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DIFFERENTIAL CALCULUS
FOR VECTOR-VALUED FUNCTIONS

OF A VECTOR VARIABLE

Let  be the -dimension vector space, whose elements are -tuples of real numbers, or‘8 8 8
vectors, resulting from the Cartesian product of  by itself  times.‘ 8
Any function  has domain and range (codomain) contained in proper vector spaces,  and0 ‘8

‘7, with  and ; both the independent and the dependent variable may then8   " 7   "
assume real or vector values. So we define:
0 À Ä‘ ‘  , real function of a real variable;
0 À Ä‘ ‘8  , vector valued function of a real variable;
0 À Ä‘ ‘8  , real function of a vector variable;
0 À Ä‘ ‘8 7  , vector valued function of a vector variable.

TOPOLOGY IN ‘8

An element ...  is also called a point or a vector.— ‘œ B ß B ß ß B − " # 8
8

Given two points , , ... , ...  we have:— ˜ ‘ — ˜− œ B ß B ß ß B œ C ß C ß ß C8
" # 8 " # 8   

Definition 1 The (Euclidean) distance between  and  is given by the norm (or lenght) ofÀ — ˜

their difference: d , .     — ˜ — ˜œ  œ B  C
3œ"

8

3 3
#

Many are the distances that can be defined in , and here we will only use the Euclidean‘8

one.
Definition 2 A neighbourhood of the point  with radius  is the set:À −— ‘ &!

8

½ — & — ‘ — — & — ‘ — — &        ! ! !
8 8ß œ − À ß  œ − À  d .

A neighbourhood  in  consists of the points inside a circle having  as center and½ — & ‘ — ! !
#ß

& ½ — & ‘ — as radius; a neighbourhood  in  consists of the points inside a sphere having  ! !
$ß

as center and  as radius.&
The topological definitions of the various types of points in  are similar to those given in‘8

‘ —  ‘; given a point  and a set  we have the following:!
8§

Definition 3  is an accumulation (or limit) point of the set  if any neighborhood of À —  —! !

has a non-empty intersection with , different from the single point , i.e. if: —!

a  ! À ß ÎÖ × ∩ Á g ;& ½ — & —   ! !

Definition 4  is an isolated point of the set  if there exists at least a neighborhoodÀ −—  !

of  which has no common points with , except for the point  itself, i.e. if:—  —! !

b  ! À ß ∩ œ Ö ×  .& ½ — &  — ! !

Definition 5  is an interior point of the set  if there exists at least a neighborhoodÀ −—  !

of  all contained in , i.e. if:   .—  & ½ — & ! !b  ! À ß § 
Definition 6  is an external point of the set  if  is an interior point of the setÀ −— V   —! ! 
V   , the complementary set of .
Definition 7  is a boundary point of the set  if every neighborhood of  has non-emptyÀ —  —! !

intersection with both  and , i.e. if: V  
a  ! À ß ∩ Á g ß ∩ Á g      .& ½ — &  ½ — & V      ! !and
To be an isolated point or an interior point of ,  must belong to ; this is not required to — !

be an accumulation point or a boundary point.
If  is an isolated point of  then  is also a boundary point of ; if  is an interior point—  —  —! ! !

of  then  is also an accumulation point of . — !

From the topological definitions of point, the topological definitions for sets follow:
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Definition 8 A set  is an open set if all its points are interior points.À § ‘8

So a set  is open if none of its boundary points belongs to it. ‘§ 8

Definition 9 A set  is a closed set if its complementary set is open.À § ‘8

So a set  is closed if all its boundary points (or all its accumulation points) belong to ‘§ 8

it.
An  in  is given by the Cartesian product of  intervals of .interval ‘ ‘8 8

If all intervals are closed , the interval  will be a closed interval, if allÀ B ß B B ß B   3 3 3 3
+ , + ,

3œ"

8

the intervals are open , the interval  will be an open interval.À B ß B B ß B   3 3 3 3
+ , + ,

3œ"

8

Definition 10 A set  is said to be bounded if there exists a neighborhood ,À § ß ‘ ½ — &8
! 

having center in an appropriate point  and with appropriate radius , such that— &!

