatives at least of the second order. If D? ,f(X) exists and is continuous at X, then

D2 f(X,) exists, is continuous and also D? , f(Xy) = D, f(Xo).
Similar conclusions are valid for the higher orders directional derivatives.

DIFFERENTIABILITY OF THE SECOND AND HIGHER ORDERS
Let us consider f:R"™ — R and suppose that it is a differentiable function VX € A,

0f(X
A C Dy. There exist at Xy € A the n partial derivative functions ]a”( ) :R" — R. Let's
Z;

take the following:

Definition 30 : f(X) is twice differentiable at X if each of its first order derivative functions
0f(X)
8._'El'
So to be a twice differentiable function means to be a function having differentiable first order

derivatives.

Therefore it is easy to extend this definition to that of k times differentiable functions.
Definition 31 : f(X) is k-times differentiable at X if each of its £ — 1 order derivative fun-
ctions is differentiable at X,.

is differentiable at X.

For twice differentiable functions the following theorem applies:
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Theorem 11 : If a function is twice differentiable at X, interior point of Dy, then all the se-
cond order (partial and directional) derivatives exist at X. In addition, the mixed (partial and

?f(Xo)  9*f(Xo) and D2, f(Xo) = D%, f(Xo) .

directional) derivatives are equal: =
) q 8332 ox j ox j 8561

The latter theorem provides a further sufficient, and not necessary, condition for the equality
of the mixed derivatives in addition to the one extablished by Schwarz's theorem.

Similarly to what we have seen for the differentiability of the first order, it is not necessary
but only sufficient that the second order derivatives are continuous to ensure that the function
is twice differentiable.

TOTAL DIFFERENTIALS OF THE FIRST AND HIGHER ORDERS

For f differentiable at X, we can write:

J(X) = f(Xo) + V[ (Xo) - (X =Xo) + of[|X = X)) .

Vf(Xp) - (X=Xp) is called the total differential of the first order, and we also write
df(Xo) = Vf(Xo)8 (égg X@O)-X .

it Vi) = (0, AL L ST ) (fi(0a), £ S ) and i
(X —Xp) = (21 — 2l 22 — 29, ..., 2, — ) = (dz1,d2s, ... ,dz,,), with these symbols we
can also write:

df (Xo) = (f{(X0), f3(X0), e, £1(X0)) - (day, dag, ..., dw) = D f/(Xo) - dai .
i=1
If it does not matter to specify the point X, we can also write:
df = (f{, fos o 1) - (day, s, oo day) = Y flde; = fi day + fi doo + ... + f da,.

This expression defines the first order total differential for a function of n variables.

If f:R* >R, we get df = f/dx; + fydxo, if the variables are z; and x5, or
df = f,dx + f, dy, if the variables are = and y.

For a function of three variables f(z,y, z) we have df = f, dz + f, dy + f, dz.

Let us now define the second order total differential for f : R* — R . Starting from:
9(df) (df )
d?f =d(df) = —=*4d
dy are constant with respect to x and Y, we get:
9 (f)dz + f,dy) d (f)dz + £, dy)

dy, as f; and f, are functions of z and y, while dz and

&f = I —d dy =
f oz v 0y Y
= (ffdo + £ dy) da + (£, o + £, dy) dy = £/, (o)’ +2 ;) dedy + £ (dy)”.
if we suppose that the function is twice differentiable, wherefore f = fw

For f:R® — R similarly we get:

& f = £/, (do)” + f; (dy)” + £ (d2)" + 2f;, dwdy + 2 dedz + 2f; dyd=.
For f: R" — R y= f(:cl, :cg, .. :En) we shall write in a compact form:

de - d2 Z Z 8xz é)xJ Z 8:01 8:6]

Note the similarities (not the identity) between the second order differential of a function of
two variables and the square of a binomial, between the second order differential of a function
of three variables and the square of a trinomial, and so on for second order differential of a
function of n variables, which is analogous to the square of an n-omial. These similarities are
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also reflected in the total differentials of third, fourth order an so on, analogous to a third,
fourth power of a binomial, a trinomial and so on.

In fact, the third order total differential of f : R> — R is:
& f = f1, (dz)” + 3 £l (de)*dy + 3 £y, dz (dy)” + £,y (dy)”.

Yy yyy
The fourth order total differential of f : R* — R is:

dif = £ (do)t + 4%, (dz)’dy + 6 £ (dz)*(dy)* + 45 dz(dy)’ + £5), (dy)*.

VECTOR-MATRIX FORM OF SECOND ORDER TOTAL DIFFERENTIALS

The second order total differential of a function of any number of variables can be expressed
also in matrix-vector form, using the so-called Hessian matrix H.

The Hessian matrix is the matrix formed with the second order partial derivatives, ordered by

row with respect to the first derivation variable and by column with respect to the second, and
1 1 1

11 12 cee cee ln

/! 1A /!

21 22 e e Jop
in case of a function of n variables it takes the form: H =

/A 1 /A

nl n2 nn

If the hypothesis of Schwarz's theorem are valid, or if the function is twice differentiable, the
Hessian matrix is a symmetric one.

If dX = ||dzy, dzo, ... ,dz, ||, the following equality holds:

1 1 1
1/ 1 1/
d2f = dX - H- (dX)" = ||dz1, dzo, ..., d2y]| -
1 i 1
1 Jao e o fom dz,,

Verifying it only in the simplest case, the one of a function of two variables, f : R* — R, we

have:
1A 1A

d,CE i dx_|_ " dy daf
d2 _ d.CC,d . Tx zy || . ‘ _ ‘ Tx YT . _
r=temanl-| g 5|l =l et el

= [/ (d2)’ + 2 £ do dy + £, (dy)”
Higher order than the second differentials cannot be expressed in matrix-vector form.

As far as the practical calculus of a second-order directional derivative is concerned, there is a
result similar to that found for the first-order directional derivatives D, f(Xy) = V f(Xy) - v.
If v = (v1,v9,...,v,) and w = (w1, wy, ..., w,) are unit vectors of R”, the following holds:
Theorem 12 : Let f(X) be twice differentiable at X. Then:

D), f(Xo) = v-H(Xo) - w' = w-H(Xo) - o' =D, f(X).

Example 35 : For f:R?*> - R, f(z,y) = ¢* ¥, we compute D?  f(x,y), using two diffe-
rent procedures, leaving general v, w and (z, y).

If v = (cosa,sina) and w = (cos 3, sin 3), the function f(x,y) = e* ¥, being the compo-
sition of an exponential and a polynomial, which are continuous and derivable functions with
continuous derivatives of any order, is twice differentiable throughout R?.

So D?, f(z,y) =v-H(z,y) - w'. Then:

vw



23

ﬁ =Y ﬁ = —e'Y; 82_f — ¥ Y. 82f = 82f —e"Y, 82—f =¢e" 7Y and so:

ox dy Ox? "Oxdy Oy or " Oy? ’ '
5 et Y — ety cos (3

Dvwf(x y) HCOSO( Sll’lOé” H ety et Y Sll’l,@ H

e YecosB — et Vsin
—e* YeosB+ e Ysinf
=e" YcosB-cosa—e" VsinfB-cosa—e" YcosB-sina+ e’ Ysinf - sina =
=e"Veos(a—B) —e" Vsin(a+ [) =e" Y (cos (o — 3) —sin(a+ ).
Alternatively, we can compute the second order directional derivative as the directional deri-
vative of the first order directional derivative, and then we get:

Duf(z,y) = Vf(z,y) v <2f Zi) v=(e"", —e") (cosa,sina) =

= ||cos v sina| -

=e" Ycosa—e" sina.
We now calculate V (D, f(x,y)) and then we shall calculate V(D, f(z,y)) - w. We get:
(D f(,y)) ODuf(z,y)) _

=e" Yecosa—e" Ysina and —e" Yecosa+e" Vsina.

ox Jy
And so:
Do) = V(DS ) 0 = (ARSI OOSEDNY 5,5 5) —

= (e"Ycosa—e" Vsina; —e* Ycosa+ e Ysina) - (cos §,sin ) =
=e"Ycosa-cosf—e" Ysina-cosF—e" Ycosa-sinF+e" Ysina-sinf =
=e" Y (cos(a— () —sin(a+ ),

i.e. the same result as with the other process.

TAYLOR AND MACLAURIN POLYNOMIAL

Also for functions f:R" — R we can provide a better approximation than that obtained
with the differentiability formula, creating a polynomial (in n variables) of degree m suitably
chosen, for which the followig equality holds:

FX) =P (X, Xp) = o(||IX = Xo[)..

For a function f : R — R Taylor's polynomial at z is:

P, (z,z0) = f(z0) + f'(x0) (z — x0) + f';(f()) (. —20)° + fS—(fCO) (. —x0) + ...

There is a unique polynomial of degree m if the function is m times differentiable in a nei-
ghborhood of .

For a function f : R" — R the following applies instead:

Theorem 13 : (Taylor) If the function f(X), R" — R, is differentiable up to order m in a
neighborhood of the point X, then there exists a unique Taylor's polynomial of degree m
such that: f(X) — P, (X, Xp) = o([|X = Xo[™).

This polynomial has the following expression:

d?f(X d? d"f(X
P, (X, Xo) = £(Xo) 4+ df (Xo) + J;(, ) | J;(, ) 4 # .

As can be seen, the polynomial is built using total differentials, from the first order up to the
order m.

If Xy = O, null vector, we call it, instead Taylor's, MacLaurin's polynomial.

The second-degree polynomial can be expressed, as it has been already seen, using a vector-

matrix form, and we have the following expression:
1
Py (X, Xp) = f(Xp) + Vf(Xp) - dX + 5 dX - H(Xp) - (dX)T; since dX = X — X, we get:

FIK) = F(Ko) + VF(K0) - (X — Ko) + 1 (K~ Xp) - H(Ko) - (X~ Xo)T + oK ~ Xol?).
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Example 36 : Given f(z,y,2) = 2°sin(y — 2), let us determine the expression of second-
degree Taylor's polynomial at the point (1,1, 1).
First of all, we get f(Xy) = f(1,1,1) = 0. Then:

, =a"cos(y—2) = f,(1,1,
fl=—a?cos(y—2) = f/(1,1,1) = —1;
1 .

fop = 2sin(y — 2) = f,(1,1,1) = 0;
fon=—a’sin(y—z)= f(1,1,1) =0;
f%: —2%sin(y —2) = f/(1,1,1) =0;
foy=2zcos(y—z) = f,(1,1,1) =2;

fo = —2zcos(y—2z)= f(1,1,1) = —2;

[l =a’sin(y—2) = f,.(1,1,1) = 0.
We get then, in analytical form:
Py(X,(1,1,1)) =040 (z—1)+1-(y—1)—1-(2—1) +

+%(0-(:1:—1)2—}—0-(y—1)2+0-(z—1)2)+

+%(2~2(m—1)(y—1)+2(—2)(x—1)(z—1)+2~0~(y—l)(z—l)):

=z—y+2xy—2xz.
In vector-matrix form, putting dv =z — 1, dy =y — 1,dz = 2z — 1, we get:
1 0o 2 =2 dz
Py (X, (1,1,1)) =04 (0,1, — 1) - (dz,dy,dz) + 3 |dz dy dz||-|| 2 O 0O ||-||dy
-2 0 0 dz

CONVEX AND CONCAVE FUNCTIONS

First of all, it is important to know that for functions f : R" — R the concept of increasing
or decreasing function is not definable. This concept could be recovered if we spoke about in-
creasing or decreasing in a certain direction, i.e. bringing it back to a one-dimensional type
analysis, which is not generally useful to draw global conclusions. There are not, therefore,
criteria like that of the study of the sign of f'(x), valid for functions f : R — R. It is howe-
ver valid and useful for applications, primarily for the study of maxima and minima, the
definition of convex and concave function.

First of all we give the following:

Definition 32 : A set A C R" is said a convex set if VX;,Xy € A, the segment that joins
them is all contained in A.

This condition is equivalent to:

VX, X0 € A:Vae 0,1l = a-Xj+(1—a) Xy €A,

where a - Xy + (1 — a) - Xy, a € R is the line passing through the points X; and X.

Ifaset A C R" is not convex, it is concave.

Definition 33 : For f : R" — R, the epigraph of the function on A C R", is the set:
Ef)={X,y) eR" ,XeA:y>f(X)}.

The epigraph is therefore the region above the graph, including the graph.

From this it follows the

Definition 34 : Given f:R" — R, and A CR" a convex set, the function f is said to be
convex on A if its epigraph on A is a convex set.

So a function is convex if the region above its graph is a convex set.

The definition of convex function is not given in any set, but only in a convex domain.

As for functions R — R, unlike sets, a function that is not convex is not called concave, but:
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Definition 35 : Given f:R" — R, and A CR" a convex set, the function f is said to be
concave on A if the function — f is convex on A.

Concave functions are therefore the symmetrical ones, with respect to the (hyper)plane of in-
dipendent variables, of convex functions and, in a given set, there are functions which are nei-
ther concave nor convex, while sets are always concave or convex.

Considering for obvious reasons only the case of functions f : R — R, we see the figure of
an example of a convex and one of a concave function.

concave

Finally we state two theorems that link the convexity of a function to the differentiability of
the first and second order.

Theorem 14 : Let f: R" — R be differentiable on A C R" convex set. f is convex on A if
and only if VX, Xy € A : f(X) > f(Xy) +df(Xy), or, equivalently:

F(X) > [(Xo) + Vf(Xp) - (X =Xp).

This formula allows us to express the convexity of a differentiable function by stating that the
graph of the function does not lie below the tangent (hyper)plane at any point X, € A.

Using Taylor's polynomial we can then prove that is also true that:

Theorem 15 : Given f:R" — R twice differentiable on A C R" convex set. Then f is
convex on A if and only if d®f(X) > 0,VX € A.

In fact, being f twice differentiable, we get:

f(X) = f(Xo) +df(Xo) + %de(Xo) +o(]|X - X0||2) , and so:

FX) = [f(Xo) + df(Xo)] = % d? F(Xo) + o(|IX — Xo||*) , and if d*f£(Xp) > 0 we get:

f(X) > f(Xo) +df(Xo) .
Using instead the vector-matrix form, the previous theorem leads to:

1

J(X) = [£(%0) + VI (X0) - (X = X)) = 5 (X = Xo) - H(X0) - (X = X0)" + 0(|X — Xo|)
from which we get: d”f(X,) > 0 < dX - H(X,) - (dX)" > 0.

The term d?f(X,) = dX - H(X,) - (dX)" = (X — Xp) - H(X)) - (X — X)" represents a qua-
dratic form in n variables dzy,dzo, ... ,dz, ; if d>f(Xy) > 0 ( > 0) it is called a positive de-
finite (semi-definite) quadratic form.
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The study of convexity and concavity of a function is related to the study of the sign of the
quadratic form d?f (Xp), and this will be discussed below, in the section dealing with the
search for the maximum and minimum relative points.

If f(X)> f(Xg)+df(Xo) orif d®f(Xg) > 0, we have a strictly convex function.

FUNCTIONS £ : R" — R™

Let us extend the concepts up here worked out to vector valued functions of a vector variable,
i.e. to functions Y = £(X), with X = (21,9, ..., ) € R", Y = (y1, %2, ., Ymm) € R™.

A first example of such a function f : R" — R™ are linear applications, that is functions that
can be expressed as Y = f(X) = A - X, where A is a m - n matrix whose elements are real
or complex numbers.

In case of need, the notation Y = f(X), f : R” — R™ can be written, in an expanded form,
as: (yla Y2;-eey ym) = (fl(ﬁl, L2y ooy Zlfn), f2<x17 L2y ooy Zlfn), e fm(xla L2y ooy Z’n)) :

Therefore, a function f:R" — R™ can be seen as an m-dimension vector whose
components are functions f; : R" — R.

It will be sufficient to repeat what we did for functions f : R — R™ adapting the theory to
what we saw for functions f : R" — R to get the extension of main definitions and proper-
ties relevant to functions f : R" — R™ .

LIMITS, CONTINUITY, DERIVABILITY, DIFFERENTIABILITY

Definition 36 : The function f: R" — R™,Y = f(X) has limit when X — X, being X, an
accumulation point of Dy, if each component f;:R" — R,1 <7 <m has limit when
X — Xp.

Definition 37 : Given X an accumulation point belonging to D¢, f : R" — R™ is continuo-
us at X if Xlij%uf(x) = f(Xy), or Xli_}n}gufi(X) = fi(Xp),1 < i <m, i.e. if each component

fi is continuous at X.

As far as the differentiability is concerned, since each component is a function f; : R" — R,

we can define partial and directional derivatives.

Given X interior point of Dy and v € R" unit vector, we have

Definition 38 : The directional derivative of f : R" — R™,Y = f(X) in the direction of v at

f(Xo +tv) — f(Xp)
t

the point X is the limit %ing = D, f(Xy), provided that this limit exists

and is finite.
So each function f; : R" — R, 1 < i < m must have the directional derivative at X, in the

(X tv) — f;(X )
direction of v and %ir%f( o+ 12) 1i(%o) =D, fi(Xp),1 <i<m.

Partial derivatives for f : R" — R™ are partial derivatives of its components f; : R" — R.
f:R" — R™ has partial derivative with respect to the variable x; if each component f; has
partial derivative with respect to x;.

So we compute m - n partial derivatives, differentiating f;, 1 <7 < m, with respect to the
variables x;, 1 < j < n. All these first order partial derivatives form the so-called Jacobian
matrix m - n:
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ofi O of1
axl axQ ceee ax/]}/
0 0 )
Jf(X) — a(f17f27“'7f7n) _ a—aff a_aff a£2
8(37173327---,33”) 1 2 n ’
8fm 8fm 8fm
axl axQ csee axn

in which the element (¢, j) is the partial derivative of f; with respect to z;.
Each row of the Jacobian matrix is a gradient: the i-th row is in fact the gradient V f;(X).

For a function f: R" — R™, f = (f1, f2, ..., fm) » we follow the previous definitions, i.e.:
Definition 39 : f: R" — R™, Y = f(X) is differentiable at X, if each of its components,
y; = [i(X), is differentiable at X i.e.:

fz(X) = fz<X0) + Kl : (X - XO) + O(HX - Xo”) , with Kl c R”, Vi:l S ) S m.

Equivalently, we may request that there exists a constant terms matrix M, ,,, for which:
fX) = f(Xo) + M- (X =Xp) + o(||X = Xo|) is valid.
Vectors K; are the rows of the matrix M.

As a consequence of what we have seen for the functions f : R" — R, if f; is differentiable
at Xy we have K; = V £;(Xj), and so the differentiability of f : R" — R™ can be expressed
These equalities can be written with a unique formula, as M = J¢(X):

F(X) = F(Xo) + J5(Xo) - (X — Xo) + o(|IX — X)),

where f(X), f(Xy) € R", o(|| X - Xp]|) € R" while (X—-X;)eR" and J;(Xp) is a
(m - n) matrix.

In order to compute D, f(Xy), if f is differentiable at X, it will be sufficient to compute
Jr(Xp) - v, to get the vector (D, f1(Xo), Dy f2(Xo), .. , Do fin(Xp)) € R™.

The Jacobian matrix expresses and summarizes the concept of derivative in the more general
case, i.e. that of f: R" — R™, including as special cases all types of derivatives encountered
so far.

For f: R — R, the derivative f'(x) isa (1 - 1) Jacobian matrix, i.e. a real number;

for f:R" — R we have the gradient, which is a (1 - n) Jacobian matrix, that is a Jacobian
having only a row;

for f: R — R", we have the tangent vector, which is a (n - 1) Jacobian matrix, a Jacobian
having only a column.

Example 37 : If f:R" — R™ is a linear application, Y = f(X) = A - X, it is easy to see
that J;(Xo) = A, VX, € R".

Example 38 : If f:R?> — R? is a change of coordinates from Cartesian (x,%) to polar ones
(p,9): f(p,9) = (0 + pcos v, yo + psind), we get:
Jr Oz
Ow,y) || ap 90
z] ,/19 — = =
op OV

costy — psind
siny  pcosv ||’

DERIVATIVES FOR COMPOSITE FUNCTIONS (CHAIN RULE)
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Purpose of this section is to explain the rule of the derivative of a composite function (chain

f f

rule) in the more general case: R™ EN LR R?, T I xL Y, where:

T = (t1,t2, e tin); X = (21,22, o0; )5 Y = (Y1, Y25 -, Up)

X= g(T) = (gl(T)792(T)v '-agn(T)) = (91(t1, ! tm)ag2(t17 ) tm): --,gn(tlv ! tm)) )
Y = f(X) = (i(X), o(X),., (X)) = (fi(@1; s 20), fo (@1, s T0), o (@150 )
soasto get Y = f(X) = f(g(T)).

If m=n=p=1 we get D(f(g9(x0))) = f'(9(x0)) - ¢'(x0), ie. the derivative of
composite function is given by the product of two numbers: f'(g(z)) and ¢'(z).

tR 2R L R?, ¢ LA i Y,Y = f(g(t)), see Theorem 5, we get:
D(f(o(t) = O _ v aiy)) - 2t0).

i.e. the derivative of composite function is given by the product of the tangent vector
Y'(x(to)) and the scalar 2’ (¢).

f

Let us determine now the rule if R 9, R" = R,ti X L y,m>1.

If y=fX) = fl@, 22, 20) = f(9(t)) = f(21(2), 22(2), ..., xn(t)),  We have the
following

Theorem 16 : If X(t) = g(t) = (z1(t), z2(t), ..., xn(t)), R — R" is differentiable at ¢ = ¢
and y= f(X),R" — R is differentiable at X(tz) = g(to), then y= f(g(t)) is

differentiable at ¢t = ¢y and: D(f(g(ty))) = dyé:o) = Vf(X(ty)) - X'(to),

i.e. the derivative of the composite function is given by the scalar (or dot) product of the
gradient vector V f(X(ty)) and the tangent vector X'(¢y) = (2 (to), z5(t0), ..., 7}, (t0)) -
Proof : By definition, we have:

dylts) _ | Flo) = Flolt)) _ . FOR() = F(K(t)

di t—to t—1ty =ty t—1g
As f is differentiable at X, we get:
X)) = f(X(t0)) = Vf(X(t)) - (X(£) = X(t0)) + o([IX(2) — X(t0)]]) ,
from which, by substitution, we get:
imd EW) = fFX(t) _ . VX)) - (X(¢) — X(t)) + o([[X(E) — X(o)ll) _

t—to t— 1 t—to t—tp
i X() = X(h) , oK) = X)) [, [IX(0) = X(to)
= i vt SR s (=)

But V f(X(¢9)) is a constant vector, while
X -X - n — 4n

lim 20) = X(fo) _ <lim ) Z@milly) -, Tl —2 (tO)) _
t—tp t— t[) t—t t— t() t—t t— t()

= (xll (tO)v xé(tﬂ)v ) .CB;l(t())) = X’(tg)
as X(t) is differentiable at ¢. Finally

- o(IX(1) — X(t) )
t=t [ X(2) — X(to) |

= 0 by definition and

flir? w ‘ = ||X'(t)]| , finite number as X(¢) is differentiable at ¢y. So
t—to — 1o

dy(t
D (gl) = 00 = 7)) X 1) 0

dt

This result can also be expressed in the form:
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dy of Of af dzq dwg dz, and so-
dt  \Ox; Oz’ 7 Oxy, dtCodt T dt '

dy _ Of dzm  Of dx2+ of dz, "\ Of dux;

at Or, dt | Oz, dt 7 Oz, dt —~ O Cdt

Using this result, we treat the case R EN R" L RP, ¢ 9, X L Y.

Now Y = (y1,¥2, ..., ¥p), With y; = fi(x1,29,...,2,),1 <i < p, and z; = g;(¢). If each
fi(xy, 29, .., x,) = fi(X) is differentiable at X(¢y) and if X(¢) = (z1(¢), x2(t),.,z,(t)) is
differentiable at ¢, from the previous theorem we get:

M = VfZ(X(to)) : X/(to) or:

dy, 0fi dxy  0Of; dxo ofi dxy

dt Oz dt +8x2 'E+"'+8xn S dt
These p equalities can be written in matrix form as:

, 1<i<p.

dy, oh  oh Of dz,
dt dxry Oz Oz, dt
dy, afs  0fs dfa dz,
dt ||=1|| 0xy  Bzy T Oz, || || dt ||,or:
an | Noh on o | | du
dt 8331 8$2 8:12‘n dt
_dY(X(to) _ 9(f1s fo, s [0) (X (o)) ,
D(flgt))) = —4 = RS X'(to) and also:

Y'(X(t0)) = J5(X(to)) - X'(to) -
The tangent vector Y'(X(%y)) is then given by the product of the Jacobian matrix J¢(X(ty))
and the tangent vector X' ().

Finally we treat the general case R™ 9, rr L R?, T 9 x L Y . The following applies:

Theorem 17 : Given T = (ty,t9, ..., tn), X = (21,22, .., Tn), Y = (y1, Y2, ..., Yp) With:

zi = gi(t1, o, i tm) s Y5 = fi(@1, 25 s T0).

If Yo = f(X(Ty)) = f(g9(Ty)), and X = g(T) is differentiable at Ty, and Y = f(X) is dif-

ferentiable at X(T,), we have the following:

D(f(g(r]ro))) a(yléégt% 't 7yp)(fg(’]r0)) _ a(fl; f27 ey fp)(X(tO)) . 8($1,$2, ey xn)(TU) .
Qg ae m) a(xl,xQ,...,:cn) 8(t1,t2, ...,tm)

So: Jy()(To) = Jp(X(Ty)) - J4(Tp) , which in general form can also be expressed as:

3(y1,y2,. SUp) O, Y2, ) O, 33, Ty)

8(t1,t2, ...,tm) (9(.(131,.%2,..., n) 8(t1,t2, ...,tm) '

In matrix form, we have:

oy On Oy || || 9n On Oy Oz 0ny ezl
oty Oty T 0Oty dry Oz Oz, oty Oty 7 Oty
Oy Oy v || || 92 Oz Oys Oz; 07y 92
oty  Ots 7 Oty ||F|| 01 Oxe T Oz, || || Of Oty 7 Oty
dy, Oy, oyp dy, Oy, oyp ox, Oz, oz,
8t1 Btg 8tm 6’3?1 8.1132 axn 8t1 8t2 8tm
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It is easy now to see how all cases of derivatives of composite function encountered before
are included in Jy,)(To) = J;(g(To)) - Jo(To), where Jy,)(Ty) is a p-m matrix,
J¢(g(Tp)) isa p-n matrix, and J,(Ty) a n - m matrix.

If we want to highlight the expression of a single derivative of f(g(T)) we write:

_ . . . 1<i<p1<3< d also:
at,  om O, om0, T ow, i S 'SP SJsmeancaso
dy; Oy, 0 dy; 0O dy; Oz,
vi_ S S S0 O 28 T
8tj 8x1 (975]- 8:02 815,7- &rn 875]'

1<i<p1<j<m.

h f h f

For a three functions composition: R* = R™ EN LR R, W = T IxL Y, to get

Y = f(g(h(W))) derivatives, we must compute:

T1(gn)(Wo) = J3(Xo) - Jy(To) - Jn(Wo) = Jr(g(h(Wo))) - Jy(h(Wo)) - Jn(Wo) , or:
Oy, Y2, o Yp)  O(Y1, Y255 Yp) _ 0(x1, Ty .y Tp) _ O(t1,tay ey tm)

O(wy, wa,y .ywy)  O(x1, T, ey xy)  Ot1,to, .y tm)  O(wi, wo,.cywy)

Since matrices product is not commutative, it is important to stress the proper order of this

product.

Example 39 : Given z = f(x,y), let us change from Cartesian coordinates (z,y) to polar
coordinates (p, ) with g(p,¥) = (xg + pcost, yo + psind).
We get a composite function z = f(g(p,?)) . If f is differentiable we have:

0z 0z  O(z,y)

J ) = Jr(x(p,9),y(p,P)) - J,(p, ), or: = . from which:
or 0
0z 0z 0z 0z dp 09 ;o costy — psind
op 00V or Oy dy 9y P sind  pcos?
op OV
= || 2, cos¥ + z;sind  — 2z psindd 4 z; pcos||.

Example 40 : Given ¢: R® — R,z = g(t1,t2,13) and f : R — R? (y1,10) = (fi(2), f2(z))
differentiable functions. So: Jy(,)(T) = J;(g(T)) - Jo(T), i.e.:
O(y1,y2) (Y1, y2) Oz

8(t1,t2,t3) - 835 . 8(751,152,153) and 50
91 Oy Oy Oy
ot ot ot O ox ox x .
8y12 3y22 ayz = g?i H o 9, ot ‘ from which:
oty Oty Oty £
Oyr  Oy1 Oy oy 0xr Oyr Oxr Oy Ox
ot, Oty Oty || _|| 0z oty 0z o, Oz oty
Oy Oys  Oya || || Oy Ox  Oyo Ox  Oys Ox
oty Oty Oty dr 0t, Ox 0ty Ox Oty

Example 41 : Given ¢ : R — R3, (t1,t2) — (21,29, x3) = (2t1 - t%,tl tg,t%) and:
R = R? (z1, 29, 23) — (y1,92) = (x1 + T, z1 23) . We have:

Oy, y2) _ Oyry) 0w, @2, 23)
3(t1,t2) N 8($1,$2,$3) 8(t1,t2)

and so:
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(9$1 6:13‘1
oy Oy Iy Oy On ot Oty
6t1 6t2 . oxq 0xo @1'3 ) % % Ce
dyp Oy =l oy, Oyr Oy at, at, || and substituting:
oty Oty o0z 0z 0xs % %

oty Oty
oy Oy
—_— 2 — 2t
dt, oty || _|]1 1 0 . . 2 2+ ty t— 2ty ||
% % I3 0 T 2; 01 2:E3 + 2$1t1 — 2$3t2
oty Ot

and finally substituting z; and x5 with their expressions:
Al 24t -2t
613 — 2t1t3  — 2t3ty

SECOND ORDER DERIVATIVES FOR COMPOSITE FUNCTIONS
We begin treating the following: g : R — R%* ¢t — (z1,25) and f: R?* = R, (21, 22) — y or
y = f(21,32) = f(21(1), 22(t)).

dX

If g and f are twice differentiable functions, X = (z1,x9) and X' = 7 = (x,25), using
the chain rule we get:
dy 0 af da:l 0 of d$2

X/
dt Vf< ( )) ( ) (9%'1 8113'2 dt
Now we must compute
d>y d dy 6’f d:c1+ of da:Q
dt2 dt dt 8351 (%2 dt
But g—f and Fr are functions of the variables x1 and x5 and so, using again the chain rule

I1 T2

and the sum and product derivative, we get:
d%y B of dzy af d [dry of dzo  Of d [dx
dez (8:1:1) @ T om dt( dt ) * dt(a@) & o dt( dt )
From composr[e function derivative it results:
d 8f . 0 8f dml 0 8f dl’Q 82f dﬁUl (‘9 f dl‘g d
dt (8:1:1) - Oxy (8:1:1) dt + 6:1:2 (6:}51) S dt 8331 + Ox10zy dt ’ an
d/of\ 0 (0f dzy of dzy 62f dxl 82f dzs
ar (a@) = o <8x2> T o <8x2> & Omom & oxd At
from which we get:
d%y B O*f dxy 0% f dxs dxq of d’x;

(axf' & " omoms dt) & T om A

82f d:l?1 82f d$2 dil;'g 8f d2332 .

(6.1[326:1?1 ‘ dt * al‘% ' dt ) . * or, 8$2 dtQ -

O%f (dx; ) 0% f  dx dxg O%f (dzo\?  Of &z Of dPmy
8x1( ) T on0m, @ @ o3 ( dt) T om A2 " om a2
*f O*f

S 8.@181‘2 B 8@83:1 '

de?

In shorthand notation the above equality can be written as:
Z//— 11( ) +2f12501372+f”2( ) f’ 1 fl 5 and also:
Y = (@) + 2y 2 @+ yhy (25)” + w2 + oy
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! dX / / 1 d2X i 1/ .

From X = (z1,27) and X' = yrie (7, x5) we get X' = pro (x],x5), and since then
, , ; , y// y// 1/ 1/

Vf(zi,z2) = (fi; f2) = (1, 95) and  H(f(z1,32)) = ‘ SR = || the
Yz Y22 12 J22

previous equality can also be expressed as:

y' =X() - H(f(X(1))) - (X'(1)) + VX)) -X"(1),
where X'(t),X"(t), VF(X(t)) € R* and H(f(X(t)))isa 2 x 2 matrix.

This equality can be generalized. Let us see the various cases.

If X = (21,29, ...,x,), let be:

g:R—=R"t— (z1,29,...,2,) and f: R" = R, (21,29, ...,x,) — y,i.e.
R—R"—=R,t =X —y,y=f(X(t).

Similarly we obtain:

d2

d—fj = X'() - H(f(X(1))) - (X'(1))" + V(X)) - X"(1),

where X'(t),X"(¢), Vf(X(t)) € R" and H(f(X(t))) isa n X n matrix.

If X=(x1,22,....,2), Y = (y1,y2, ..., yp) and y; = f;(X), let be:

g:R—R" t — (x1,29,...,x,) and f: R" = RP (21, 29,...,2,) — (Y1, Y2, ..., Yp) , OL:
R—-R'->R,t—-X—=Y,Y=FfX®t)=(fi(X(2)), ..., [p(X(2))) .

Si;nilarly we obtain p equalities:

S = X(0)- BCK() - (K0 + VAG(D) - X'(1), 1< < p

where X'(t),X"(t), Vf(X(t)) € R" and H(f;(X(¢))) isa n x n matrix.

Finally, if T = (t1,%2,....,tn), X = (z1,22,...,2,) and Y = (y1, 42, ...,Yp), the following
applies:
Theorem 18 : Given g : R™ — R", (t1,to, ..., tm) — (21, T2, ..., T)
fiR" = RP (21,29, ..., Tn) — (Y1,Y2, .., Yp) , O
R" = R" =R\, T—X—-Y,Y=f(X(T)) = (fo(X(T)), ..., fp(X(T))) = f(g(T))
both twice differentiable functions. We get theTfollowing general t;ormula:
0%y, OX(T) oX(T) 0-X(T)
= L ) - () + vy G

m2+m

1<i<p,1<j,k<m,formedby p-
OX(T) 9°X(T)
ot; 7 Ot;0t

equalities, where:

,Vi(X(T)) € R" and H(f;(X(T))) isa n X n matrix.

Example 42 : Let g : R® — R,& = g(t1,t2,13) , [ : R = R%, (y1,40) = (f1(2), fo(=))
be twice differentiable functions.

. 8$<T) o ox B 2
As: T H(f(X(T))) = Kl V f1(X(T))
we get:
ot10t; Ot -H(f1(X(T))) - ( ot ) + V f1(X(T)) - 96,01, and so:

0%y Oz d>y; O0x dy1 0%z

8t18t3 a 6—151 ' d:l;'2 ' 8—t3 dx . 8t18t3 '

_dy 9*x(T) 0%
- dx ’ 8t18t3 - 8t18t3 ’
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Example 43 : Let ¢:R? — R? (z1,2) = g(t1,t2), f: R* = R,y = f(x1,72) be twice
differentiable functions. As:

0%y 0%y
X(T) Oxy Oy 0x2  Ox10xy yl oyl
— [ = e H X(T — 1 — 11 12
ot; (5751" 3152')’ (F&ED)) 9%y 9%y Yo Yy ||’
8$18$2 81‘%
8y 8y ;o 82X(T) 82331 82332
X(T = = t:
Vf( ( )) (8..'E1 81‘) (ylayQ)’ 8t% (975% 9 8t% , WE g¢
8331
0%y _ Oz 0o || ||yl i Ot N Jdy 9y 0%z, 0%z _
otz ||oty oty || || vl Y Oy dxy’ dxy) \ 9827 o2
oty
Oy [0z \® , Oz Oy , dzs Oz, 0w,
8—tf_ (8—751) 28—1518—751y12 (8—tl> Yoo + Y1 o1 ‘|‘ Yo o ;
8331
0%y _ Oz Oxa|| ||yl i Oty N dy 9y 0%z, 0%z, _
Ot10t9 oty ’ oty y'1'2 3//2/2 % 8113'1, 0xo 81518152’ Ot10t9
Ot
0%y _ Oz Oz ) O0x; Oxry  Ox1 Ox9 o O0xs Ox9 !
ot 0ty Ot; Oty 1 Oty Ot, Oty Oty oty Oty 7%
82117 ’ 8 i) .
Y G0, T Bt
8331
0%y _ Oz 0o || ||wiy i Oty N Jdy 9y 0%z, 0%xy _
ot2 || ot dta || || Yla Y Oy dxy’ dxy) \ 92 082
Oty
0%y or1\” , oxr, Oxy , 01y 0%xy  , 0%xy
o2 (875 ) y11+28—1€28—t2y12 (8—tg> Yoo + Y1 B -+ 4 o8

IMPLICIT FUNCTIONS

Let f:R" — R™, n>1,m > 1. The function is called "in explicit form" when we know
the law f that allows us to associate to each element of the domain its unique image.

All functions used up to now are functions in explicit form.

Now let us consider the equation z° 4 y* = 1. Points (x,7) € R? that satisfy this equation
form the circumference with center in the origin and radius equal to 1, i.e. the trigonometric
circle.

However this circle is not the graph of a function y = f(x), because to each value x corre-
spond two values y (excluding x = £1) as well as to each value y correspond two values x
(excluding y = +1). Solving the equation algebrically we get y = -/ 1 — 22, that is, the
explicit expression of two possible functions y = y(x), having respectively as graph the
upper and the lower semicircle, or we can get © = ++/1 — 92, that is, two possible explicit
expressions of functions x = x(y), where the roles of the independent and dependent
variables have been exchanged, these latter functions have as graph, respectively, the semi-
circle on the right and the one on the left.

It is easily seen that z* + (y(a:))2 = (:c(y))2 +y?=1.
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We could still break the circle into a suitable number of not overlapping traits, to form other

functions which, unlike the four previous ones, would not be continuous.

Now let us consider instead the equation f(z,y) = ze¥ + z*y* = 1.

The point Py = (1,0) satisfies it; this equation is not solvable with respect to y while it can

be solved with respect to z, since it is a second degree polynomial y* 2?4+ e’z —1=0

— eVt e?y + 4y2
212

function =z = z(y) obtainable from this equation. We easily verify that f(z(y),y) = 1.

Finally, let us consider the equation f(x,7) = ze? + 2°y* = 1. The point Py = (1,0) sati-

sfies it, but this equation cannot be solved with respect neither to = nor to y. We wonder whe-

ter by the latter equation it is possible to guarantee the existence of functions y = y(x) or

x = x(y) , which we, being unable to obtain the explicit expression, will call functions in im-

plicit form.

We will examine below some introductory examples, each time increasing first the number of

variables and then the number of the equations, to arrive finally to establish a theorem valid

for the general case.

We start with the simplest case, namely that of an equation with two variables.

having as solutions x = , which are the two possible forms of explicit

FUNCTIONS IMPLICITLY DEFINED BY AN EQUATION

I case: Equation f(z,y) = k: implicit function R — R

Let us suppose we have a general equation with two variables f(z,y) = k, k € R.

Let us first find a point Py = (x,yo) that satisfies such equation f(xg,yo) = k.

Once we have found Py we want to see if, in a neighborhood of x( (or yp), the set of points
(x,y) such that f(z,y) =k is the graph of a function y = y(z) or = = z(y), even if we
cannot find its explicit expression, but however we try to verify if it is a continuous and diffe-
rentiable function.

If so, i.e. if yo =y(zo) and f(x,y(z)) =k, YV € J(xy) we shall say that the function
y = y(z) is implicitly defined by the equation f(x,y) = k.

This problem can also be seen geometrically using the so-called level curves. Confining our-
selves to the case of f:R?* — R to graphically represent the situation, if w = f(z,y), the
equation f(x,y) = k leads to determine the pairs (z,y) for which w = k, and this is similar
to cut the surface w = f(x,y) with a plane, parallel to the (x;y) plane, at an height equal to
k.
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The intersection between the surface and the plane generates a curve, which is the projection
by means of f of a curve lying on the (x;y) plane: the level curve.

We can then see this level curve as a curve in the true sense of the term, that is a function
g:R =Rt — (x(t),y(t)).

We then have the following composite function:

R 2 R? i R, ¢ 9, (x(t),y(t)) i w, where w = f(x,y) = k is a constant.

We get so, differentiating:
dw d(z.y) _ 0f dv  Of dy _
d¢t — Ox dt oy dt

— =V f(z,y) fr-2 )+ £ -y (1),
where (2/(t),v/(t)) is the tangent vector to the given curve.

d
But d—l: =0, since w is constant, and so V f(x,y) - (z'(t),y'(t)) = 0, i.e. the gradient of f

and the tangent vector are perpendicular, at any point of the level curve. We will use this pro-
perty below.

Let us come back to the problem of the existence of the implicit function y = y(x) defined
by the equation f(x,y) = k.
The existence and the properties of such an implicit function are established as follows:
Teorema 19 (U. Dini) : Let us suppose that f: R*> — R is a continuous function having
continuous derivative f, in A C R?; let f(xg,1y0) =k and f,(zo,90) # 0. Then there
exists a neighborhood J(zy) and a single continuous function y = y(z), such that
Yo = y(l‘o) and f(m,y(x)) =k,Vze 3(@0)
Moreover, if also f, is continuous in A, then y(x) is differentiable in J(x) and so:

/ dy J alr
y) = = i
Finally, the function y/(x) is also continuous V = € J(zo) .

Ve J(xg).

We don't give the proof of this theorem, but we shall verify, using the derivative of composite
function, the result found with regard to the derivative /().

Note how the hypotheses of the theorem give a sufficient and not necessary condition for the
existence of an implicit function.

In addition, if all assumptions were met, they would imply the differentiability of f(z,y) in
A.

With appropriate changes in assumptions we can deduce existence, continuity and differentia-
bility of an implicit function z = x(y) in J(yo).

Example 44 : Let us consider the equation f(z,y) =2 —y=0. At (x0,1) = (0,0) is
f(0,0) = 0; f(z,y) is continuous with continuous derivatives throughout the whole R? and
moreover f, = —1# 0 while f; = 2z, which vanishes for z = 0.

The function defined by f(z,y) = 2> —y =0 can be made explicit as y = y(z) = 27, is
continuous and differentiable throughout the whole R. On the contrary, in a neighborhood of
y = 0 it is not possible to define a function x = x(y), as each y > 0 has two corresponding
T = i\/@ Searching for the inverse function leads in fact to y = \/E or y= — \/E , de-

pending on whether we restrict the domain of g(z) = 2° to R, or R_.

Example 45 : Given the equation f(z,y)=2°—y=0. At (xg,)=(0,0) is
£(0,0) = 0; moreover f(x,y) is continuous with continuous derivatives throughout R? and

f) = —1+0 while f/ =3z, which vanishes for z = 0.
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The function defined by f(z,y) = 2° —y = 0 is made explicit as y = y(z) = 2°, is conti-
nuous and differentiable throughout R, where it is also invertible, with inverse = = \7@
Even if f/(0,0) =0 so, in a neighborhood of y =0 the function (explicit) exists,
confirming the fact that condition fy’ # 0 (or f] # 0) is only sufficient and not necessary.
Geometrically, the function y = 2 has at = = 0 an horizontal tangent line, but this happens
at an inflection point, and not at a minimum point, as in the previous example, and this allows
the existence of the function = = z(y).