 ½ — &§ ß ! .
Definition 11 A closed and bounded set  is also said a compact set.À § ‘8

VECTOR VALUED FUNCTIONS  OF A REAL VARIABLE   0 À Ä‘ ‘8

Consider a vector  each of whose components is a function  of the real varia-— ‘ ‘ ‘− Ä8

ble . We write ...  or ...  to indicate> > œ B > ß B > ß ß B > 0 > œ 0 > ß 0 > ß ß 0 >—                  " # 8 " # 8

such a function. Each function  is a function  : , .B > œ 0 > 0 Ä " Ÿ 3 Ÿ 83 3 3     ‘ ‘
The function  is called a vector valued function of a real variable, as the image0 À > Ä >— 
of the real variable  is a vector . Such type of functions are also called curves in> > −— ‘  8

‘8. For this type of functions graph means also codomain (range). The resulting line is also
said the curve support. The field of existence of such a function is given by the intersection of
the fields of existence of the  functions .8 B > œ 0 >3 3   
Example 1 The graph of the function , cos sin  is the Cartesian cir-À 0 À Ä > Ä >ß >"

#‘ ‘  
cumference , having center in the origin and radius equal to . The circumferen-B  C œ " "# #

ce is traveled countless counterclockwise for .∞  >  ∞
The graph of the function , cos sin  is the same circumference co-0 À !ß # Ä > Ä >ß >#

#   1 ‘

vered only once counterclockwise starting, for , from the point .> œ ! "ß ! 
The graph of the function , sin cos  is the same circumference co-0 À !ß # Ä > Ä >ß >$

#   1 ‘

vered only once clockwise starting, for , from the point .> œ ! !ß " 
As can be seen from these examples, it is not sufficient to describe geometrically the points of
a graph, but it must also be considered how, how many times and in which direction such a
graph is covered.

Example 2 The graph of the function ,  is the same of the cartesianÀ 0 À Ä > Ä >ß >"
# #‘ ‘  

parabola .C œ B#

The graph of the function ,  is only the right side of the same para-0 À Ä > Ä > ß >#
# # %‘ ‘  

bola, covered twice, from right to left for  and from left to right for .>  ! >   !
The graph of the function , sin sin  is the part of the parabola 0 À Ä > Ä >ß > C œ B$

# # #‘ ‘  
included between the point  and the point , covered innumerable times to and    "ß " "ß "
from between the extreme points.

Example 3 The graph of the function , cos sin  is an helix thatÀ 0 À Ä > Ä >ß >ß >‘ ‘$  
wraps up itself, going up if , going down if , along the axis of the third variable.>   ! >  !
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Suppose we have a function in cartesian form , ; if there exists a0 À Ä B Ä C œ 0 B‘ ‘  
function , , such that ,  ,  is called aJ À Ä > Ä B > ß C > C > œ 0 B > a > − H J >‘ ‘#

0            
parametric version for .C œ 0 B 
Example 4 The function , cos sin  is a parametric ver-À 0 À Ä > Ä B  >ß C  >‘ ‘ 3 3#

! ! 
sion for the circumference with center  and radius . B ß C  !! ! 3

Example 5 The function , cos sin , ,  is aÀ 0 À Ä > Ä + >ß , > œ B > ß C > + , −‘ ‘ ‘#
      

parametric version for the ellipse with center , axes parallel to the coordinate axes, and !ß !

semiaxes  and . In fact
cos sin 

+ , À  œ  œ " Þ
B C + > , >

+ , + ,

# #

# # # #

# #   
0 À Ä > Ä B  + >ß C  , >‘ ‘#

! !, cos sin  is instead a parametric version for the ellipse 
with center , axes parallel to axes  and , and semiaxes  and . B ß C B C + ,! !