Implicit Function R — R: First order derivative
If f(x,y) = k and if we define implicitly y as y = y(x), we get this functions composition:

R — R? i R,z — (z,y(z)) i w = f(z,y) = k. We can then calculate:
d 0 0 dz d
w () 0=,y x y>:ﬂ_1+fy/‘y/(x):0’

& 0wy 0w Y\ & w

as f is a constant, and then we get:

dy Iz
/ _% _ _Je
If we had implicitly defined = = z(y) we would instead have:

R — R? L R,y — (z(y),v) L w = f(z,y) = k, and from this:

dw a(f) 3(:U,y) dzr dy) o /
dy  Oz,y) Ay (®:9) dy " dy e =W+,
d

and so: o' (y) = é = —;—i{.

/ /
As f—y, is the reciprocal of f—l; , we find again the inverse function derivative rule:

1
() = ——,if f/ #0 and f/ #0.

V() = it S £ 0 and f)

Implicit Function R — R: Tangent line equation
From f(x,y) = k, assuming it is defined y = y(z), we can write the equation of the tangent
line to the curve y = y(x) at xo, which will be: y — y(zo) = v/ (z0) (z — x¢) , and so:
f2 (0, o)
vyl f (0, y0) (@ = 20),
which can also be written as: f,/ (o, %) (z — 20) + f, (0, %0) (¥ — yo) = 0 or:
Vf(zo,y0) - (x — zo,y —yo) = 0, that is, we find again the orthogonality between the gra-
dient of f and the tangent vector to the level curve.

Example 46 : Let us consider the equation f(x,y) = ze’ + 2%y* = 1.
Itis f(1,0)=1; and also f, = e’ +2zxy” while f) =wze’+22°y. So, as f/(1,0)=1
and fy/ (1,0) =1 #0, it exists, in a neighborhood of the point = = 1, the implicit function

: f2(1,0)
y = y(x) and the resultis: 3/(1) = — 2222 = — 1.
@ W= ")
Y 1 972
We get also, in the same neighborhood of =z = 1: ¢/(z) = — Ralhed 8 :
zey+2x2y

For the equation of the tangent line to y=y(x) at z =1, as y(1) =y =0, we get:
y=—-1-(z—1)=1—=x.

Implicit Function R — R : Second order derivative; Taylor's polynomial
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If w= f(x,y) =k and f(xg,y0) = k, assuming that f is twice differentiable with conti-
nuous derivatives, we calculate the second order derivative of the implicit function y = y(x),
if f,(z0,10) # 0. We can follow two different ways.

dw . .. . .
From — = f/+ fy' -1 = 0, we derive again with respect to x; for composite functions de-

dx
rivative (chain) rule we obtain, if g—z =9 :
d*w  d [dw d ., d N . d o
T = () m ) = D+ () o+ ) =
_6,dx8,dy o, dr 0 ., dy , ,d
= D B i) —+(a—<f)-—+a—y<fy)a)- v Sy -
—f fu y+(f fw y) y f Y =

as, w bemg constant, its second order derivative is zero, and f,; = f,. . Solving for " we
get:

Lo+ 260y + Fry () /
y'= - y? ; S &) from which, replacing 3’ = ; -, finally we get:
y,,__fm(f) 210 FL S+ Foy (D)
= . i
(47)

We can also apply Theorem 18, for =z — (z,y) — w= f(z,y) =k with
X X( ) = (x,y), from which X( )= (1,4') and X"(x) = (0,%") and so:

X' (@) - H(f(X(2)) - (X'(2))" + Vf(X(x)) - X"(z) = 0 and:

1 1
IR T | R4 A+ (frs £y) - (0,9") = 0 so finally we obtain:
zy yy Y '
1
+2fly + /
y'= — 22 Y + I ) , and then we substitute 3’ = — =Z.
y Y

Having the second derivative y”(zy) we can then determine, for the implicit function
y = y(x) , the expression of Taylor's polynomial of second degree at x = x, which will be:

fx/(anyO) . 1 " . 2
Fien ) 7 T g 0 0

where y”(x¢) must be computed using the previous formula.

Py(z,z0) = yo —

Example 47 : Let us compute y”(1) from f(z,y) = ze’ +2%y* = 1.
As f! =e¥ 4+ 2zy* and fy’ =ze’ + 227y, we get:
"no__ 2 "no__ el "no__ 2 : L
fow =207, [y = fr = €' +4zy, [ = xe’ 4 22%, from which we obtain:
fon(1,0) =0, f(1,0) =1, £, (1, O) =3, and so, as f,/(1,0) =1 and f,(1,0) =1, we
O 1—-2-1- 1 1+3-1
get: y'(1) = — E
Then we can write the expression of Taylor's polynomial of second degree at x = 1, which
will be:

Po( 1) = y(1) +5/(1) (2 = 1)+ 53" () (&= 1P =0~ (w— 1) & (w— 1"

= 1.

II case: Equation f(z1,z5,%) = k : Implicit Function R? — R
Now let us suppose that we have an equation in three variables f(z1,z2,y) =k, k € R, and
that the point (29,29, yo) satisfies it: f (m?, ), yo) = k; f is differentiable with continuous
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derivatives. A single equation allows us to define implicitly (or explicitly) a variable, say y, as
a function of the other two: y = y(x1,23), thus obtaining an implicit function R? > R.
Dini's theorem here applied tells us that we will obtain an implicit continuous and
differentiable function if f, (27,29, 30) # 0.

Implicit Function R?> — R: First order derivatives
If w= f(x1,29,y) =k and (X|y) = (x1,22,y), we have the following functions composi-
tion:
Ny f
— R SR X— X[y ~w=fX]y) =k.
If yL =y, fr o = = f!, we can then compute:

o(w) o(w)  0X|y) ox; ox;
D(ar.m0)  OX|y) Bwr,zs) 0 as f is constant, and as o , while oz, =0, as
variables x1 and x5 are mutually independent, we get:
ow  Ow 10
— — ||=VfX]y)-||0 1] =0 or:
(9.([31 (9332 / /
Y1 Y
( aw / / / /
8:15 (f1 f27f) (1,0,9)) = f{ +fy'y1:0
4
6w ’
\

from which we obtain: (y},ys) = (— - —2> and so:

Vy( 0 0) _ (_ fi (2,25, 90) _ fz’(ﬂ??ﬁ%%)) .

Xr1,T
b fy,(x(l)axgayO), fy/(x(l)axgay())

Implicit Function R? — R : Tangent plane equation
We can write the equation of the tangent plane to the surface y = y(x1,z2) at (29, 29), with
0,0y _, .
y(%a xg) =%Yo:
(29, 29, (29, 29,
fi( (1) 2> Yo) -(931—33?)— f3 (@, 29, o) -(xg—acg),
f (wla an yO)
which can also be written, as f, (a:l,:z:Q,yg) #0, as:
fl (xlax%yﬂ) (xl - xl) + f2 (‘rla $2, yO) ('CC? - x2) + fy/(x(l)axgayﬂ) (y - yO) = O’
or Vf(x(fﬁg: yO) . (ml - x(lJa To — 333: Yy — yO) =0.
Enlarging the dimension of the problem, now the gradient vector is orthogonal to the tangent
plane to the level surface.

Yy—Y = —
f (‘1:?7£E27y0)

Implicit Function R?> — R: Second order derivatives

From: R? — L R: X— (X]y) i w= f(X|y) =k, applying Theorem 18, if:
ym i yz] > fa: P i/j/' as (X’ y) - (.Tl,l'g,y) , from which:

X 0(X

(8x| Y _ (1,0,9,) and (&C‘ Y _ (0,1,%5), we get also:

1 2

0*(X|y) vy Xy  *(X|y) " 0*(X|y)
B Sl B — — d _ "

656% (Oﬂoﬂyll) ’ awl 8x2 8:(:2 81‘1 (0707y12) an 8$% (0707y22) ’

. AT

and so: w:Hl 0 will-|[fia fao fo,||-|| O||+ (fi,f2 [)) - (0,0,4)) =0,

/
! bt 1y f é; z;fu Y
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from which:
y// o 1/1 + 2f1/1// y/l + fyy ( ) .
1 — — s
y
" "
82w / %/1 }/2 f ) 0 ropl gl " .
8x18x2:”1 0 will-||fla fo S| 1/ + (f1. f2, f;) - (0,0,4/5) = 0, or:
f// f// 1 y
" n ./ n .,/ //Qy/ /yy 2
J = 1o+ fly Yo+ foyn + fryyi v
12 — )
fy
Sy Lo ) [0
02 =10 1 whll-||fia foo fa||-|| 1 ||+ (fi, /2. ) - (0,0,55) =0, o0r
? fly fay 1y Ys
2 n .,/ :L/// y v
y// o + f Y + f Yy ( )
2 — T ;

Y

Implicit Function R? — R: I and II order total differentials; Taylor's polynomial

Since we have now a function of several variables, to search its maximum and minimum
points, as we shall see below, first and second order total differentials are more useful. Let us
see how to compute, starting from the equation f(x1,x9,y) = k, the first and second order
total differentials of an implicit function y = y(z1, z2) .

A /o f{ /o fé : .
sy, = — 4 and y, = — ~=, replacing we have:
1y y
dy = vy dzy + v dxy = ;1/ dxy ;2/ dxs , which could also be computed differentiating:
/ /
dw = f] dzy + fydzy + f, dy = 0, and from this we deduce dy = — Si dxy — 2 dxy, if

7Ry
i #0.

To get d*y we differentiate again dw = f| dz1 + fydxs + f, dy = 0, bearing in mind that
fi, fz and f, depend on z1, x2 and y, but now also dy depends on z; and x; so we get:

d(dw) = 0 =d(f{ dzy + foydas + f, dy) = i(f{ dzy + fydzy + f, dy) day +
aa (fidey + fydey + f, dy)dx2+g(fldx1+f2dx2+f dy) dy =
( ydoy 4 foy doo + £ dy + f, 88 (dy)) dx; +
( pdry + fopdzy + fpdy + f, aa( ))dx2+

, 0
(fly dzy + fy, doy + f,, dy + 8 (dy)) dy = 0. But
( 1/{ dr, + fﬁ dxs + fyli dy) dr; + ( dxl + fQ/é drs + fy/é dy) dxs +
+ (ffy da1 + fo dao + f, dy) dy = d2 f(X|y) while
0 8 0
£ 9 ——(dy) dzy + f, - (dy) dzy + f, - (dy) dy = f, d(dy) = £, d?y, and so we ha-
ve: d*f (X ly) + f, d*y = O , from which we ﬁnally get:

Eflanry)  Ef(X]y)
; i

d2y: —
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We use the expressions just found for dy and d?y to write the expression of second degree
Taylor's polynomial of the implicit function y = y(x1, x2) which will be:

L fi f5 1 &Pf(X]y)
Pz(xl,:v2)=yo+dy+§dy—y —Fdx —fy,dxz TR

Example 48 : Given f(z,y,2) =ze¥ ™) 44y —2=0,itis £(0,0,0) =0. As:

fl=e"0"2) f g emv=2) (y — 2) = £/(0,0,0) =1#0;

fl=2"e"""% +1 = £/(0,0,0)=1+#0,

fl=—2?e" 1 = £/(0,0,0)= —1#0,

we have three possible choices to define an implicit function: x = z(y, 2), y = y(x, z) or
z = z(x,y) . We choose the third option and we get:

0:(0,0) _ (0,000 1 _ 020,00 £(0,00) 1
or f(0,0,00 -1 " 9y  f/0,0,00 -1
from which:

dz(0,0) =1-dz+ 1-dy = dx + dy. Since then:

fl=2(y— >ewﬂ+mawﬁw—@2 £4(0,0,0) = 0,
fr=a"e"""2) = £7(0,0,0) =0,
ﬂ;:3“y2:f%00m—m

foy = fye =2x¢" TW=2) 42 et (y — 2) = f44(0,0,0) =0,
fl=fl=—22e"2) —2?e" 02 (y — 2) = £/'(0,0,0) =0,
fr=1fl=—2*e"v"? = f(0,0,0) =0,

de_ 0

from which we get: d*z = — = 0, and so:

fro -
1

Psy(x,9,0,0) :z0+dz—|—§d2z:()+da:+dy+0:dx—|—dy;as:

de =2z —0=2 and dy = y — 0 = y, finally, we have Py(z,y,0,0) = x + y.

Now we use the equation f(z,y,2) = ze* W™ 4y —2=1.1Itis £(1,0,0) =0.
Moreover, since first and second derivatives of the function do not change, we have:
f2(1,0,0) =1 #0; f,(1,0,0) =2 # 0 and f/(1,0,0) = — 2 # 0, the same three possibili-
ties for implicit function remain valid; we choose again z = z(z,y) , and so:
£2(1,0,0) f,(1,0,0) 1

dz = — 7 dr — dy = = dz + dy. Then:
? £/(1,0,0) 77 F/(1,0,0) p 4+ dy. Then

1 1 i 1
fr(1,0,0) =0, fy(1,0,0) =1, f7(1,0,0) = 1, f,,(1,0,0) = 2, f,.(1,0,0) = —2,
f,.(1,0,0) = — 1, and so:
d2f(1,0,0) = (dy)2 + (dz2)? 4 4dz dy —24d:v dz - 2dy dz, from which we get:

2f(1 4 —4 -2
¢2(1,0,0) = — d“f(1,0,0) _ (dy)” + (dz)” + 4dxr dy — 4dx dz dydz;
fz/(lvoao) —2

as dz = 5 dz + dy, and replacing, we obtain:

1 1 2 1 1
d?z = 5 [(dy)2 + (5 dz + dy) + 4dx dy — 4dx (5 dz + dy) — 2dy (5 dz + dy)

7
and so d*2(1,0,0) = — 3 (dz)?, wherefore Taylor's second degree polynomial will be:

1 7
Py(z,v,0,0) = zo—i—dz—|—2d2z—0+2d$—|—dy—ﬁ(dx) ;a

dr =2 —1 and dy = y — 0 = y, we finally get:
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le—Day— L (@-12

P
2(37797070) 2 16

III Case: Equation f(z,x,...,x,,y) = k: Implicit Function R" — R

Generalizing the two cases above, let us suppose that we have a single equation in n + 1
variables : f(x1,%o,...,%,y) =k, kK €R, and f:R"™ — R differentiable function with
continuous derivatives. If X = (z1,29,...,2,) and (X|y)= (1,29,....,2,,y), let
f(Xo|yo) =k and f,(Xo|yo) # 0. Then the implicit function y = y(x1, 2, ..., z,) exists in
a neighborhood J(Xy), with yo = y(Xy), and we have the following functions composition:

R LR X x|y Lw= p(x)y) = k.

Implicit Function R" — R: First order derivatives

From X — (X|y) i w = f(X|y) = k, deriving with respect to the variable x; we get
ow  I(w) IX]y) 0Xly) _of of oy
oz 0(X|y) 83}1 = VIR =5 = =g Yoy o

8501

0 : . . .
8x 8 = 0 if ¢ # j, as the variables x; are mutually independent, for which
x; X
a !/
we obtain: J_ f,1<z<n
8113‘1' fl
Implicit Function R" — R: Tangent hyperplane equation
/ / /
Itis Vy = ( — —1,, — —2/, vy — f—Ti and the equation of the tangent hyperplane to the hy-
Y y y
persurface y = y(x1, T, ..., x,) at (3:(1),938, L aY) is:
n fi/
v =3 ) ot s S ) ) 0o
il y

Vf(al, 29, . ah,y0) - (z1 — x?,xg — a:g, ey T — Ty, Yy — o) = 0, that expresses the usual
relation of orthogonality between the gradient of the function f and, now, the tangent hyper-
plane.

Implicit Function R" — R: Second order derivatives
From:

R" — R"™! L R: X — (X|y) i w = f(X]y) =k, deriving we get:

(X

((9—x|l-y) = (0,..,1;,..,0,¥;) and also:

9*(X |

ﬁ = (O, - 0, y;’]) , and so, applying Teorema 18, we get:

Pw  IX|y) oI\ . .. .

from which we get the second order partial derivatives:
%:i% :_gﬁmw,(xmyamm
v 8331 856‘]' f/ 8@ ain

T
) , 1<i4,7<n .

Implicit Function R" — R: I and II order total differentials; Taylor's polynomial
Operating in a similar manner to the case of implicit function R?> — R, from the composition

X — (X|y) & w = F(X|g) = b we get:
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dw = fidz) + fydoy + .. + f, dz, + f, dy = 0, from which we get dy, and differentiating
& (X] y)
1y

With these differentials we can write Taylor's polynomial.

again, we get d*f(X|y) + f, d°y =0 and so &’y = —

We can summarize these cases, all with a single equation in two or more variables, saying
that it is possible to define an implicit function, with a single dependent variable, while all
others remain independent, if the gradient of the function (of the equation) at the considered
point is different from the null vector, i.e. if it has at least one component different from zero.
This derivation variable can then be taken as the dependent variable. Since the gradient is still
a Jacobian matrix, even if formed by a single line, we can say that this Jacobian should have
rank equal to 1, i.e. maximum, and this condition will be valid in the general case.

FUNCTIONS IMPLICITLY DEFINED BY A SYSTEM OF EQUATIONS
I Case: System { f@y1,40) =k : Implicit Function R — R?

g(l‘, Y1, 3/2) - k2
We don't increase now the number of variables but the number of equations, having, as a mi-
f(a":ylayQ) = kl
9(13791;?/2) = k2 ’ kl’ k2 eR.
Two equations can allow us to explain two variables, say y; and y», as a function of the re-
maining z: R — R* x — (y1(z),y2(x)), if the appropriate assumptions are met.
The equations number tells us how many the dependent variables can be, the remaining varia-
bles will then have the role of independent ones. Let us see what we get as far as the derivati-
ves of a function R — R?, 2 — (y;(z),y2(z)) defined by such a system of equations.

nimum case, a system of two equations in three variables: {

Implicit Function R — R? : First order derivatives
From 4 W1 = flx,y1,y2) = ki

W9 = 9(517791;?/2) — k2
positions:

R — R? LR, r — (2] Y) iwl = f(z|Y) = ki, and
RoRIR, o - (2]Y) L ws = g(z]Y) = ke,
from which, differentiating with respect to =, as w; and w, are constant, we get

O(wy,wy) _ 9(f,9) _ 9(f,9) O@Y) 0, i.e. the system:

with (z|Y) = (x,y1,y2), we have these two function com-

d(x) o(x)  O(z]Y) O(x)
( Y
W1 sl 28—
< dz Oz equivalent to:
@_v (93|Y)8(33|Y) —0
( 4z VY or
(0f dz  Of dy  Of dw_
Or dx Oy, dx Oy, dx - fg//1 ‘3//1+fg/,2'?/2: — fa S .
<8 d 9 d 9 d = ;o ,_,:_,,whlchlsah-
99 dv 99 dy 99 dy _ g v+, vh=—d,
(| Oz dz Oy dz Oy dz

near system of two equations in two variables v} and v, and can be written in matrix form
w ] | v I
Ty I |l |9 9,
f,9) Oy _ 9(f.9)
Oy, p2)  O(x) O(x)

as:

, and also, using Jacobian matrices, as:
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_ ‘ o(f.9)
O(y1,y2)

/ /

1/ 1 Y2

From Cramer's theorem, if ‘ # 0 the linear system has a unique so-

lution <% %)

/
n I
ox’ Ox

Since the Jacobian matrix of functions f and g with respect to the dependent variables y; and
12 18 not singular, (i.e. has maximum rank, in this case equal to 2), this is the condition that al-
lows us to state the Dini's theorem for this case. In fact the following holds:

Theorem 20 : Given the system F(@,51,42) = , with f and g, R* — R, differentiable
g(xayl,yZ) = kQ

functions with continuous derivatives, being (g, 3!, 49) a point that satisfies the system, and

A(f,9)(xo, Y1, y3)
(Y1, y2)

cit function R — R?, 2 — (y1(z),y2(2)) is defined, which is continuous and differentiable

YV € J(xp), whose derivatives are:

‘ yll — 6(3!17342) - _ 8(fag)

Ya d(x) Ay, 42)

In addition to the global solution expressed using the inverse of the Jacobian matrix, there is
another process, practical consequence of Cramer's theorem on linear systems, which allows
us to calculate individually each unknown. Each of them is in fact given by a quotient, the de-
nominator of which is the determinant of the coefficient matrix of the unknowns (the Jaco-
bian) and the numerator is the determinant of the matrix obtained replacing in the Jacobian
matrix the column of the known terms to the column of the coefficients of the sought un-
known. Then we will get, in the case we are dealing with:

then is # 0. Then there exists a neighborhood J(x) in which an impli-

! !
Y1 Y2

/ !
gy1 ng

fr

-1
/
‘ 9z

bofe) _ ‘
O(x)

/ / / /

fl‘ Y2 Y1 fCE
/ / / /

dyl o 9z gyg X dy2 gyl 9z
- / / ) - / /

dz n Sy dz n Iy
/ / / /

9 Y1 g Y2 9 Y1 g Y2

S y1,92) =2 =y +sin(y1 — y2) +cos (z —12) = 1
9(@,y1,92) =+ y1 —sin(z —y2) —cos (y2 —y1) =1’
it is satisfied by the point Py = (z,y1,92) = (1,1,1), and functions f and ¢ are
differentiable with continuous derivatives throughout R?. Let us calculate the Jacobian
matrix:

of,g) H 1 —sin(x —ys) cos(y —y2) —1 sin(x — 1) —cos (y; — o) ‘

Example 49 : Given the system {

O(w,y1,y2) ||1—cos(z—y2) 1—sin(y—y1) cos(z—ys)+sin(y2 — 1)
0 1,1,1 —
Calculating the Jacobian at Py we get (£,91,1,1) |t 1 , whose rank is ma-
8(1’7 Y1, ?42) 0 1 1

ximum and equal to 2 as # 0, and then in a neighborhood of x =1 an implicit

1 1
function is defined R — R?* x — (y(x),ya(x)), continuous and differentiable function,
whose derivatives are given by:

1 —sin(x —ys) sin(z —y2) —cos(y1 — y2)
dy 1 —cos(z—y) cos(z—1ys2)+sin(ys —y1)
dx cos(y1 —y2) — 1 sin(z —ya) — cos (y1 — y2)

1—sin(ys —y1) cos(x—y2)+sin(y2 —y1)
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cos(y1 —y2) —1 1 —sin(x —y9)

dyz 1—sin(ys —y1) 1—cos(z—1y2)
dz cos(yy —y2) — 1 sin(z —ys) — cos (y1 — y2)
1 —sin(y2 —y1) cos(z —yz)+sin(y2 — 1)
1 -1 ‘ ‘ 0 1 ‘
dy; (1 0 1 dy» (1 1 0
At x =1 we have: n) = -7 = —1 andmz — =1
dx 0 -1 dz 0 -1
1 1 1 1
Example 50 : Given the system: { 2= f(y) , let's see it as { F@,y,2) = f(z,y) - 2 .
g(x,y) =0 g(x,y) =0
Let Py be a point satisfying the system, with f and g everywhere differentiable with continuo-
us derivatives.
: I(F, g) fo f, —1 A(F, g)(Py) A
It will be ——>~ =||"7 Y I | =Y =g, #0, th
M By, 2) 9: 9y 0 A(y, 2) g, 0 | % 70, the

hypotheses of Dini's theorem are satisfied and so the system defines an implicit function
R — R% z — (y(x), 2(z)) . To calculate the derivatives ¢/ (x) and 2'(x) we can proceed in
two ways:

d
1) from g(x,y) = 0, differentiating with respect to z, we get: g, -1+ g,; d—y =0, from
x

d L - . :
which d_y = — g_:,; . Differentiating the first equation f(z,y) — 2z = 0 with respect to x we
x g,
dy dz . g. dz
. I I = _ R . / / I —_— = .
get: f, -1+ f, iz +(-1) i 0, from which: f, + f, ( é) i 0 and so:
dz _ o 9 fi9y— 1y 9n
d —Jx y o0 / :
r g?/ g?/
dy
. . : f, -1 dr 1 :
2) using the Jacobian matrix, we have: ‘ g‘lf 0 H : dﬁ = — ‘ 1|, from which:
Yy - T
. /dx
fx/ -1 ‘ y fr
dy _ e 0 g, 92 19 ol Lo fe
da f 1 9, d ;-1 9
g, 0 gy O

Example 51 : The system: { 2= f(z,y) , 1s the same as { Flz,y,2) = f(@,y) = 2 , the
9(z,y,2) =0 9(x,y,2) =0

appropriate assumptions are met as in the previous example. Even now a variable, z, is alrea-

dy in explicit form, while the second equation allows us to get, even if only implicitly,

another variable, say .

a F / / _ 1 . / _ )

As: 9Fg) = ff f"i , |, if at Py is |7 , | #0, we have a function

O(z,y, ) 9r 9y 9 9y 9!
R — R? 2 — (y(x), z(x)), whose derivatives are given by:

Y

/ _ 1 —_— /

‘ f‘lf , ‘ g:z: = —‘ J 1|, from which we obtain:
9 g dz !

dx
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-1 T
dy  |gr g Cflgltgr dz |9y G fy9s— 1l
de — |f) -1 flgl+gy de | f) -1 fral+g,
gy 9. g, 9!

The results, as we see, are different from those of the previous example, as the second equa-
tion is not constant with respect to z, but it depends upon all the variables.

f(z1, 22,91, y2) =k

: Implicit Function R? — R?
9(w1, 72,91, 92) = ko

IT Case: System {

: ) . ) 1, =k
Let us consider now a system of two equations in four variables: I (@1, 2,91, 0) L
9(w1, 2,91, 92) = ko
]ﬁ, ko € R.
The system allows us, under suitable assumptions, to define a function:

R* — R?, (z1,22) = (y1 (21, 22), y2(21,22)) -

Implicit Function R? — R?: First order derivatives
wy = f(x1,22,Y1,Y2) = ki

If )
wy = g(T1, 2, Y1, Y2) = k2

compositions:

R? — R* iR, X — (X]Y) iwl = f(X]Y) = k;, and

R R AR X = (X|Y) 2wy = g(X|Y) = ks

from which, differentiating with respect to x; and x5, w; and w, being constant, we obtain the

and (X|Y) = (z1,z2,y1,¥2) , we have these two function

system:
( Ow, 6(X\ Y)
_— = X Y . _
5o = VIIY) - =5
O, O(X|Y)
_ = X Y . _
9wy OX[Y) _ -
- = X Y et i Bl
Ow, I(X|Y)
—— = Vy(X]Y) - _
\ Oy VIEIY) 0x 0
(X Y) Oy Oy A(X|Y) oy O |
as 2B (g oy Oy AXY) (o, O O )
S oxy ( ,0, axl’ o7, and 92y 0,1, 33327 O we get the system 1n
82/1 8y2 ayl 8y2
he unk oy |
the unknowns Ox,’ Ox1  Ozo and 0xs
(ﬂ_ayl of Oy» _  Of
6:91 8:1:1 6y2 8$1 axl
dg Oy1  Og Oy  Og
5—%.6x1+6y2'8x1__8—% ) . .
< af oy n of Oy _ af , which in matrix form becomes:
6:91 8:1:2 6y2 8$2 axQ
@_3%_’_39'8%:_@
L Oy1 Oxy Oy Oxo O
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of of 0 oy of
oy Oy 0xy 0xq
99 99 0 Jys dg
0 B oy o, , :
(:)yl é/Q ar  of || a—yi = — 8_fl , which can be written as:
oy Oy O 0y
o o o oo om|l |5
8y1 6y2 81’2 (91‘2
o of || [om om |  ||or o
%ygl %y; . gz; gzj = — %‘7;1 %3;2 and, using Jacobian matrices, as:
oy Oy oxr1  O0xo oxr1  O0xo
a(fag) . a(ylny) _ a(fag)

Oy, y2) O(z1,w2) B Az, m2)
If the point (29,29, 37, y9) satisfies the system, if f and g are differentiable with continuous

0 0 0,0 ,0 o
(f7g)(x17x27y17y2) 7& 0’ ie. M has maximum rank, Dini's
(y1,y2)

8(y1, Z/Q)
Theorem, in this case, assures the existence, in a neighborhood of the point (x(l), :cg) of the im-

plicit function R* — R?, (1, z3) — (y1(1, 22), y2(x1,22)) , whose derivatives are obtained

S a(yby?) _ 8(fag) - . a(fag)
A(z1,22) (y1,y2) O(z1,22)
obtain the derivatives of y; and gy with respect to x; and xs.
There is also another method of calculus, arising from Cramer's theorem on linear systems,
from which we obtain:

derivatives, and if

, which is the general formula from which we

af  of of  of

dx1  dys dxy Oy

dg  9dg ‘ (f,9) ‘ dg 99 ‘ 8(ﬁg)‘
Oy |0z Oyp | | O0(@,yp) | Oy | Oz Oy | | O(z2,42)
ory, | of Of | ‘ af.g) |0z | Of Of | ‘ a(f.9) ‘

oyr Oy (Y1, y2) oy1 Oy (Y1, y2)

dg g dg 9y

oy Oy oyr Oy

of  Of of  of

oy Oy dy1 Oz

9dg 99 ‘ (f,9) ‘ 99 99 ‘ a(f,9) ‘
Oy | Oy Oz | |Oy,z) | Oy | Oy1 Oxp | | O(y1,32)
ory, | of Of | ‘ f.g) | 0z | Of Of | ‘ a(f.9) ‘

oyr Oy O(y1,y2) oy1 Oy o(y1,y2)

dg g dg 9y

oy Oy oyr Oy

Example 52 : Py = (1,1, — 1, — 1) satisfies the system:
[z, m2,y1,02) = (01 + 22) €7 + (Yo +y1) €72 =0
{g($1,x2,y1,y2) = 2y —y1) " — (21 — yp) ™Y =17
Functions f and g are everywhere differentiable with continuous derivatives. Then:
af 89 T1+y2 e$2+y1 .

—J oYU T1— T2 . — =(2 —
9, e + (y2+y1)e S (229 — 1) e :
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(gé; e — (yo +y1) e ;—52 - 286;+U2 (331+— yo) €7 +

9 _ _ Y-y T 99 _ ot (g T2ty .

%yfl = —(m1+ z2) e te =ag oy € (z1— y2) ™™

9 = (z1 + x9) Y 4 M2, B = (2z9 — 1) Y2 4 ™2 MY

We have 8(f’8?)x(11,7x127,3;,1y,2)_ D) = _21 8 :;) Z , and since :;) Z‘ =5#0,

with such system an implicit function can be defined:
R? — R?, (21, 2) — (y1(21, 22), y2(21,22)) , in @ neighborhood of (z1,z2) = (1,1).
For derivatives of this function, calculated in (1, 1), from:

) _ | A | A
d(x1,x2) (Y1, y2) (x1, ) set
8y1(1,1) 8y1 1 1
A R N EE
Oya(1,1)  Oyo(1,1) || -3 4 2 0|
3x1 a55'2
4 3 8y1(1,1) 8y1(171) 9 12
- _ 5 5 H —1 and so: d0xq ) _ 5
3 1 2 o] | Owe(1,1)  9ya(1,1) ;2
5 5 8:171 81172 )

DINI'S THEOREM IN THE GENERAL CASE
Systems of m equations in n + m variables: Implicit Function R" — R™
We conclude treating the general case, namely that of a system of m equations in m + n va-
riables. Stating Dini's theorem in this general case, we will find again, as particular cases, all
cases previously treated. The system is given:
J1(@1, @2, s Ty Y1, Y25 s Ym) = K1
Jo(T1, T2, o Ty Y1, Y2y s Ym) = k2
fm(mla L2y ey Tns Y1, Y2y -0y ym) = knm,
Such a system allows us, with the appropriate assumptions, to define an implicit function:
R" — R™, (21,22, ooy Tn) — (Y1, Y2, - Ym) » With y; = y; (21, 2, ..., x,) .

We see that the number of equations corresponds to the number of dependent variables, and
therefore, simply by difference, we get the number of the independent variables: m equations
imply m dependent variables, and so m + n —m = n is the number of the independent va-
riables.

Theorem 21 : Let Py = (2,29, ...,20, 90,45, ...,40,) be a point satisfying the system:

fl(mla L2y ey Tns Y15, Y25 -+ ym) = kl

f2($l; L2y eeny Ty Y15, Y25 -4y ym) = kQ

fm(wla L2y eees Ty Y15, Y25 -- 7ym) — km
Let f; be differentiable functions with continuous derivatives in a neighborhood of Py, and let
8(f17f27",fm)(1)0) 7&0

a(yla Y2,y ey ym)

Then the system defines, in a neighborhood of (2, 29, ..., 2%), an implicit function, continuo-
us with continuous derivatives:

also be
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R" — R™, (21,22, ...; Tn) — (Y1, Y2, -ory Ym) » With y; = y;(x1, 9, ...,2,), Whose Jacobian

.. . a(ylay27“'7ym) 8(f17f27"7fm) - a(fhf?:"vfm)
matrix is given b = — . .
X 15 glven by 0 (Y1, Y2, -y Ym) O(x1, 9, ..., zp)

(xla L2y .eny xn)
.. 6yi . , .
Each derivative —— can also be expressed, using Cramer's theorem, as a quotient:

T
% 8f1 8f1 8f1 %
oy Oyi1  Oxp Oyiv1 Oym
% an an afg %
oy Oyia Omk Oy Oy
dyi | O T Oy Oz Oy OYm |
2 ofh oh dfi ofr of |
Oy Oyir Oyi Oy Oym
9f2 9fs dfs dfa 0 fo
891 h ayifl ayl ayi+1 v aym
Ofm Ofm O fm Ofm Ofm
dyy Oy Oy Oyimr Oym
a(fl;f%--;fm) ‘
Oyi — a(ylv cos Yi—15 Ty Yit 1, 7ym)
Oxi O(f1, fo, s fn)

3(917 s Yi—15Yis Yit 1y -y ym)

That is, the derivative of y; with respect to xj, is given by the opposite of a quotient between
two Jacobian determinants: the denominator is the Jacobian of the equations with respect to
the dependent variables, the numerator is the Jacobian obtained replacing, in the previous one,
the i-th column, that of the variable we want to derive, with the derivatives of the equations
made with respect to xz, the variable respect to which we want to derive ;.

Implicit Function R" — R" : First order derivatives
Let's see how we can justify this result concerning the derivatives of the implicit function.
From the composition of functions:

i .
(X1, @9, ooy ) — (X1, T2y ooy Ty Y1, Y2y ooy Ym) — w; = kj = cost., 1 < i < m we get:

8(11]1,“]2, 7wm) _ a(w17w27 7wm) . a(xlax%'"axn)ylay?a"'7ym) -0
O(x1, 2, ..oy Tp) O(T1, X2y vy Ty Y1y Y2y +vs Yim) O(x1, X2, ..oy Tp) '

The second term can be written as:

H O(f1, fay e fin) A(f1, fas-r fim) H . (21,2, ..., Tn)

a($1,$2,---,xn) a(yl,yQ,...,ym) 8(y17y2,...,ym)

8(3?1, L2y eney xn)
The matrix on the left is a (m,n + m) matrix, divided into two blocks, the first (m,n) and
the second (m, m); the right matrix is a (n + m, n) matrix, divided into two blocks, the upper
(n,n) and the lower (m,n). Working by block, from the equality we obtain:

a(fh f27 ) fm) I, + a(fla f27 0y fm) . a(yh Y2 -0y ym) — O from which:
8(1’1,$2,...,.Tn) a(ylay27'“7ym) a(lﬂl,l‘g,...,l‘n)
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8(f17f27"7fm) . a<y17y27"'7ym) . 8(f17f27"7fm)

= and so:

8(y17y27"'7ym) 8(551,11)'2,...,51)'”) 8(1I1,$2,...,$n)
a(ylay%--wym) _ _‘ 8(f17f27--afm) - ) a(flanw-;fm)
0(x1, o, ..., Tp) (Y1, Y2y -y Ym) (w1, w0y .oy y)

In compact form the above equalities can be expressed as:
o(W) _ oW a(X|Y) _a(W) | aW) o) _
OX)  IX[Y) 09(X) ox) T a(Y) 9(X) T

aw»__(mwg* O(W)

(X)

a(Y)

o(X) -
MAXIMA AND MINIMA FOR FUNCTIONS f:R" - R

Let us now study the problem of finding maximum and minimum points (also known as extre-
me points) for functions of several variables.

The definition of relative (local) maximum or minimum point for functions f : R" — R is si-
milar to that given for functions of one variable, and it has been stated in Definition 19.

As regards the existence of maximum and minimum absolute points Weierstrass's theorem 6
is valid.

FIRST ORDER CONDITIONS

For functions of one variable there is a theorem, known as Fermat's Theorem, which states
that if a function is differentiable at xy and z is a relative maximum or minimum point, then
f/(._'Eo) = 0 .

For functions f : R" — R, similarly, we state the following:

Theorem 22 : If f(X) is differentiable at X, interior point of Dy, and X, is a relative maxi-
mum or minimum point for f, then V f(Xy) = O, where O is the null vector.
Proof : If f(X) = f(X( + tv), v unit vector, we have a composite function:

R — R" iR,t—> (X +tv) i fXo+tv),

that we see as g(t) = f(Xo + tv), with ¢g(0) = f(Xo).

If X 1s a relative maximum (or minimum) point, it will also be:

fXo+tv) < f(Xo) (f(Xo+tv) = f(X)), VX € J(Xy), or:

9(t) < 9(0) (9(t) = 9(0)), V¢ € 3(0).

So if X is a relative maximum (or minimum) point for f, ¢t = 0 will be the same for g.

Since f is differentiable, and since X, + tv is differentiable with respect to ¢, it follows that
g(t) is differentiable, as a composition of differentiable functions, and then from Fermat's
Theorem it must be ¢’(0) = 0. But

5(0) = 12%g(t) ; 9(0) _ }E%J”(Xo + t?;) —fXo) _ Dy f(Xo) = 0.

But D, f(Xy) = Vf(Xy) - v, since f is differentiable, and then:

Vo: VX)) - v=0&Vf(X)=0.e

The above condition V f(X;) = O is necessary but not sufficient for a relative maximum or
minimum point, and is a necessary condition only if the function is differentiable. These are
called the first-order conditions in the maximum and minimum points research.

Points where V f(Xy) = O are called stationary points, and are points at which the tangent
plane (or hyperplane) to the graph of the function is horizontal (i.e. parallel to the plane (or
hyperplane) of the independent variables).
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To search for relative maximum and minimum points we must therefore satisfy the first-order
conditions, i.e. we must impose V f(X) = O, and solve the system of n equations in n un-
knowns that arises from this. After all the solutions have been found, i.e. all points X for
which V f(Xy) = O, we must check whether those points are really relative maximum or mi-
nimum points, or if they are saddle points.

Wi Mz

Saddle points are points where V f(X;) = O, but neither the definition of maximum point
nor the definition of minimum point are satisfied , as in every neighborhood of X there are
points where f(X) > f(Xy) and points where f(X) < f(Xj). Geometrically speaking, in a
stationary point of maximum (or minimum) the tangent plan (or hyperplane) is, in a
neighborhood of X, all above (all below) the graph of the function. If X is, instead, a saddle
point, the tangent plane crosses the graph of the function, and then, in every neighborhood of
Xy, there are points of the graph above and points of the graph below the tangent plane.
Therefore we need criteria and methodologies, called second-order conditions, whose purpose
is to establish the true nature of a stationary point. Meanwhile, let us see now with an
example how the analysis along particular directions, as seen for the limit operation, is not
generally valid to draw positive conclusions about the true nature of a maximum or minimum
point.

Example 53 : Given f(z,y) = (y — 2%) (y — "), first of all we search for its stationary
points; we must put:
fl=—2z(y—a*) —4a®(y — 2?) = 62° — 20y — 42y =0
y’:y—x‘l-i-y—xQ =2y—at—22=0 or2y=at+2> ’
substituting in the first equation we have:
20" — 32° + 2° = 2” (22" — 32® + 1) = 0, from which we obtain z = 0 and:

,  3+/9-38 {x2:1 orz = =+1
= ————— and so:

x 1 2= 1 1. We have found five stationary points:

=3 or:)::i\/5
{xzo.{le.{xz—l.{ﬁﬁ
= ? = ? = ’ _3
y=0"ly=1"|y=1 y=32
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In this example let us study only the point (0,0). Is f(0,0) = 0. Meanwhile, let us study the
behavior of f(z,y) along any line passing through the origin. Given y = mx , we get:
f(z,mz) = (mz — :1:2) (max — :L'4) =z’ (x4 —ma® —mx +m?) .

Studying the sign of f(x,mz), as 22> 0,Ya #0, for the "permanence of the sign
theorem", since z! — ma® —ma+m? is m> >0 at z =0, and since the function is
continuous, f(x, mz) is strictly positive in a neighborhood of the point z = 0.

So the point (0,0) is a minimum along each line passing through the origin; on the line
=0 we have f(0,7) = »*, and then also on this line the point (0, 0) is a minimum point.
Although the analysis of all lines passing through the origin give the same answer, (0,0) is a
saddle point. In fact, if we study the sign of f(x,y) we have:

L fy>2r L [y<a®
) >0 if £ .
e {1 g (1

In the figure the black area represents the points where f(x,y) < 0. In every neighborhood
of (0,0) there are points where f(x,y) > 0 and points where f(x,y) < 0. As f(0,0) =0,
it follows that (0,0) is a saddle point, contrary to what could be deduced analyzing the
function along all the lines passing through the origin.

We will resume and complete the analysis of stationary points of this function when we have
the right tools.

SECOND ORDER CONDITIONS

Since for functions f : R"™ — R we can not define an increasing or decreasing function, it
therefore is of no use studying the sign of the first-order partial derivatives. To distinguish
between maximum or minimum points and saddle points, if any, we must instead use the
second-order conditions, which are sufficient conditions, and are connected to concavity and
convexity of f at Xg. Indeed the following is valid:

Theorem 23 : If X, is a stationary point for f and if the function is differentiable and
concave in a neighborhood of X, then X, is a relative (local) maximum point.

Proof : From Theorem 14, since f is concave:

F(X) < f(Xo) + VF(Xp) (X —=Xp), as the graph of the function lies below the tangent (hy-
per) plane at Xy. But V f(Xy) = O, from which f(X) < f(Xy) in J(Xp), and so Xy, is a re-
lative (local) maximum point.e

Similarly, if X is a stationary point for f and if the function is differentiable and convex in a
neighborhood of X, then X, is a relative (local) minimum point.

Assuming now that the function is twice differentiable at X, we have, using Taylor's polyno-
mial, if dX =X —X:
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FO) = f(Ko) + V(o) - X + 3 dX - H(X) - (0X)" + o(Jax)
and being X, a stationary point (V f(Xy) = Q), we get:
FIK) — F(%o) = 5 dX - H(Xo) - (4X)" + o(JaX]?) = £ & F(Ko) + o dX]?) .

So the sign of f(X) — f(X,) is the same as that of dX - H(X,) - (dX)" = d®f(X,).
If df(Xy) < 0 f is concave at X, whereas if d®f(X;) > 0 f is convex at Xj.

To check if the definition of maximum or minimum point is satisfied, we study, in a neighbo-
rhood of Xy, the sign of the difference f(X) — f(Xy), as:

) f(X) < f(Xp) & f(X) - f(Xp) <0< d?f(Xp) < 0 and so X is a maximum point;

) f(X) > f(Xp) & f(X) - f(Xg) >0 < d®f(Xp) > 0 and so X is a minimum point.

If the sign of the difference f(X) — f(Xq), i.e. the sign of d*f(Xy), is not constant in a
neighborhood of X, then X is certainly a saddle point.
~ 0% f(Xo)

The second-order total differential d*f(X,) = Dr O
5= O Ox;

dx; dz; is a quadratic form, i.e.

a polynomial in the n variables dx;, with all terms of the second degree, so now we need suf-
ficient criteria to establish the sign of a quadratic form..

QUADRATIC FORMS
Quadratic forms are homogeneous quadratic polynomials in n variables like:
n

Q(X) = Q(xh T2, ... xn) = Z Q;j Ty Tj,
i,j=1
i.e. polynomials in n variables having solely second-degree terms.

Let's see how every quadratic form can be written in the form Q(X) = X-A - X", where
X € R" and A is a square matrix of order n.

1
Example 54 : Q(z1,z5) = ||z1 22| - H4 ? ‘ : Hil = 127 + 231 13 + 471 T2 + 575 =
2
= 22 + 621 Ty + 523 .
1 2 3 1
Example 55 : Q(z1, 29, x3) = |21 2 23| - ||0 3 1 To || =
1 3 4 I3

= 2%+ 303 + 4} + 200 72 + 421 73 + Aoy .

But at once we see that every quadratic form can be generated by a symmetric matrix: starting
Qj 5 + Qjj

from matrix A, the symmetric matrix B is built placing b; ; = 5

Example 56 : Using the examples above, we can easily verify that:

. 1 2 T . 1 3 T .
Q(.Cl)l,.'le) = H.’El 332“ . ‘4 5 . Lo = H.’El 332“ H 3 5 H T and that:
1 2 3 T 1 1 2 T
Q(.Tl,:EQ,ZL‘g) = ||.l’1 Z9 113” . 0 3 1 i) = ||.l'1 xT9 LL‘3|| . 1 3 2 i)
1 3 4 3 2 2 4 T3
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Then we will consider every quadratic form as generated by a symmetric matrix, and this
symmetry is guaranteed when we have the quadratic form generated by the second-order total
differential of a twice differentiable function, as the matrix of this quadratic form is the
Hessian matrix H(X,) of f. For our purposes, we will write a quadratic form always in the
form Q(dX) =dX-H- (dX)", with dX = (day,dxs,..,dz,), so as to represent it in the
form of a second-order total differential.

The study of the sign of quadratic forms is based on the following definitions:
Definition 40 : The quadratic form Q(dX) = dX - H - (dX)" is called:

positive definite if Q(dX) > 0,VdX # O;

negative definite if Q(dX) < 0,VdX # O.

Definition 41 : The quadratic form Q(dX) = dX - H - (dX)" is called:

positive semidefinite if (Q(dX) > 0,VdX # O)and (3dX # O : Q(dX) =0);
negative semidefinite if (Q(dX) < 0,VdX # Q)and (3dX # O : Q(dX) =0).
Definition 42 : The quadratic form Q(dX) = dX - H - (dX)" is called:
indefinite if (3dX; : Q(dX;) > 0) and (3dX; : Q(dX3) < 0).

! = 22 + 325 is a positive definite

Example 57 : Q(z1, 22) = [|21 22 -

1 0
0 3
form as 2% + 323 > 0V (1, 22) while 23 + 323 = 0 ifand only if z; = 25 = 0.

1 0 0 I

Example 58 : Q(z1, 2, 23) = ||21 22 23] - ||{0 3 O||-||2o|| = 2] + 323 is a positive
0 0 O T3

semidefinite form as % + 3z5 > 0V (z1,29,23) while 2% +325 =0 if z; =2, =0,

1 1 .
Example 59 : Q(xz1,22) = ||z1 22| - H 11 H : =22+ 2 o + 22 = (z) +1)° s

L1
x2
a positive semidefinite form as (x; + x5)° > 0,V (21, 22) while (21 4 22)* = 0 whenever
xr1 = —X2.

1 0 0 I
Example 60 : Q(z1,20,73) = ||o1 o 3]/ - ||0 —1 0||-||22|| =27 —23 +22 is an
0 0 1 I3
indefinite form as 93% — x% + 93§ > 0 if, for example, 1 = o = 0, V3 # 0 but it is instead
¥ — a5+ :c§ < 0 if, for example, 1 = x3 =0,Vxy # 0.
Let us now expose sufficient criteria to ensure a definite or semidefinite quadratic form.
Let us study the sign of the second-order total differential for f : R> — R, and then generali-
ze the processto f : R" — R. Then the result is:

1
fl@,y) = f@o, y0) = 5 (dz, dy) - H(zo, yo) - (dz,dy)" + o([|(z,y) — (z0,30)°) ,
and we must study the sign of:
d* (0, y0) = £11 (w0, yo) (dz)” + 2 fay(xo,y0) dz dy + £, (w0, o) (dy)*.

Writing in short form d?f = £/ (dz)? -21— 2 frydzdy + Q}% (dy)*, we get:
d2 N d 2 2 " dz d (fx/;/) d 2 (fx/;/) d 2 " d 2
f - fxaz ( .’13) + fxy ray + 1 ( y) - 7] ( y) +fyy( y) -

rr rr
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" 2 2 2 2
&f =1, ((dxf +25 dedy + 8:; <dy>2) - @ (dy)” + £, (dy)° =

" 2 "nopn m\2
df =1, (d:c + 2 dy) 1 Sz ,, (f) (dy)*.
Similarly we can obfztin also a second egﬁality:
2 7 lf; ’ flflx y/Z/J - (fl{;/)Q 2
e = gy, (e Frae) il oy,
In any case we havey'?[/he sum of two terlzlJnys, each of which is the product of a square (so always

positive) for another term, whose sign instead is variable:

2 2

1 1 i 1 1 1

" and fﬁﬁ vy (fxy) or " and fﬁﬁ vy (fxy)

T " vy " '
Tx Yy

1 1

If we consider the Hessian matrix ‘ e || > we will see that f, and £, are the so-called
yr  Jyy .

. . . . . . // // // 2 . .
first-order leading principal minors of the matrix, while f,, f,, — ( fxy) is the determinant

of the Hessian matrix, also called second-order leading principal minor.

We have then the following:

Definition 43 : the principal minors of a matrix are minors having as elements of its main dia-
gonal only elements belonging to the main diagonal of the given matrix.

Definition 44 : the leading principal minors of a symmetric matrix are the n principal minors,
whose order gradually increases from 1 to n, starting from any element of the main diagonal.

a1; a2
a21 22
are |a11| and |ags|, only one second-order leading principal minor:

Example 61 : If H = , we have two first-order leading principal minors, which

L2 g as — aa
a1 a2
So there are only two possible sequences of leading principal minors:
aix a2 aix a2
|H1| = |a11| and ’Hg’ = or |H1| = |a22| and ’Hg’ = .
az1 a1 A2

For a matrix of order 2, principal minors and leading principal minors are the same minors.

ai; a2 a1z

Example 62 : If H = [[a2; a9 ao3 || we have three first-order leading principal minors:
az  az  ass
. . . . . |a1ir aig
|a11], |a22| e |ass|; we have two second-order leading principal minors: o a and
21 (22

ailx  aie as
, only one third-order leading principal minor: | as; a9 a3 |.
a3y azz2 ass

Q22 423
a3 433

ai a3
az  ass
So there are four possible sequences of leading principal minors:

Minor is a principal minor but not a leading principal minor.

apn a2 a3
and |H3| = |(Q91 Q92 Q93 |, 0r
a3z az2 ass

1) [Hy| = |an|, Ha| =

aip a2
a
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ay ap aip a2 a1z
2) |Hy| = |ag|, H| = Gy iy and [H3| = [a21 a2 ag|;or
azy azz2 as3
Qa3 aip ape aig
3) |H1| = |CL22|, |H2| = a3y Gs3 and |H3| = Q21 Q92 Q93 ;ﬁnally
asy asz Aasg
ailp a2 a1z

a a
4) |Hy| = |ass|, |Ha| = a;z azi and [H3| = |a21  a a|.

azy azz2 as33

The first is called also the North-West leading principal minors sequence, the last is called the
South-East leading principal minors sequence.

The previously obtained second-order total differential for f : R?> — R can then be written
as:

| HL|
= [Hu| @3 +
[ L |
where [H,| = |ay| or [H;| = |az| butalways [H| = | “2|.
azl G2

The terms Q? and Q3 represent, respectively, the square of a monomial and the square of a bi-
nomial.

If d>f<0 or d®f >0 in a neighborhood of (xg,7,) means that the two previous
expressions are negative or positive Vdr and Vdy, i.e. their sign is independent of the
choice of dz and dy. We can achieve this independence in only two cases:

M re <0 w <0 d’f <0, Vdz and Vd
or & <0, T an
PV sn = (L) >0 O\ s g - (=0 T g
and then (¢, y) is a maximum point;
1 > 0 1 > 0
m) { T A2 org M N2 & d’f >0, Vdz and V dy
-f.”E.’E yy (fqy) >0 fxﬂﬁ yy (fl‘u) >0

and then (¢, y) is a minimum point.

If £ fy'; — ( f,")2 < 0, d*f is the sum of two terms of opposite sign, and therefore its sign

wy
varies with dz and dy; so f,, f,1 — ( jiv’;)2 < 0 is a sufficient condition to ensure that
(xo,y0) is a saddle point. We note that this always happens when f,7. and £,/ have different
sign.

So far, nothing can be concluded when [ f,/ — ( jiv’;)2 =0.

This case will be treated later with semi-definite forms.

If now we study the d?f for f : R?® — R, with a similar procedure but with much more con-
sistent calculations, we obtain an expression like:

H| |H3|
&2 = |Hy| 2 + 2l gz | [Hs]
sequences of leading prlncipal minors seen in Example 62, and the terms Q%, Q3 e Q3 repre-
sent, respectively, the square of a monomial, a binomial, a trinomial.

, where |H|, |Hs| and |Hs| is any of the four possible

Examining the general case of d*f for f : R” — R, we have the expression:
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H2| |anl| |Hn|
£f = Q2+ 2 g2 4y Q3 +

f =M JH, | Hy—o| % " |[Hp
any possible sequence of leading principal minors and Q?, Q3,...,Q? are the square of a mo-

nomial, a binomial, ..., an n-omial.

Q?%, where [Hi|, |Hyl,..,|H,| is

We can then formulate, similarly to what we have seen in the case of a function of two varia-
bles, the following criteria to determine whether a quadratic form in n variables is positive or
negative definite. The following is valid:

Theorem 24 : The quadratic form Q(dX) = dX - H - (dX)" is:

- positive definite if and only if |H;| > 0,Vi: 1 <i < n;

- negative definite if and only if ( — 1) [H;| > 0,Vi:1<i<n.

If the form Q(dX) = dX - H - (dX)" is positive definite at X, as all its leading principal mi-
nors have positive sign, this is a sufficient (not necessary) condition to ensure that X, is a mi-
nimum point. If the form Q(dX) = dX - H - (dX)" is negative definite at X, as all its leading
principal minors have alternating signs, those with odd index are negative and those with
even index are positive, this is a sufficient (not necessary) condition to ensure that X is a
maximum point.

Since the theorem is expressed in the form of a necessary and sufficient condition, we deduce
that any sequence of leading principal minors, whatever the starting element on the main dia-
gonal, always leads to the same conclusion: therefore there is not a better choice to determine
the first-order leading principal minor with which to start the sequence.

Any sequence thatisnotthe (+ + ...+ + ) orthe (— + — + .....) says that the point X is
a saddle point. When even only one leading principal minor is zero the above considerations
are no longer valid, and we are in the field of semi-definite quadratic forms.

For the study of semi-definite quadratic forms there is a criterion similar to that given for the
definite forms. But now it is not enough to analyze any sequence of leading principal minors,
but we need to examine all the principal minors of the matrix.

Principal minors of a matrix are minors having as elements of its main diagonal only elements
belonging to the main diagonal of the given matrix.

aip a2 ais
Example 63 : If A = | as; ag ags|| we have three first-order principal minors: |aj],

asy ag2 ass

ail a2 a3
lage| and |ass|, and a third-order principal minor: |ag; a9 ass |; these are also leading

azr asz2 ass

e . . e : a a
principal minors; there are instead three second-order principal minors: an a12 ,
21 a22
ayp a a; a . . o .
22 "2 band |71 7131 The last of these is not a leading principal minor.
agz as3 az  ass

To see if a quadratic form is semidefinite the following criteria apply, for which we denote by
| M P;| any principal minor of order i:

Theorem 25 : The quadratic form Q(dX) = dX - H - (dX)" is:

- positive semidefinite if and only if |[MP;| > 0,Vi:1<1i<n;

- negative semidefinite if and only if (— 1) - [MP,|>0,Vi:1<i<n.
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Signs sequences are the same as those relating to the definite forms, but now including the
possibility of the presence of zeros. Each sequence of signs that is not one of the two former
ones leads to the conclusion that the quadratic form is indefinite.

Pay attention to the fact that when we have a definite quadratic form at X we can imme-
diately deduce the nature of the stationary point; on the contrary, if we have a semidefinite
quadratic form at X, there is no conclusion allowed, we can only exclude a possibility:

-if at X, the form Q(dX) = dX-H - (dX)" is positive semidefinite, then X, cannot be a ma-
ximum point, and then X, may be either a minimum or a saddle point;

-if at X, the form Q(dX) = dX - H - (dX)" is negative semidefinite, then X, cannot be a mi-
nimum point, and then X, may be either a maximum or a saddle point.

How to decide between the remaining two possibilities depends on the function we are stu-
dying, depending on which we can use different methodologies. The most common is to
study, with various tricks, the sign of the difference f(X) — f(Xy).

Here are some examples.

4 2 1

Example 64 : Let HH=||2 1 2|| be the matrix of the quadratic form d?f. First-order
1 2
4

1
principal minors are >0,1>0and1 >0; second-order principal minors are
‘ ;l i =0, 11 1 =3>0; ; i = — 3 < 0. The presence of an even order negative

minor immediately leads to the conclusion that the quadratic form is indefinite.

-4 2 3
Example 65 : Let H = || 2 —2 —1|| be the matrix of the quadratic form d?f. First-
3 -1 -3
order principal minors are —4 <0, —2 < 0and — 3 < 0; second-order principal minors
are ‘ _24 _22 =4>0, ‘ _34 _33‘ =3>0; ‘ :f :;‘ =5> 0. Third-order
-4 2 3
principal minor is | 2 —2 —1|= —2<0. The quadratic form is then negative defi-
3 -1 -3

nite. To reach this conclusion, however, it was enough to examine only the sequence of
leading principal minors:

4 9 -4 2 3
|H;| = —4 < 0; |[Hy| = =4>0,|Hs;|=| 2 -2 —-1|=-2<0.
2 -2
3 -1 -3
1 2 3
Example 66 : Let H=|[2 4 6| be the matrix of the quadratic form d?f. First-order
3 6 9
principal minors are 1>0,4>0and9 > 0; second-order principal minors are
1 2 4 6 1 3 . _ . . .
‘ 9 4|= 0, 6 9|~ 0; 3 9|~ 0. Third-order principal minor is the determinant of

H, obviously equal to zero. Then the quadratic form is positive semidefinite.

Let us see now with some examples how to apply these methods for the study of stationary
points of a function of several variables.
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Example 67 : Let us consider the function f(z,y) =2+ y". Since Vf(X) = (2z,4y"),

2
the only stationary point is (0,0). Is H = H 0 1 2Oy2 , from which, substituting, we get

2 0
]I-]I(O,O):HO 0

‘ . The quadratic form d?f(0,0) is positive semidefinite, so (0,0) it is not

a maximum point. As f(0,0) =0 and being z*+y* >0, V(z,y)#(0,0), we
immediately see that (0, 0) is a minimum point, moreover, an absolute minimum point.

Example 68 : Let us consider the function f(z,y) =2" —y', as Vf(X) = (2z, — 4°),
0

1242 || from which, substituting,

2
the only stationary point is (0,0). It results H = H 0 —

we get H(0,0) = H (2) 8 H . The quadratic form d? f(0, 0) is positive semidefinite, so (0, 0) it

is not a maximum point. As f(0,0) =0, f(x,0) = 2* > 0 and f(0,y) = — y* <0, we see
that (0, 0) is a saddle point.

2 0

the conclusion
0 oll’ u

We note therefore that, for the same Hessian matrix H(0,0) = H

changes depending on the function we are examining.

Example 69 : Given f(z,y) = 32° — y* — 32y + 3zy* — 32> — 3z + 3y, let us determine
its possible maximum and minimum points. Imposing the first-order condition, V f(X) =0,
fl=92>—6xy+3y>* —62—-3=0
f)=—3y*—3x*+6xy+3=0
Adding the two equations we have the system:

62> — 62 = 0 [6x(z—1)=0
{2xy—y2—932—|—1:()’ {Qxy—yQ—w2+1:0

z=0 = xzoand z=0 or:
l-y*=0 " |y=1 y=—1""

{:Ezl :>{:c:1 :>{x:13nd{x:1
2y—y* =0 y(2—y)=0 y=0 y=2"

There are four stationary points: P; = (0,1), P, = (0, — 1), P3 = (1,0), P, = (1,2).
18 — 6y —6 — 62 + 6y

— 6z + 6y — 6y + 62
Studying the Hessian in each of the four points we have:

we have the system: {

from which:

Using second-order conditions, we have first: H = ‘

o || —12 6 L= —12<0
= = ,
(P1) 6 -6 fr J;-(f;;)2:72—36:36>0
and so (0,1) is a maximum point;
0 —6 2
HPo) = || "o 4 || = fantfyy— (f7)" =0-36= —36<0,

and so (0, — 1) is a saddle point;

12 -6 vy =12>0

6 6 || NS = () =T2-36=36>0"
fm vy (fﬂcy) - - - >

and so (1,0) is a minimum point;

e = g Ol = s - ()7 =0-38= —36<0,

H(P3) =

6
6 —6
and so (1,2) is a saddle point.
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Example 70 : Let us conclude the study of the function f(z,y) = (y — 2°) (y — ") , whose

- |

1
= = = — r= —Fr T =
stationary points are v 0; a: 1; v 1; V2 ; ‘ V2 .Using se-
y=0"|ly=1 y=1 y=3 y=>3
12y —12 2 2 84 3
cond-order conditions, we have H(x,y) = Sz =2y = 3:6 Yoo and so:
—2x —4x 2
H(0,0) = 8 8 ‘ so the quadratic form is positive semidefinite, but we have already seen
that (0, 0) is a saddle point;
|1 16 -6 |H;| =16 >0
H(1,1) = 6 9 andso{|H2|:32_36:_4<0,

and therefore (1, 1) is a saddle point;

16 6 H,| =16 > 0
]I-]I(—l,l)_H6 5 andso{|H2|:32_36:_4<0,

and therefore ( — 1, 1) is a saddle point;

1 -9
H —,§ = and so [Hy| =3 >0
V2’8

Hy|=9-8=1>0"
1 3
and then | —, =
V2’8

1 3
Hf ——,= | =
(ve3)
and then (—%,%

Example 71 : Given f(z,y,2) = 2° + 3> + 2> — x9*, let us determine its possible maxi-
mum and minimum points. First-order conditions give rise to the system:

fr=22-1y"=0

fy=2y—2zy=2y(1—x)=0 fromwhich we get the solutions:

9 _ 4
2 V2
4

- 92

) is @ minimum point;

-9
and so [Hy| =35>0 ,
Hy|=9—-8=1>0

4
V2
2

%’»& ol
[}

) also is a minimum point.

fl=22=0
z=0 r=1 r=1 rx=1
y=0 or ¢ y> =2 fromwhich { y=+/2 and { y= — /2.
z=0 z2=0 z=0 z=0
2 -2y 0
It follows that H(x,y,2) = || —2y 2—2z 0]| from which we obtain:
0 0 2
2.0 0 IH,|=2>0
H(0,0,0) = |0 2 0| andso: ¢ |Hy|=4>0
00 2 IH;| =8 >0
and then (0, 0, 0) is a minimum point;
2 —2v/2 0 Hy|=2>0
H(l,ﬁ,()): — 22 0 0|l andso: ¢ [Hy| = —8<0
0 0 2 [H3| = —16 <0

and then (1, \/5, O) is a saddle point;
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2 2v/2 0 Hy|=2>0
]1-]1(1, - \/5,0) =1l2¢/2 0 ol andso: ¢ [Hy|= —8<0
0 0 2 Hs| = —16 <0

and then (1, — \/5, O) is a saddle point.

Example 72 : Given f(z,y) = (x —1)" —y (x — 1)* + ¢, let us determine its possible re-
lative maximum and minimum points. First-order conditions give rise to the system:
fl=4(z—1)° =2y(x —1) =0 _ 4z —10°=(z—-1)°=0 _ 3(z—1)°" =0
,= —@-1)+2y=0 2y = (z —1)° 2y=(z -1
SO "; f é is the only stationary point. Moreover:
2
H(z, y) = 12 -1) -2y —2x-1)
—2(z—1) 2

So d®f(1,0) is a positive semidefinite quadratic form, so that (1,0) cannot be a maximum
point. As d?f(1,0) = 2 (dy)?, let us investigate in the direction dy =0, or y = 0. We get
f(z,0) = (z — 1)*, which would indicate z = 1 (and y = 0) as a minimum point.

Such a study, a one-dimensional study, does not allow us, however, to conclude affirmatively
that (1,0) is a minimum point; it could be used, although this is not the case, to exclude that
(1,0) is a minimum point. But (1, 0) is indeed a minimum point, just write:

z—1)°

Fey) =@~y 1 o = 1) -2y T Sw—1)t=

fa) = (5l =1 =y) +Jle=D'> 0= F10). ¥ £ (1.0).

from which H(1,0)

+y +

Example 73 : Given f(x,7) = 3y*> + 6xy — 2° — 9z — 6y, let us determine its possible rela-

tive maximum and minimum points. First-order conditions give rise to the system:
{f%:Gy—3x2—9:0 _ {2—250—3: -3=0 { —(z+1)*=0 :{x: -1

, =06y+6x—6=0 y=1—=zx y=1—=zx y=2

which is the only solution.

— 6z 6
6 6

is a positive semidefinite form.

So ( — 1,2) cannot be a maximum point.

As d?f(—1,2) = 6 (dz +dy)*, we get d>f(—1,2) =0 when dz = — dy.

Looking at the function on the line y = — x + 1, passing through ( — 1,2) and parallel to

y= —x,wehave: f(z,1 —x) = —2% 32> -3z —3= —3(z+1) and also:

fi(x,1—2) = —9(x+1)%, which is negative Vo # — 1.

Then along this line the functlon is always decreasing, then the point ( — 1,2) is not even a

minimum point, and hence is a saddle point. This time analyzing in a particular direction

leads to a negative conclusion, that is, to exclude the minimum point and then it gives us the

certainty of the saddle point.

6

Moreover H(z,y) = 6 g ,and so d*f( —1,2)

H from which H( —1,2) = H

THE HESSIAN MATRIX EIGENVALUES METHOD

There is also another method to study quadratic forms, based on the eigenvalues of the sym-
metric matrix that generates such quadratic form. We know that a symmetric matrix has only
real eigenvalues, and that it can always be diagonalized by an orthogonal matrix. That is, if H
is a symmetric matrix, there exists an orthogonal matrix P such that: H-P =P - D, from
which P' . H-P=P!'.H-P =D, where D is the diagonal matrix having as elements of its
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main diagonal the eigenvalues i, Ao, ..., A, of H. The matrix P is the modal matrix of H, i.e.
the matrix having as columns the normalized eigenvectors of H, which, for the properties of
symmetric matrices, are orthogonal to each other.

In order for the quadratic form d?f = dX-H- (dX)" to be definite it must be d>f > 0 or
d’f <0, VdX # O. Let us consider dX = dY - P!, where P is the modal matrix of H. As
IP| #0, the linear application dY — dY-P' =dX is a bijective correspondence
R" — R", so we get:

dX-H - (dX)" =dY-PT-H- (dY-PT)' =dY-PT-H-P-(dY)" =dY-D- (dY)".

If dY -D- (dY)" > 0 orif dY-D- (dY)" <0, VdY # O, itis also dX-H- (dX)" >0 or
dX-H- (dX)" <0, VdX # O. But

dY - - (dY)" = A (dyr)? + A2 (dya)? + ... + A, (dyp)?,

from which it immediately follows

Theorem 26 : The quadratic form dX - H - (dX)" is:

- positive definite if and only if \; > 0,Vi:1 <17 < n;

- negative definite if and only if \; < 0,V2:1 < i < n;

- positive semidefinite if and only if \; > 0,Vi:1 <7 <mnand 3\, =0;

- negative semidefinite if and only if \; < 0,Vi:1 <7 <mnand 3\, =0;

- indefinite if 3)\; > 0and 3); < 0.

Theorem 24 and Theorem 26 express necessary and sufficient conditions to get a definite qua-
dratic form, then the two methods (leading principal minors and eigenvalues) are not alterna-
tive but always lead to the same conclusion.

What we have seen so far about the second-order conditions for stationary points analysis is
based on the analysis at X, which verifies if d? f(X;) is a definite positive or negative form,
or an indefinite one; if the form d? f(X;) is semidefinite we can only exclude one of the three
possibilities, in order to decide, with a further analysis, between the two remaining, one of
which will always be that of the saddle point.

The situation is different if we can lead a global analysis. If d? f(X) is positive or negative
semi-definite, both at X, than in the whole domain, then this is sufficient to guarantee that X,
is a, respectively, minimum or maximum point.

Example 74 : Let us use again the function f(z,y) = 2* 4+ y*, with the stationary point
2 0

‘ 0 127

The result is d2f(z,y) = 2 (dz)* + 12%%(dy)*> > 0, V (dz,dy) € R%. So the form d2 f(z, )

is positive semidefinite not only at (0,0) but throughout R?, and then, as already seen, (0, 0)

it is a minimum point.

(0,0) and the Hessian matrix H(z,y) =

CONSTRAINED MAXIMA AND MINIMA

The search for maximum and minimum points, both relative and absolute, for what we have
seen so far, can be decomposed into three different problems. The first covers the search and
analysis of the stationary points of a function in all its existence field, whose solutions are
normally interior points of the domain. This type of research requires differentiable functions.
The second problem, we are not dealing with, concerns the analysis of the points where a
function is defined but is not differentiable. These too can be maximum or minimum points.
The third problem concerns the search for maximum and minimum points relative to some
appropriate subset of the existence field. Weierstrass's theorem gives a sufficient condition to
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guarantee the existence of maximum and minimum for continuous functions in a compact set.
There are two ways in which we can present this third type of problem.

The first is the so-called maxima and minima with equality constraints, which in the simplest
Max/min f(x,y)
uc.:g(z,y) =0’
look for extremes for f(x,y) throughout the domain (these maximum or minimum points
from now on will be called "free"), but only between points that satisfy the equation
g(x,y) =0.

As g(x,y) = 0 is called the constraint, f(z,y) is called the objective function.

If the function g(z, y) satisfies suitable assumptions, related to those of Dini's theorem on im-
plicit functions, we can consider one of the two variables as a function (explicit or implicit) of
the other, for example y = y(z), and then we can draw a curve in the plane: (z,y(x)); then
the problem is reduced to finding maxima and minima of the function f(z,y(z)), i.e. of the
curve, projection on the surface f(z,y) of the points of the curve defined by g(z,y) = 0.
Increasing the number of variables and equations we have geometric representations of the
problem with larger dimensions than the one just described.

case is in the form { where u.c. means "under constraints". We do not

Let us consider instead, as a second type of problem, with a constraint expressed in the form
of inequality: g(x,y) < 0. Usually (but not necessarily) the points satisfying g(x,y) < 0 are
interior and boundary points of a region contained in the domain, and the problem then is to
find maximum and minimum points of the function f(x,y) inside or on the boundary of the
Max/min f(z,y)
uc. :g(z,y) <0
region is similar to that of free maxima and minima, the search in boundary points is similar
to that of maxima and minima with equality constraints.

These two problems are named maximization or minimization with equality or inequality con-
straints.

selected region: { . The search for extremes at interior points of the defined

EXTREMES WITH EQUALITY CONSTRAINTS - FIRST ORDER CONDITIONS

Max/min z = f(z,y) . Let £ be the set of
uc.:g(z,y) =0
points satisfying the constraint g(z,y) = 0; let us suppose that f(x,y) and g(z,y) are
differentiable functions and that Vg(x,y) # (0,0), V(x,y) € €. This last condition allows
us to apply Dini's theorem at each point of £, and then we can determine, explicitly or
implicitly, a variable as a function of the other.

We begin dealing with the first case described: {
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9y
O(z,y)
If the rank of the Jacobian, i.e. the gradient of g, is maximum, or equal to 1, the two derivati-
ves ¢, and g, cannot be simultaneously equal to zero. Let us suppose it is defined y = y(z),
so we have two functions compositions:

R — R? i)R,Ji—> (z,y(x)) — f(z,y) = z, and

R R R,z — (z,y(z)) — g(z,y) = 0.

Deriving in the first the variable z with respect to x we get:

dz  9f dx Of dy , ;o

dr  Ox dsc+ oy dx = Jot fy (@)

From the constraint equation we get, using the derivative of the implicit function, ¢/(z) and
SO:

This condition can also be formulated as Rank( ) =1 = Max.

v : . . dz ;
y () = — = with which, substituting, we obtain: — = f, — f, - g—f :
9y dz 9y

Let us suppose, by assumption, that (¢, yo) is a solution, a maximum or a minimum point, to
the problem. Since the function is a composition of differentiable functions, it must be, for

d ! i
Fermat's Theorem: é =fo— 1y g—f =0, o0r f,=f,- z—f and so f,-g, = f,-g, and
y y
finally:
EL) (o)
9o 9yl |0(zy)|
0
As ‘ (£:9) ‘ = v/ =0, Vf and Vg are linearly dependent vectors, and so Vf = A Vg,
o(z,y)| |Vy

A€R.Butthen Vf—AVg=V(f—Ag) =0.
So we have obtained a necessary condition for the point (g, 7o) to be a solution of the pro-
blem {Max/min flx,y) ‘
uc.:g(z,y) =0
Even now a gradient must be cancelled, not that of the objective function, as in the case of
free maxima and minima, but that of the function f(z,y) — Ag(x,y).
The function A(z,y,\) = f(z,y) — Ag(z,y) is called "Lagrangian function" while X is
called "Lagrange's multiplier". So we have:
Theorem 27 : If f and g are differentiable functions R> — R and Vg(z,y) # (0,0); if
Max/min f(x,y)
uc.:g(z,y)=0"
Az, y,\) = f(z,y) — Ag(x,y), then there is a value \; such that: VA(xg, yp, Ao) = O.
First order conditions become VA(z,y, \) = O, bearing in mind, however, that any solution
A, =fr—Ag, =0
must satisfy the constraint, so we have to solve the system: ¢ A}, = f, —Ag, =0.
9(z,y) =0
But A, = — g(x,y), so the latter system can be indeed be seen as VA(x,y,\) = O, mea-
ning, however, A(z,y, \) as a function of variables z, y and \, and so we solve the system:
N, =fi—Xg,=0
A, =f,—Xg,=0 .
v=—g(z,y) =0

(xo,y0) is a solution of the problem { given the Lagrangian function
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Max/min w = f(z,y, 2)
uc. :g(z,y,2) =0
9(9)

0(z,y,2)
Dini's theorem we obtain (explicitly or implicitly) z = z(z,y) , obtaining the following func-

Let us study the problem { . We still have only one constraint, but

independent variables now are three. If has rank equal to 1 throughout &, from

tions composition: R* — R? L R, (z,y) — (z,y, 2(z,y)) — f(z,y,2) = w, and then we
must find maxima and minima of a function not of one but of two variables.
If f and g are differentiable functions, we now must put:

ow 0of 0x OJOf 0y 8f 0z , , ;o
ol B e R A — .0 .
Or Ox Ox + Jy Ox *os 9z Oz =St Sy 0 Sz
ow 0f Oz Of Oy Of 0z , , ;o
ol el R Ed —f.0 .
oy Ox 0Oy + dy 0Jy o, 0z 6y = Lo O Syt 1oz
But, from Dini's theorem, we obtain, from the constraint equation, as derivatives of the
/

/
implicit function, 2, and 2, i.e. 2= — =* and z'y __h , from which, substituting, we
[ 9.’
ow _ o 9o
or ¢ © g
have: ;o
Ow _ O
oy " T gl
Suppose, by assumption, that (z, yo, z0) is a solution, a maximum or a minimum point, to the
e o g—wzf;-g;—f;-g;=0
problem. It must be — = — =0, or ax , from which it fol-
al‘ ay w gl ! ! I 0
! / / / / ! /
lows: ffc ff fi’ f,z = 0. But then ‘ f;r fi’ f,z H H has
e 9 9y 9 9e 9y 9 o(z y7

rank equal to 1, and so Vf = A Vg, from which we get again V(f — A g) VA 0.
Increasing the number of independent variables does not lead to changes from an operational
point of view: at a constrained maximum or minimum point it is still necessary to cancel the
gradient of the Lagrangian function, but this time we get the system:

f/ )\ gx - O
"—Xg, =0
;, \g g;/ _g of four equations in four variables z, y, z and A.

A’A = —g(m,y,z) =0
With the due changes, it can be stated for this case a theorem similar to Theorem 27.

The next generalization of the problem will involve constraints.
Max/min w = f(x,y, z)

We study in fact the problem : we. - g(x,y,2) =0 , that has not one but two con-
T h(x,y,2) =0
straints, in three variables x, y and z.
. d(g, h . . .
Let us take the hypothesis that % has rank equal to 2, i.e. maximum, at every point of
x? y? z

the set £ in which the two constraints are simultaneously satisfied. From Dini's theorem this
guarantees the existence of a function R — R?, for example = — (y(x), z(z)), that genera-
tes the following functions composition:
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R — R3 L R,z — (z,y(z), 2(x)) — f(z,y,2) = w, and then we are led to find the extre-
mes of a function of one variable. Suppose, by assumption, that (zg, yo, z9) is a solution, a
maximum or a minimum point, to the problem. It must be:

dzr ~ Oz dz Oy dxr 0z dz

From the system {‘igl((? ‘Z’ zz)) i% , from Dini's theorem we obtain, since by hypothesis
/ !/
gy gz
‘ #0:
‘ hy b
!/ /
9y 9- 9y Y
: hy W : hy . . .
y(x) = — W and 2'(z) = — g’—’ , from which, replacing, and changing the
Y z Y z
h;, A ‘ h; R
order of the columns of the numerator of z'(x), we get, computing common denominator:
/ !/ / i !/ /
g, g, / g g / 9z gy
fer |V —Jy |t =0,o0r
"/ h’y/ h;/ Y |hl Rl by hy
fo fy 1L Vf

9. 9, 9.|=|Vg|=0.
hy hy, R, Vh
The three rows, or gradients, are then linearly dependent, and then we have:
Vf=MVg+XVh,or V(f —Xg— A h)=0.
From a practical point of view increasing the constraints implies that the Lagrangian function
is expressed as a difference between the objective function and a linear combination of the
constraints, each one with its multiplier.
Increasing the number of the constraints does not lead to changes from a practical point of
view: at a constrained maximum or minimum point it is still necessary to cancel the gradient
A, =fr—Mg,—Xh, =0
A;:f;—)\lg;—)\ghézo
of the Lagrangian function, but now we have the system: { AL = f. — XA g. —X\h. =0,
/)\1 = —g(x,y,z) =0
/)\2 = = h(ajvyaz) =0
of five equations in five variables x, y, z, A; and \,.

Using these three introductory problems, let us formulate first order conditions in the general
case of a maxima or minima problem with equality constraints.

gl($1;$2; "',:—E’n) =0
92(x1, 9, .oy xy) =0

Let £ be the set of points that satisfy the system

We have the following:
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Theorem 28 : Let f and g;, 1 <i<m <n, R" — R, be differentiable functions throu-
. (g1, 92, ...,
ghout £ C R", with Rank (91, 92: 2 9m) | _ =m, and (2}, ), ...,20) is a solution of the
O(x1, g, ..., Tp)
Max/min f(z1, o, ..., ;)
g1(x1, 9, cccyxy) =0
problem e 92(x1, 29, .ccyxy) =0

Then, if A(l‘l,xg,...,l'n,)\l,)\g,...,)\m) :f(l'l,ilj'g,..., Z)\ gi xl,xz,...,xn),there

i 7n ) En) Yot m

So the point (zf, 29, ...,20, AY, A3, ..., AY) = (X, )\0) must be a solutlon of the system of

°) no

exists a vector (A}, A9, ..., A ) for which VA (z{, 29, ..., ) )\0 )\0 e Ay) = 0.

OA 8gj .
=0 1<:<
. . 8% 8@3 Z 8@ ==
n + m equations 1n n + m unknowns: OA

a)\z = _gi(x17$2;---,$7z):0 lglgm

It's worth repeating that these first order conditions, like V f = O for free maxima and mini-
ma, are necessary, and not sufficient to ensure the nature of extremes. Among stationary
points for the Lagrangian function there are, besides possible maxima and minima, also infle-
ction or saddle points. We have inflection points when m =n — 1, since the constraints
allow us to express n — 1 variables as functions of the only remaining one, and then the
problem consists in finding the extremes for a function of one variable; we have instead
saddle points if n —m > 1, as the variables that remain independent are more than 1.

EXTREMES WITH EQUALITY CONSTRAINTS - SECOND ORDER CONDITIONS
Now we treat the simplest example for second order conditions for maxima and minima
subject to equality constraints; these will be sufficient and not necessary conditions. We shall
go again over the simplest cases to be able to justify (not to prove) the formulation of the
conditions in the general case.

Max/min z = f(x,y)

u.c.:g(x,y) =0
cond order total differential with the presence of a constraint.

As dz = f,dz + f, dy, and if y = y(x) from g(z,y) = 0, the differential dy depends on =
and y, so:

Let us recall the problem { . Let's see how to study the sign of the se-

22 = (f;’xd:c+f dy +—a(ady) f’) dx + (f;;d:chf dy +—8<aiy) -fé) dy =
d?z = f" (dz)? +2fy, dzdy + f;, (dy)2+f;- (% ~dx + %dyy) -dy) —

2 12 / 2 2

d*z=d*f + f, - d(dy) = d°f + f, - d°y.

From z = g(z,y) = 0, if g is twice differentiable, similarly we get:

d?z = d’g + g; -d?y = 0, as z is constant at the constraint points, hence we get:

1
d*y = — — -d?g.
y /
As Vf = AVg, from which f; = A g, andso ~* = X, substituting we obtain:
y
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fl
Lodg=df - X dg=d*(f =\ g) = A
Y

Fz=df+ [, Fy=df -

Just as first order conditions can be expressed by cancelling a gradient (of A, not of f), also
second order conditions can be expressed referring to the sign of a second order total differen-
tial, (once again of Lagrangian A, not of f).
However, not everything is equal to methods already described for free maxima and minima.
In fact:

2 2
FA(z,y) = A, (do)” +2A], dz d;g + Ay, (dy)”.
From g(z,y) =0 we get dy = — g—f - dx, from which, substituting, we have:

Y

2
/ !
d*A(z,y) = A’ (dz)* — 2 A" I (dz)* + A7, (g—f) (dz)? =

Ty
9y Y

d 2
= [ 020055 0]

2
(9)
But it is easily seen that:
, ) 0 g g
AN (9,) =207, 9,9, + Ay, (9,)" = — |9 AL AZy| and also:
/ " 14
/ / " " " gy Axy Ayy
0 g g wo A Ay B
9o A AL | = AN AL AL | = [H(A(z,y, ).
/ " " " " "
9y Axy Ayy Ay Aa?y Ayy

Matrix H is called "Bordered Hessian matrix"; there is one border row at the top and one bor-

der column at the left, which, excluding the initial zero, are the gradient of the constraint

g(,y).

The zero in the north-west corner corresponds to A%, while remaining elements of the border

are the opposite of the second order derivatives of the Lagrangian made with respect to A and

then with respect to x or y; for the determinant properties, changing the sign of two lines, the

determinant remains unchanged.

The sign of the differential d’A is not to be studied on varying two independent increments
Yo

/
Y

fact that the presence of a constraint leaves only one independent variable among x and .
This fact can be geometrically interpreted saying that we should investigate d>A using incre-
ments lying only on directions tangential to the constraint.

dz and dy; replacing dy = -dz only dx remains independent, consistently with the

As d®A = — |H(A(z,y, \))|, we have the following:

Theorem 29 : (g, yo, \o) is a solution of the system VA(z,y,\) = 0. Then

- (JH(A (o, 0, M))| < 0« d*A > 0) = (2, yo) is a constrained minimum point;
- (JE(A(z0, Yo, Mo))| > 0 & d°A < 0) = (w0, o) is a constrained maximum point.

Nothing can be concluded if it is ‘E(A(:ro, Yo, )\0))| =0, as (xp, yo) may be a maximum, mi-
nimum or inflection point.
We need in this case a different type of analysis to determine the nature of the point.

Observation 1) Although the bordered Hessian is a third order matrix, we must take into ac-
count only the leading minor of third order, i.e. the determinant of the matrix itself; it is not
necessary to examine the leading minor of first order, which is always zero, and is not
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g,
g, A,

necessary to examine the leading minor of the second order, as = — (g;)2 <0,

therefore always negative.

Observation 2) Only North-West leading minors are to be examined ; there are no conditions
that can be expressed through other sequences of leading minors and there are no conditions
based on the eigenvalues of the Hessian bordered matrix.

Max/min f(z,y, z)
uc. :g(z,y,2) =0
still be brought to the study of d*A. From the constraint g(x,,2) = 0 we can, by hypothesis,
get z = z(x,y) ; so we are looking for the extremes of a two variables function, and the study
of the sign of d?A will depend on dz and dy.
The developments of the calculus, which are omitted for brevity, leads to study the sign of a
quantity whose opposite can be related to the bordered Hessian matrix:
0 g 9, ¢
g, Al N, AL
gy BDay Ay Ay
g. AL Ay AL
Similarly to what we saw in the case of free extremes for a two variables function, we must
study the sign of two North-West leading minors.
As before, first order and second order leading minors are useless. We must study only the
sign of the leading minors |Hj| and |H,|, and we have the following:
Theorem 30 : (¢, Yo, 20, Ag) is a solution of the system VA(z,y,z,A) = 0. Then
- ((|E3‘ <0e ‘ﬁd < 0) o A > O) = (0, Y0, 20) is a constrained minimum point;
- ((|Hs| > 0e |Hy| < 0) < d®A < 0) = (20, Yo, 20) is a constrained maximum point.
If (|Hs| < 0 and |Hy| > 0) orif (|Hs| > 0 and |H,| > 0) surely the point is a saddle point.
Nothing can be concluded if it is |Hj| = 0 or |H4| = 0, still respecting however the previ-
ous sequences of signs, as (o, Yo, 29) may be a maximum, a minimum or a saddle point.
We need in this case a different type of analysis to determine the nature of the point.

If we study now the second-order conditions for the problem { we will

= H(A(x,y,2,))).

Max/min f(z,y, z)
Finally, for the problem: e, - g(x,y,z) =0  we will still be brought to the study of
T h(x,y,2) =0

) . 9(z,y,2) =0 - - Jy=y(=)
d“A, but from the constraints { h(z,y,2) = 0 we can, by hypothesis, obtain { 2= 2(z)
so let us look for the extremes of a one variable function, and the study of the sign of d*A will

be based only on dz.

With two (even number) constraints, there are no sign changes, so the sign of d®A corre-
sponds to that of the determinant of the bordered Hessian matrix:

0 0 ¢ g G
0 0 hy h, Kl
g, hi AL AL, AL || =H(A(z,y,2, A\, X)) . The (2,2) matrix in the North-West
i
corner is null because A = f(z,y,2) — A\ g(x,y,2) — Xy h(z,y, 2), and so the four second

order derivatives of the Lagrangian function with respect to the multipliers A\; and A\, are also
null. We can now see that in the leading minors sequence (always and only North-West se-
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quence) the first four (four is twice two, the number of constraints) are zero

(|JH;| =0, |Hx| = 0, |H3| = 0) or have constant sign (|H| < 0), wherefore d*A sign coin-
cides with that of ‘E{) , determinant of the bordered Hessian matrix.
We have the following:

Theorem 31 : (z9, Yo, 20, A}, AY) is a solution of the system VA(z,y, z, A1, A\2) = 0. Then

- (|ﬁ5 (A(xg,yo,zo,)\?,Ag))‘ >0< d?A > 0) = (%0, %0,20) is a constrained minimum
point;

- (‘E5 (A(ajo,yg, 20, A2, )\g))‘ <0e d®A< O) = (9, Y0, 20) 1S a constrained maximum
point.

Nothing can be concluded if it is |Hjs (A (o, yo, 20, A}, A3) )| = 0, as (2, yo, 29) may be ma-
ximum, minimum or inflection point.

In this case too we need a different type of analysis to determine the nature of the point.

From what we saw in the three treated examples, the following considerations arise:

- we need to build the bordered Hessian matrix, consisting of the second order derivatives of
the Lagrangian function made with respect both to variables and multipliers;

- we only need to study the signs of the North-West leading minors, subtracting an initial
number of such minors equal to twice the number of the constraints; the number of leading
minors whose sign is relevant is equal to the number of variables which remain independent;

- for the remaining leading minors, in order to find a minimum or a maximum point, two se-
quences of signs are valid, wich are the same as for free extremes if the number of constraints
is even; have opposite signs than the previous sequences for an odd number of constraints;

- each sequence different from the two described, even if for only one sign, leads to the con-
clusion that the point is an inflection or saddle point;

- if between the relevant leading minors there is at least one equal to zero, nothing can be con-
cluded about the nature of the point.

Max/min f(z1, o, ..., Ty,

g1(r1, T2, ey xy) =0
So let's look at the general case, i.c. the problem we. 4 92 (1,29, ..cyxy) =0

The bordered Hessian matrix is a square matrix of order m + n, and is equal to:

0o .. 0 d¢y - g,
- / /
H(A(21, 22, s s Ay Ay s An)) = || 0 O Im e G )
gin -+ 9Im m - 1n
. / agi " aQA
where, for brevity, we settle g;; = 3 and A;; = 97 0m. and can be so represented:
.Tj xT; ZE]'
0 9(91, 92, -+ )
— o(x1, T, ..., T,
H(A($1,$2,...,xn,)\l,)\g,...,)\m)) = T ( L)
8(917927 7g’m) H(A
8<x1 o T ) ( ($1,$2,...,$n))
Y A n

As we see, bordered Hessian matrix can be split into four blocks.

The block in the upper left is an m x m null matrix, consisting of the second order
derivatives of the Lagrangian function done both times with respect to the multipliers, and
hence equal to zero.
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In the upper right and lower left block there are the derivatives of the Lagrangian obtained de-
riving once with respect to a multiplier and once with respect to a variable; these also form
the border, which is completed so by the Jacobian of the constraints, an m X n matrix, at the
top as rows and on the left, transposed, as columns.

The remaining n X n block, in the lower right, is the Hessian of the Lagrangian done with re-
spect to the variables ;.

Then the following applies:

Theorem 32 : (29,29, ..., 2%, AV A9, ..., A0 ) is a solution of the system:

il n

VA(x1, 22y ..y Ty A1, A2y ooy Ay) = 0. Then

m biae
- ({ (2_ :_) ) !HZiA)‘ i 0 & d?A > 0) = (29,29, ...,2°%) is a constrained minimum point;
m <i<m+n

_ymti |

- (=1) ‘Hl(A)‘ >0 & dPA<0) = (29,29,...,2%) is a constrained maximum
2m+1<i<m-+n

point.

Nothing can be concluded if some relevant leading minor is equal to zero.

If the constraints are in an even number (and also zero), an all positive signs sequence
indicates a minimum point, while an alternating signs sequence, starting from the negative,
indicates a maximum point.

If the constraints are in an odd number, an all negative signs sequence indicates a minimum
point, while an alternating signs sequence, starting from positive, indicates a maximum point.

Each sequence that does not meet one of those described indicates an inflection or a saddle
point.

The requirement 2m + 1 < ¢ < m + n means that only North-West relevant leading minors
should be considered, obtained discarding the first 2m leading minors (a number equal to
twice the number of constraints) so starting from the 2m + 1 order leading minor.

To change or not to change the signs of the sequence of the relevant leading minors is the role
of the factor ( — 1)".

As m < n,we have (m + n) — 2m = n — m relevant leading minors; if m = 1, or if there
is only one constraint, we must consider the sign of n — 1 relevant leading minors; if instead
m = n — 1, which is the maximum possible number of constraints, we will consider the sign
of only one relevant leading minor, which is the determinant of the bordered Hessian matrix.
Since each constraint, explicitly or implicitly, makes a variable a dependent one, the number
of relevant leading minors the sign of which must be studied coincides always with the
number of variables that remain independent.

It should be finally pointed out that there are no second order conditions based on eigenvalues
of the bordered Hessian matrix.

Max/min f(z,y) = 223 + 3y
uc.:g(x,y) =2 +y* =1 "~
f(x,y) and g(x,y) are polynomials, and then infinitely differentiable functions. Then
Vy(z,y) = (22,2y) = O & (z,y) = (0,0); but (0,0) does not satisfy the constraint equa-
tion, and therefore hypotheses of Theorem 27 are satisfied. We form the Lagrangian and then
we have: A(z,y,A) =22° + 3y — A (2° + y* — 1) ; imposing VA = 0 we get:
z=0

Example 75 : We study the problem {

N =0= 622 \z =223z —\)=0 5 T = z=0
Ay=0=3-2\y=0 = { A= A=3and{ A= -3
\=0=2+y*=1 yz:l:ly y=1 y= —1
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Y

(
! s A
3 3 =73
or y:i = < y:i = 3 so we have:
A 2A9 AN —%\81 367 R
- 2 2 _
\§+T_1 y 362 =0 (237 =9y =0
=3 (A= -3
V2 V2 3
= % eq rT= — % . Solving the system, we have four points: P; = (0, 1, 5),
3) p. — 1 1 3 4P — 1 1 3
We apply the second-order conditions. We form the bordered Hessian to get:
0 2z 2y
H(A(z,y,\) = |[22 12z—-2\ 0 so we have:
2y 0 — 2
0 0 2
[H(A(Py))|=]0 —=3 0 |=2-6=12>0,s0 P is a maximum point;
2 0 -3
0o 0 -2
[H(A(P2))|=] 0 3 0 |=—-2-6= —12<0,soP,isaminimum point;
-2 0 3

0 V2 o V2 0 V2 o V2
[H(A(P3))| = \/§ 3\/5 0 3\/5 3\/5 = 0, so we cannot decide
0 -3V2| |[Vv2 0 =32

0 -2 -2 0 -2 -2
[HAPL))| =| —v2 -3V2 0 0 —3v/2 —3v2|=0, so we
-v2 0 31/2 -Vv2 0 3v/2

cannot decide anything.

o
I

anything;

Since the constraint is the trigonometric circle, to solve the two remaining cases we try repla-

. T = cost ) . 3 . )
cing {y:sint to get: f(t) = 2cos’t + 3sint. Is:
f'(t) = 6cos’t - (—sint) +3cost = 3cost - (1 — 2sintcost) = 3cost - (1 —sin2t) > 0
if cost >0 as sin2t <1, Vt.

3
Sof’(t)EOifOStggandif§§t§27r.

2
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Point | ——, — dsto t = =, while point ! ! ds t
oint | —=, —= | corresponds to ¢t = —, while point [ — —=, — —= | corresponds to
V2 /2 4 V2© /2
5 . : : . .
t= Iﬂ and, as we see from the monotonicity analysis, they are both points of inflection and

Nno maximum or minimum points.

Since the circle points form a bounded and closed set, and since the function f(x,y) is conti-
nuous, points P; and P; are not only relative (local) but also absolute maximum and minimum
points.

Max/min f(z,y,z) =x+y— 2z
uc.: gz, y,2) =2 +y*—2=0"
f(x,y,z) and g(z,y,z) are polynomials, and therefore infinitely differentiable functions.
Then Vyg(zx,y,z) = (2z,2y, — 1) # O VY (z,v, 2) ; and therefore hypotheses of Theorem 27
are satistied. We form the Lagrangian and then we have:
A(z,y,2,\) =z +y—22— X (2> +y° — 2) ; imposing VA = 0 we get:

( 1 1

Example 76 : We study the problem {

AN =0=1-2\x=0 T=oy 71
A;:0:>1—2)\y:() = y:i:1 So there is onl i i
N =02 —24A=0 ox 4 . y one stationary point
L=0=z—22—¢y*=0 A=

z=a?+yt =

0 2 2y -1 o 3 3 -1
— 20 -2\ 0 0 -4 0 0
_ _ 2
A=y o o [|meEa@n=] 2 F 0
-1 0 o 0 -1 0 0 0
We need to compute two leading minors: |H;| and |Hy|, and so we get:
0o 1 1 o L 1
. 2 2 2 2 1
[H;(A(Py))|=[3 -4 0 |=|0 —4 4 :5-(2+2):2>0,and
Lo -4 |3 0 -4
1 1
0 2 2 1 1 1 9
— 1 —4 0 0 2 2
HAP) = | 7 s o |=V-4 0 0 |=-16<0.
2 B 0 -4 0
—1 0 0 0

As |H3(A(Py))| > 0 and [H4(A(Py))| < 0 it follows that Py is a maximum point.

We could also get the same result in a faster way, as the constraint allows us, using the equa-
tion 2 + y2 —2=0,tosolve zas z = a° + y2 , S0, substituting, we obtain:

f (x, y, % + y2) =z +y—2z° —2y*. We can then look for free maxima and minima of
this two variables function. The constraint is satisfied as contained in the replacement.

fi=1-dr=0_ Jo-
f;:1—4y:0

1
= 2z =a>+y* = - . Then:

We h :
¢ have so { 3

e Ml N

y:
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H(f):‘ . _4H:H(f(P)) from which [Hi|= —4<O0e|H)|=16>0, so
1 1Y\ . . ) ) ) 111\ .
P= 11 is a maximum point for f(z,y,z* 4+ y°) and then Py = 113 is a con-

strained maximum point for f(z,y, ).

Max/min f(z,y,2) = 2y — 2
Example 77 : We study the problem _ { gz, y,2) =2+ =1
u.c. :
h(z,y,2) =20 —2y—2=0
We solve this problem in three different ways, achieving, of course, the same results. We
begin using Lagrange's multipliers method, constructing the Lagrangian function after
checking that all assumptions are satisfied.
Objective function and constraints are differentiable functions.
Then d(g,h) _ |2z 2y 0
d(x,y, z) 2 -2 -1
but this point does not satisfy the first constraint, and then all the hypotheses are satisfied.
Itis A(z,y,z, A\, \0) =2y — 2 — N\ (5172+y2 — 1) — X (22 — 2y — 2).
A;:0$y—2)\1$—2)\220
A;:0:>sc—2)\1y+2)\2:0
Imposing VA =0 weget: { A, =0= —1+ X =0
N=0=>a2+y =1
W=0=2r-2y—2=0
(y+2x)(1—=2X\)=0
r—2\y+2X =0

. The Jacobian rank is equal to 1 only if x =y =0,

Summing first and second equation we get the system: ¢ Ay =1 and then the
2?4y =1
20 =2y — 2z =0
(y+x)=0 1—2X\ =0
T —2My+2X =0 T —2My+2X =0
two systems: ¢ Ao =1 and ¢ =1
2+t =1 >+ =1
20 — 2y —2=0 20 — 2y — 2z =10
For the first we have:
(:v:—y rx:_\% rx_%
N =Y Ao=/2- L M= /21
1 2y 1= 2 1= 2
{ Ay = 1 = )\2:11 and ¢ My =1 1 . For the second:
v =3 Y==" V=~
(2= —4dy \z:—2\/§ 2 = 2
)\1:% )\1:%
rT—y+2= y=x+2
Ao =1 =< Ay = . The fourth equation, however, has no real solu-
2’ +yt =1 22+ (427 =1
z=2x—2y z=12x—2y

tions. So there are only two stationary points for the Lagrangian:

1 1 1
Pp=| - —,—, —2V2,v/2—=,1] and
| ( T V2 VIog )an
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i (g g /h - Vi 1),

0 0 2 2% 0
0 0 2 -2 —1

We construct the bordered Hessian: H(A) = || 22 2 —2)\; 1 0
2% —2 1 —2\ 0
0 -1 0 0 0

Having two constraints, the first four North-West leading minors are useless, and so it is
enough to calculate the determinant of the matrix: [H(A)|. We have:

0 0 —+2 V2 0
0 0 2 —2 -1
HAP))|=|-v2 2 1-2y2 1 0
V2 =2 1 1-2/2 0
0 0

0o -1 0
0 -v2o V2 0 V2 ooV2
=1-(-1)-| —v2 1-2V2 1 |=—-]0 2-2V/2 2-2/2|=

V2 1 1—2v/2 V2 1 1-2¢/2
= —\@- [—2 2(2—2\/5)} :8(1—\@) < 0, so P; is a maximum point;

0 0 V2 -V2 0

0 0 2 —2 -1
[HAP))[ =] V2 2 1+2V2 1 0 |=

—v2 -2 1 1+2V2 0

0o -1 0 0

0 V2 — /2 0 V2 —V/2
=1-(=1)-| v2 1+2V2 1 =—| 0 242V2 2422|=

—V2 1 1+2v/2 — V2 1 1422

= \/5 [2\/5(2 + 2\/5)} = 8(1 + \/5) > 0, so Py is a minimum point.

This problem can be solved in a second way. From the constraint 2z — 2y — z = 0 we solve

the variable z : z = 2x — 2y and then substituting in the expression of the objective function
we get:

Max/mi =zy—2x + 2
We can now solve the problem { ax/min f(z,y) = zy = 2z +2y

sv.iglz,y) =22+ =1
of the extremes for a function of a single variable.

We form the Lagrangian and we have: A(z,y,\) = 2y — 22 + 2y — A (932 + 4
sing VA = 0, summing the first with the second equation, we get:

, which is still the search

— 1) ; impo-

AN=0=y—2-2\z=0 (y+2x)(1 =2\ =
A,=0=2+2-2y=0= z+2-2\y=0 which gives two systems:
0=+ =1 ?+yt=1
S e
2 —
A= y:> A:ﬁ—%and :—ﬁ—%or
2y _ 1 _ 1
2y =1 LN NG
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A=1 A=1

2 2
r+2—y=0=>qz=y—2 which has no solutions.
P+ =1 V4 —dy+yPt =1

So we have two stationary points:

0 2z 2y
We compute the bordered Hessian and we have: H(A(z,y,\)) = || 22— 2\ 1
2 1 —2)\

By substituting the points found, we have:

0 -2 V2 0 —v2 V2
H(AP))| =] —v/2 1-2V2 1 |=|0 2-2V2 2-2V2|=
V2 1 1-2¢/2 V2 1 1—2¢/2

= \@ (8 — 4\@) > 0, so P; is a maximum point; then we get z = — 2\/5;

0 V2 — /2 0 V2 — /2
HAP) | =| V2 1422 1 |=| 0 2+2/2 2+2V2|=
—V2 1 1422 —V2 1 1422

= — \@ (8 + 4\@) < 0, so P is a minimum point; then we get z = 2\/5.

Obviously, results are the same as those previously found.

Finally we solve the problem in a third way.

: . Max/mi JY) =ay — 2 2
After having explicited z, we resume the problem ax/min f(z, y) 9 xy2 Tty , and,
uc.:g(r,y) =x*+y* =1
since the constraint is the trigonometric circle, we put { :Z i ::)nstt , from which we obtain:

fx(t),y(t), z(x(t),y(t))) = F(t) = sintcost — 2cost + 2sint. So:
F'(t) = cos*t —sin®t + 2sint + 2cost = (sint + cost)(cost — sint + 2).
As cost—sint+2>0,Vt, it is F'(t) >0 if cost > —sint, which is verified if

3 T 3 . . ) ) 7. ..
0<t< Zﬂ' and if Zﬂ' <t<2r.So t= Zﬂ' 1s a maximum point, while ¢t = Zw 1S a mini-
3 1

T=COS—-—T = — —F—=

3 4 7
mum point. If ¢ = 2" e get 3 1 \/5 , while if ¢t = 77 e get
y=sin-m = —=
4 \/5
7 1
T =C0S—T=—=
4
7 \/51 . Then z is obtained as before.
y=sin-m= — —

TR

EXTREMES WITH INEQUALITY CONSTRAINTS

Max/min f(z1, o, ..., Ty,)

u.c. : gi(x1,xe, .y y) <0, 1 <0 <m’

If X = (z1,22,...,2,), £ CR" is the set in which the m inequalities g;(X) < 0 are simulta-
neously satisfied; £ is called the feasible region and is a closed (limited or unlimited) subset
of R". To search maxima and minima for f(X) in £ means then to search for extremes that

Let us finally treat problems such as {
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are at interior points of £ (Vi : ¢;(X) < 0) and those who are at boundary points of &
(Fi:9i(X)=0).

Searching points in the interior corresponds to the problem of free extremes, searching in
boundary points corresponds to the problem of extremes with equality constraints, namely the
two problems that have already been treated.

To describe the £ region with inequality constraints we may have more constraints than the
variables of the objective function, thus the rule m < n does no more apply.

Definition 45 : At the point X, € £ the constraint g;(X) is said:

- satisfied, if ¢;(Xy) < 0;

- active, if ¢;(Xy) =0.

Atapoint Xy € £ all constraints must be satisfied, someone may be active.

Let us then begin to build what are commonly called the Kuhn-Tucker's conditions, which re-
present the most general form of first order conditions, and are therefore necessary conditions,
to search the extremes. To get the general statement we need to make two choices: first we
choose to search for maximum points. Minimum points are related to maximum ones, once it
has been noted that min(f(z)) = — max( — f(z)).

Then we choose to represent the constraints, as before, in the form ¢(X) < 0; writing them in
the form h(X) = — ¢g(X) > 0 leads to determine the same set £, but with a different formu-
lation of Kuhn-Tucker's conditions.

As seen above, to determine extremes with equality constraints leads to impose first order
conditions not on the objective function but on the Lagrangian function:

i=1

We use the same function, and we observe that, if the point X, € £, an hypothetical solution
for the problem, is an interior point with respect to the constraint g (X), i.e. if ¢x(Xy) < 0,
with respect to this constraint it is as if we were searching for free extremes, and then it is
enough to take A\, = 0.
If, on the contrary, the constraint is active at X, i.e. if gx(Xy) = 0, then it is like dealing
with a problem of extremes with equality constraints.
Thus the expression of the Lagrangian function allows us to search the extremes both in the
interior and on the boundary of &£, just vanishing (or not) the appropriate multipliers, simply
seeing which constraints are active at X.
So the first condition to be imposed is VA = O, if X, is a maximum point, under the assum-
ption that the functions f(X) and ¢;(X), 1 <1 < m, are differentiable throughout .
In the first order conditions also the constraints must be respected, which can be obtained as
derivatives of the Lagrangian with respect to the multipliers.
As g)j\\l = — ¢;(X), we need o
The request for differentiability of f(X) and g;(X) does not exhaust the assumptions, which
will be completed later. We state for the moment the following:
Theorem 33 (Kuhn-Tucker's conditions) : X is a solution of the problem :

Max f(z1, 22, ..., Ty)
{u.c. :gi(x, 29y oy ) <07
i.e is a maximum point for f(X) subject to constraints ¢;(X) <0, 1 <i<m. f(X) and
9i(X) are differentiable throughout £, and at X, constraints are qualified.
Then there exists a vector A = (A1, Ag, ..., A,) such that:

= — gi(X) > 0 to get the constraint satisfied.
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)
OA(X 0f(Xop) 0
8(562-0) = f@@o Z A géxl =0 1<i<n:Stationarity
8
) gi(xg) >0 1 < i < m : Primal feasibility
z(XO) 1 <7 < m : Complementary slackness
i 1 <4 < m : Dual feasibility

The meaning of "qualified constraints at X" will be explained later, when we complete the
hypotheses of Theorem 33.

OA(X
The first conditions: (Xo) = 0 follow the case of equality constraints, while the second
T
OA
Vi 9:(Xp) > 0 reaffirm the need for constraints satisfaction.

Let's examine the third condition: \; - ¢;(Xy) = 0.

In order to vanish a product, the first or the second factor must be zero. If it were \; # 0,
then it must be ¢;(X() = 0, i.e. the constraint g; is active at X and it is like searching extre-
mes with equality constraints.

If it were g;(Xy) # 0, then it must be A\; = 0, i.e. the point X, is an interior point with re-
spect to the constraint g;, and with respect to that constraint it is like searching free extremes,
then this constraint does not appear in the Lagrangian, and then \; = 0.

At X it could also be \; = ¢;(X() = 0, and this is because a constrained extreme may coin-
cide with a free one, which happens when the coordinates of the free extreme satisty also the
constraint.

The third condition therefore means that the research is done both at interior points and at
boundary ones, then throughout the whole £.

From a practical point of view, the third condition shows how to set up calculations, i.e. we
OA(X) 0 and OA(X)
8:L‘i 8>\j

tions obtained by requiring each of the multipliers \; equal or different from zero.

If, for example, we had two constraints and then two multipliers, A\; and Ay, we need four
systems, those corresponding to the four cases:

(A =0and Ay =0), (A; # 0and Ay = 0), (A\; = 0and Ay # 0) and (A, # 0 and A2 # 0).
With three constraints the cases become eight and so on ...

must impose equations = (0 for each of the 2 possible combina-

May 7

Vai(Xa)
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Let us examine the fourth and final condition, wich depends on the sign of the constraints (we
chose the negative one) and on the type of extreme we are looking for (we have chosen to lo-
ok for maximum points).

Starting from ¢;(X) = 0 we have seen that Vg;(X) is orthogonal to the vector tangent to the
constraint at X.

Since the gradient expresses the direction of maximum growth, and being £ characterized by
negative values for the constraint g;(X), outside £ we have positive values for g;(X), from
which it follows that the gradient Vg;(X,) must be oriented outside £, as shown in the figure,
which is based, as a particular case, on a single constraint.

Suppose that X; is a maximum point and that the constraint g;(X) is active at X;:
9i(Xo) = 0.

We have seen that Vg;(X) is directed outwards £.

Also the gradient V f(X) of the function at the point X, that in the figure, for easy reading,
has been shifted on the surface, must be directed outwards £, as it indicates the direction of
maximum growth; if it goes to the inside, starting from the maximum point, it would indicate
a decrease in the values of the function.

From the theory of the extremes with equality constraints we know that, at a point which is
the solution of a problem of extremes, the gradient of the objective function must be a linear
combination of the gradients of the constraints: V f(Xy) = A\; Vg:(Xp) .

We have also seen that V f(X;) and Vg;(X,) must go towards the same direction: these two
requests are both satisfied if \; > 0.

There is a theorem (Farkas) which extends this property to the case where more than one con-

straint is active at Xo: Vf(Xy) = Z Ai Vi (Xp) .
il

Each \; must be non-negative so that Vf(Xy) is directed outwards, like the gradients
Vgi(Xo).

VailXa)

If, while maintaining the constraints in the form g;(X) < 0, we had looked for the minimum
point at which the constraint is active: g¢;(X;) =0, as shown in the figure, the gradient
V f(Xy) must now move towards the interior, where the function takes values greater than the
minimum. But then it must be \; < 0, as V f(Xy) and Vg;(X;) are not oriented towards the
same direction, since the first goes to the inside while the second goes to the outside. The
search for minimum points requires non-positive multipliers, leaving unchanged the first three
conditions of Theorem 33.

If the constraints were expressed in the form g¢;(X) > 0, the previous requests on multipliers'
sign for a maximum point and a minimum point would have been reversed. The sign (not ne-
gative) of multipliers for a maximum at points with constraints g;(X) < 0 is therefore the
same as that for a minimum at points with constraints g;(X) > 0.
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CONSTRAINTS QUALIFICATION

Finally, let us complete the last part concerning the assumptions for the validity of Kuhn-Tuc-
ker's conditions: that is qualified constraints at X.

Studying the sign of the multipliers \; in order to clarify the nature of the point we are exami-
ning, we need to establish clearly the V f(X;) direction with respect to the directions of the
constraints gradients.

This problem is called "constraint qualification" at X.

To describe this concept, we need some definitions, the first of which is "feasible direction".
Definition 46 : Vector v € R" is a feasible direction at X, for &£ if it exists a curve,
t — r(t) € R", such that:

1) 7(0) =Xo;

2) 7(0) = v;

3) Je:r(t) € EVE e [0,¢] .

So there exists at least one arc, however small, of a continuous curve starting from X
entering in &: the feasible direction v is the tangent line to such curve at X.

This definition strictly concerns boundary points of £, i.e. points where at least one constraint
is active. If X is an interior point of &, every direction is feasible.

Feasible directions at X, for £ are those which, starting from X, go inside the feasible region
&, or, as a limiting case, are tangential to £.

Definition 47 : A coneisaset A C R"” suchthat: X e A= k-Xec A,Vk eR.
A positive cone isaset A C R" suchthat: X €e A= k- X € A VE e R, .
Feasible directions at X, for £ form a positive cone: I"(Xj).

To establish the nature of point Xy we saw that it is necessary, in the chosen formulation, that
V f(Xy) heads to the outside of £, on the same side as Vg;(X).

Then we need to study the directions v that we call "retroverted directions" with respect to
Vi(Xp), i.e. directions for which Vg;(Xy) - v <0.

As Vgi(Xo) - v =||Vgi(Xo)| - [|v|| - cos ax, we get Vg;(Xp) - v < 0if g <a<m.

The feasible directions at X for £ and the retroverted directions with respect to Vg;(X,) at
X must be the same directions in order that the analysis of V f(X) is well made.
Let us consider all the active constraints at X : ¢;(Xy) = 0.
T (Xp) is the cone of the retroverted directions with respect to the gradients of the active con-
straints Vg;(Xy) at X, i.e.:

T (Xp) = {v € R" : Vg;(Xo) - v < 0; g;(Xo) = 0}.
In general, as we shall see in the examples, is I'(X;) C T (Xo) -
We have the following:
Definition 48 : Constraints are qualified at X, if it is I'(Xo) = 1" (Xp), ie. feasible
directions and retroverted directions form the same cone.

This condition completes, with differentiability, Kuhn-Tucker's conditions for a maximum or
minimum point.

Example 78 : Let us consider as feasible region £ the one given by the constraints:
{gl(%y) =22 —y <0

gr,y) =y—24+2><0°
The two constraints are simultaneously active at (1,1) and ( — 1, 1). Let us compose I'(1,1).
To this effect, let us find equation of the tangent lines to the curves ¢; :y = 2° and
g y=2—2°.
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For the first, rt;, we get y = 2z — 1 while for the second, rts, y = — 22+ 3.
ria
g2l=,y) Vao(Xp)
£ X,
g1l y) Va1(Xo)
rfy
-1 1

Let v = (v1,v9). To go from (1,1) to & we need v; < 0, to move to the left; v, must be in
the range between the two tangent lines, i.e. 2v; < vy < —2v; (v <0 !!) and so:
ra )= {(Ul,vg) ER?: 0, <0,20 <vy < — 21)1}.
Then let us determine 1° (1,1).
From g (z,y) = 2° —y we get Vgi(z,y) = (22, — 1) andso Vg;(1,1) = (2, — 1).
From go(z,y) = y — 2+ 2* we get Vgo(x,y) = (2x,1) andso Vgy(1,1) = (2,1).
Now let us look for retroverted directions to both gradients. It will be:
Vg1 (1,1) - (v1,v9) = (2, — 1) - (v1,v9) = 201 — vy < 0 for vy > 20y, while
Vga(1,1) - (v1,v9) = (2,1) - (v1,v2) = 2v1 +v2 <0 for vy < — 20y, and so:
2v; < w9 < — 2wy, and this implies also v; < 0.
So T'(1,1) = {(vi,v2) € R?: 0y < 0,20, <wp < —2v1} = I'(1,1).
The constraints are then qualified at (1, 1). We can see in a similar way that this happens also
at point ( — 1, 1), where:
?(—1,1) = {(Ul,vg) €R22U1 >0, —2v; < v SQUl} :F(—1,1>

Example 79 : Let the feasible region £ be that given by the two constraints:
{m(%y) =y—a*<0

gg(x,y): -y<0
At (0.0) both constraints are active. As g; : y = 2° has at (0,0) as tangent line the z-axis,
the only feasible direction from (0, 0) to £ is the positive semi-axis of x, so:
I(0,0) = {(v1,v2) € R*: vy > 0,v5 = 0} . Then let us determine I° (0, 0).
From gi(z,y) =y — 2* we get Vgi(z,y) = (—32%,1) and so Vg;(0,0) = (0,1).
From g¢s(x,y) = —y we get Vga(z,y) = (0, — 1) and so Vg2(0,0) = (0, — 1).
Now let us find the retroverted directions to both gradients. It will be:
Vg1(0,0) - (v1,v9) = (0,1) - (v1,v2) = vy <0, while
Vg2(0,0) - (v1,v9) = (0, — 1) - (v1,v2) = —wv9e < 0,0r vy >0 and so: v, =0.
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So T (0,0) = {(v1,v2) ER* 1 vy =0,V }, ie. the whole z-axis. In this example
therefore it is 1°(0,0) € I" (0,0) and not I"(0,0) = I" (0,0), so at (0,0) the constraints are
not qualified.

Example 80 : Let the feasible region £ be that given now by the three constraints:
gi(@,y)=y—a><0
g(z,y) = —y <0

gs(z,y) = —x <0
The feasible region £ is exactly the same as the previous example, even if characterized by a
further constraint: g¢3(z,y) = —x. Also this is active at (0,0), so I'(0,0) remains

unchanged but we must redefine T° (0,0), since we have now an additional constraint.

From g3(x,y) = —x we get Vgs(x,y) = (—1,0) and so Vg3(0,0) = (—1,0). So:
Vgg(0,0) . (01,1}2) = (— 1,0) . (?)1,1)2) = — U S 0 for U1 Z 0,

and this, together with the two already found, gives:

I(0,0) = {(v1,v2) €R?: vy > 0,05 =0} =T (0,0).

With the third constraint, the constraints are now qualified at (0, 0).

Constraints qualification at a point depends not only on the shape of the region £ but also on
the constraints describing it. The same region described by different constraints may have
qualified constraints at a point while they were not so if described by other constraints.

There are some sufficient conditions to ensure constraints qualification at a given point.

The most important is the following:

Theorem 34 : If Vg;(X), gradients of active constraints at X, are linearly independent vec-
tors, then the constraints are qualified at X,.

This condition is however sufficient, and not necessary, for constraints qualification at X.

Example 81 : Let us resume the feasible region £ that is given by the two constraints:
{gl(fv,y) =1’ —y<0
ga(z,y) =y—2+2><0°

Itis Vgi(1,1) = (2, — 1) and Vgo(1,1) = (2,1), as =4 # 0, so gradients are

2 1

2 -1 ‘
independent vectors and constraints are qualified.

Example 82 : Let us consider the feasible region £ that is given by the two constraints:
{gl(fv,y) =2° -y <0

ga(z,y) =y—2> <0
Region £ is the darkened region represented in Figure:
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The feasible directions at (0,0) for £, both on the left and on the right, are the z-axis, which
is the tangent line at (0, 0) for g; : y = 2” and for gs : y = 2°. So we have:

I'0,0) = {(vi,v2) ER* 109 =0,Vv1}.

From gi(z,y) = 2° —y we get Vgi(z,y) = (3z%, — 1) andso Vg;(0,0) = (0, — 1).
From go(z,y) = y — 2% we get Vgo(z,y) = (—22,1) and so Vg2(0,0) = (0,1).

Let us search the retroverted directions to both gradients. It is

Vg1(0,0) - (v1,v2) = (0, = 1) - (v1,v9) = — w9 <0 for v9 > 0, while

Vg2(0,0) - (v1,v9) = (0,1) - (v1,v2) = v <0, and so: 0 < vy <0, and this double inequa-
tion implies vy = 0.

So I'(0,0) = {(vi,v2) ER* : vy =0,Vv; } = I'(0,0). Constraints are qualified at (0,0)
even if Vg;(0,0) = (0, — 1) and Vg2(0,0) = (0,1) are linearly dependent vectors, confir-
ming that the independence condition is sufficient and not necessary for constraints qualifica-
tion.

Max/min f(z,y) = 1 — 2> — ¢?
. {gl@,y) =2’ -y <0
gy =y—22<0
The feasible region £ and the constraints qualification have been studied in Example 82 at
(0,0). At (1,1) we have:
g1(z,y) = 2* —y from which Vg, (z,y) = (3x2, —1) andso Vgi(1,1) = (3, — 1).
g2(2,9) = y — 2* from which Vgy(z,7) = (—2x,1) andso Vgo(1,1) = ( —2,1).
-1 ‘

Example 83 : Let us study the problem

Such vectors are indipendent: =1%# 0 soat (1, 1) constraints are qualified.

-2 1
Finally, we must check the points where only one constraint is active; for linear
independence, the constraint gradient must not be the null vector. But the second components
of these gradients are constant and nonzero, so the constraints are always qualified.

Finally, we note that the feasible region is not a bounded set, so Weierstrass's theorem does
not apply.

Let us construct the Lagrangian function:

Az, y, M, Ao) =1 — 2% —y* — \; (2° —y) — X2 (v — 2°) and study four cases.

I case: A\; = 0, Ay = 0 : let us solve the system:

AN =0= —-2x=0 =0
A;=O:—2y:O y=0
AC\IZO:>x3—y§O:> O—OSO:satisﬁed'As A1 = A2 =0, we study the free
1\220¢y—x2§0 0—0 < 0: satisfied
extremes of the function.
As -2 0 - fiz=—2<0 q .
s H(z,y) = 0 _2‘— (0,0),weget{f:£:; y’;—(fgfly)2:4>0an so (0,0) is a

maximum point, with f(0,0) = 1.

IT case: A1 # 0, Ao = 0 : let us solve the system:

AN =0= —2z—-3\2°>=0 —z(2+3\z)=0
A, =0= —2y+ X\ =0 A =2y

3 = which gives two systems:

LW =0=y==1 y =3
A’)\2202>y—:1c2§0 y < x?
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(2 =0
A =0 )
{ y=0 ,but (0, 0) has already been studied, and
\ 0 < 0 : satisfied
( 2
xr = — 3_A1
< y= 2 which therefore has no solutions.
A1 8 Lo 16
2 273 7 1 27
Ly < 2

[T case: Ay = 0, Ay # 0 : let us solve the system:

(AN =0= —2x 42Xz =0 22(Xy — 1) =0
AN =0= —2y—X=0 Ao = —2
Y 2 Yy . . .
4 Ay > 0= 2 <y = B <y which gives two systems:
Y\ =0=y=2a? y = x°
(
=0
$ Az =0 but (0, 0) has already been studied, and
0<0: satisfied ’ y .
\ Y= O
(X =1
1
y= - 2 '
{ 5 which therefore has no solutions.
<y
1
2 [ —
\ T 2

IV case: Ay # 0, A2 # 0 : let us solve the system:

(A, =0= — 22— 3)\22 +2\z =0 0=0 —2-3\ +2X0 =0
N=0= —2y+X — =0 — _ — N =
) g, 3y 1 2 N A1 )\Qand 24 X\ Ao 0 -
\A£\2:0:>y:a:2 y=20 Yy =
[(—2-3\+2\—-4=0 M= —6
A=A —2 Ag = —8
<$:1 = x:]_ ’

Since both multipliers are negative, point (1, 1) may be a minimum point. To solve the pro-
blem, we note that function f(x,y) = 1 — 2> — 4*, being a polynomial, is continuous throu-
ghout R?. The right side of £ is a bounded and closed set, then by Weierstrass's theorem there
are absolute minimum and maximum, which can be only at (0,0) and at (1,1,), as seen
above.

Maximum f(0,0) =1 is clearly an absolute one, while minimum f(0,0) is only local, as,
analyzing for example the function on the negative x-semi-axis, we get
xgmoo f(x,0) = — o0, so the function can take indefinitely negative large values in &, and

therefore it can not have an absolute minimum.
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Max/min f(x, y) 2::; — y
Example 84 : Let us study the problem . { gl(z,y)=9y*—2* <0
' o(z,y) =2 +y° —2<0

Region £ is the darkened region represented in Figure:

From 13? < z? it follows — 2 < y < 2%, i.e. the part of the plan between the two parabolas

y= —z? and y =27, inside the circle 2?4+ y* =2, with center (0,0) and radius
r:\/i.

2 _ .4 2
From{y2:2_x2weget2—a: —x :O,andx:fé 21 S0

x =+1,s0we have four intersections: (1,1), (1, — 1), (—1,1)and ( — 1, — 1).

From gl(m y) =1 — 2! we get Vgi(z,y) = (—42°,2y); from go(z y) =2’ 4y =2
we get Vgo(z,y) = (22,2y) and so:

Vagi(1,1) = (—4,2) and Vgo(1,1) = (2,2): indipendent vectors;

Vg (1, —=1)=(—4, —2) and Vgy(1, — 1) = (2, — 2): indipendent vectors;
Vgi(—1,1) =(4,2) and Vgo( — 1,1) = ( — 2,2) : indipendent vectors;
Va(—1,—-1)= (4, —2) and Vgg( —1, —1) = (-2, —2): indipendent vectors.

At (0,0) itis Vg1(0,0) = (0,0), that does not allow constraints qualification.

hi(z,y) = —y—2? <0
ho(z,y) =y—2><0 ’
gives Vh1(0,0) = (0, — 1) and Vhy(0,0) = (0,1), so we can determine:

T (0,0) = {(v1,v2) € R? : 0y = 0,Yv; } = I'(0,0).

So at (0, 0) the constraints are qualified.

The part of £: — 2’ < y < 22, described by two constraints {

Where only one constraint is active, the constraint is always qualified. So let us construct the
Lagrangian: A(z,y, A, A2) = 22—y — A1 (y* — 2') — X (2* + y* — 2) and study four
cases.

I case: A\; = 0, Ay = 0 : let us solve the system:
AN =0=2=0
A,=0= —-1=0
A, >0=9y"—2'<0
A, >0=a4+9y*-2<0

. The system has no solutions.
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IT case: A1 # 0, Ao = 0 : let us solve the system:

4

3 ]‘ ’
rT= —q = 1
2 _ 3
N =0=2+4\23=0 1)\1 r= = 20,
AN=0= —-1-2\y=0 Y= —ov 1
/ 2 4 = 9 2\ =YY= T o :
o 40422 _
Ay, > 0= 2" +y* <2 o2 =\ Tond 1623)\1(%)\—1)—0
21 2 1 (7Y <2
(2" +y <2
The solution A; = 0 is not acceptable, so we have:
( B , 1
=" 2\, r=—1 x=1
1 y= —1 y=1
S y= — = and
Y 2\ A =3 A= —3
4N —1=0 1+1<2: satisfied 14+1<2: satisfied
\:c2+y2§2

So (— 1, — 1) may be a maximum point (A\; > 0), while (1,1) may be a minimum point
()\1 < O)

I case: Ay = 0, Ay # 0 : let us solve the system:

4 1 4 1
xr= — r = —
N =0=2—2\z=0 /\21 A2 1
AN =0= —1-2\y=0 - — - _
Yy Yy Yy =
A/)\ 20$y2§x4 = 9 ) 42>\2 = < 29
’ 2 .2 y'sx y* <at
: + 5 = =2
)\2 4)\3 ([ 727 8

which gives the two solutions:

_ _ ]2 — . /2
LY 5 and { Y \/;
% < 8 . gatisfied %

4.
:
A :l\/g Mo = _l\/g
(2T 2V 2 | 2 2\ 2
So( \/;, —) may be a maximum point (Ay > 0), whlle( 2\/;, \/7) may be a mi-

nimum point (As < 0).

IV case: A; # 0, A2 # 0 : let us solve the system:
N, =0=2+4\2° —2\x =0
A;:0:> —1—2)\1y—2)\2y:0

N=0=y =2
=0=>a22+9y>=2

from which we obtain four systems:



86

(2440 —2X =0 (A= —1
$ :1:_ ! 1_ 20 =20 =0 = 4 A2 :10 (1,1) has already been studied: it may be a mini-
= Tr =
(Y= 1 \ Y = 1
mum point (A\; < 0, A2 < 0);
(24+4)\ — 20 =0 (M= —¢
— = -2
{ o 1 ;_ 2A0+ 2% =0 = < A2 _13 this point cannot be neither a maximum nor a mi-
= =
(Y=~ 1 (y= —1
nimum point since the multipliers have a different sign;
(2 -4\ +20 =0 (A =3
- 1= — = - _2
- _1 21)\1 22=0_ A= 13 this point cannot be neither a maximum nor a mi-
= — = —
LY = 1 (y=1
nimum point since the multipliers have a different sign;
(2 —4X +2X =0 (A1 =3
< x_ L 21)\1 +2x =0 = < A2 =0 1 (—1, — 1) has already been studied: it may be a
= — T = —
(Y= — 1 \ Y= — 1

maximum point (A\; > 0, Ay > 0).

As £ is a bounded and closed set and the function f(x,y) = 2z — y is continuous throughout
R, there must be an absolute maximum and an absolute minimum, and also, perhaps, there
might be some relative ones. Then let us examine the behavior of f(z,y) on the boundary of
E.

On constraint ¢; : y* = 2? = y = £ 2% :

flz,2?)=20—2"= f(x) =222 >0 if z < 1;

f(z, —562) =242 = fl2)=2+2c>0if x> —1.

If with an arrow we indicate the direction in which the function increases, we have that on the
two parabolas the objective function increases from left to right, so it grows both in the path
from (—1,1) to (1, 1), and in the path from ( — 1, — 1) to (1, — 1).

Finally, let us analyze the behavior on the circumference.

£dr= \/§c9st we get f(z(t),y(t)) =2/ 2cost — \/§sint and so:
Yy = \/§smt

() = \/5( — 2sint —cost) > 0 if cost < — 2sint. ThlS 1nequa11ty is verified:

) T 2
if a <t<@,with cosa = —= = — —= and sina =

o, V2 ﬁ f f
andifcosﬂ:%:%and sin3 = \/_ \/_

. 2 . . L
So, starting from m = (— 2\/; , \/; the function increases in both directions, and so

this is a minimum point; on the contrary, we arrive at M = ( \/7 \/7 ) always

increasing, both from above and from below, and so this is a maximum point. At (1,1) we
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arrive increasing on the parabola and we continue increasing on the circumference, so (1,1) is
not a minimum point. Similarly at ( ), which therefore is not a maximum point.

So f<2\/;, — \/%) = 5\/? and f<—2\/7 \/7> = —5\/t are, respectively, ma-

ximum and minimum for f(x,y) in £.

KUHN-TUCKER'S CONDITIONS WITH NON NEGATIVE VARIABLES

In many problems, especially economic ones, the search for the extremes of a function is ac-
compained by the request of non-negative values for the independent variables; in this
context, we can have a slightly different formulation for Kuhn-Tucker's conditions.

Max f(x1, 2, ..., T,)
uc. : gi(.’ljl,.fg,...,ﬁn) §O,1 Szgm X = (il;'l,.l‘g,...,l‘n) and:
Tl >20= —2;<0,1<1<n

i1 Ml M

imposing Kuhn-Tucker's conditions for a maximum point to multipliers \; and p;, we get:

(oA _OA L A
8@- a 856‘1 Hi = Hi = aiUZ
K 9A
< = = —g; X) > 0
o~ o, 9i(X) =
oK
=z;>20
L O
. . . . A
Having then to impose p; > 0, we rewrite the first condition as <0.
T
Aigi(X)=0
We also impose other conditions: . As pu; = — —, the second condition is
i =0

A OA
— - x; = 0, like the fourth, which is equivalent to
ready seen above. So Kuhn-Tucker's conditions for a maximum, subject to constraints
9:(X) < 0 and under the nonnegativity condition of the independent variables, can be expres-
sed as:

(

oA <0
8$i -
9:(X) <0

- . i:O
8:L‘i v
L\ >0

also expressed in the form: <0, al-