LIMITS AND CONTINUITY FOR FUNCTIONS 0 À Ä‘ ‘8

Given , ... , and  an accumulation point of .0 À Ä > Ä 0 > œ 0 > ß 0 > ß ß 0 > > H‘ ‘8
" # 8 ! 0        

Definition 12 ...  is defined as:À 0 > œ 0 > ß 0 > ß ß 0 >lim lim
>Ä> >Ä>

" # 8
! !

        
lim lim lim lim
>Ä> >Ä> >Ä> >Ä>

" # 8
! ! ! !

0 > œ 0 > ß 0 > ß ß 0 >        ... , that is the limit of a vector is defined as a

vector having as components the limits, for , of each of the components of .> Ä > 0 >!  
To calculate the limit of a function  consists therefore in calculating  limits for0 À Ä 8‘ ‘8

functions .‘ ‘Ä
Definition 13 We have , with  if:À 0 > œ − > − ßlim

>Ä>

8
!

!

  ¿ ‘ ‘

a  ! b À !  >  >  Ê 0 >   Þ   & $ & $ & ¿ &        !

Definition 14 We have  if:À 0 > œ −lim
>Ä∞

8  ¿ ‘

a  ! b À >  Ê 0 >   Þ   & $ & $ & ¿ &      
Definition 15 We have  if:À 0 > œ −lim

>Ä∞

8  ¿ ‘

a  ! b À >  Ê 0 >   Þ   & $ & $ & ¿ &      
We shall not deal here with the concept of infinite limit.

If  is an accumulation point of , and , we have the following> H > − H! 0 ! 0

Definition 16 The function , ...  is continuousÀ 0 À Ä > Ä 0 > œ 0 > ß 0 > ß ß 0 >‘ ‘8
" # 8        

at the point  if .> 0 > œ 0 >! !
>Ä>
lim

!

   
This definition corresponds to requiring that:
lim lim lim
>Ä> >Ä> >Ä>

" " ! # # ! 8 8 !
! ! !

0 > œ 0 > ß 0 > œ 0 > ß ß 0 > œ 0 >           ... ,

that is that each of the components  be continuous at point .0 > > 3 ! 
In metrical form,  is continuous at  if:0 > >  !

a  ! b À >  >  Ê 0 >  0 >  Þ   & $ & $ & &          ! !

If  is an isolated point for  the function is defined as a continuous one at .> H >! 0 !

DERIVATIVE FOR FUNCTIONS 0 À Ä‘ ‘8

Given , ... ... ,0 À Ä > Ä 0 > œ 0 > ß 0 > ß ß 0 > œ > œ B > ß B > ß ß B >‘ ‘ —8
" # 8 " # 8                  

and considering point , we define the derivative of the function  at point .> − H 0 > >! 0 ! 
Definition 17 The derivative of the function  at  is given by the limit:À 0 > >  !

lim
>Ä>

!

!

w w 8
! !

!

0 >  0 >

>  >
œ 0 > œ > −

       — ‘ , provided that this limit exists and is finite.
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If a function has derivative at  we say that the function is differentiable at .> >! !

Since  while :
"

>  >
− 0 >  0 > −

!
!

8‘ ‘    
lim lim
>Ä> >Ä>

!

! !
!

! !

0 >  0 > "

>  > >  >
œ † 0 >  0 > œ

          

œ † 0 >  0 > ß 0 >  0 > ß ÞÞÞß 0 >  0 > œ
"

>  >
lim
>Ä> !

" " ! # # ! 8 8 !
!

            
œ ß ß ÞÞÞß œ

0 >  0 > 0 >  0 > 0 >  0 >

>  > >  > >  >
            

lim lim lim
>Ä> >Ä> >Ä>

" " ! # # ! 8 8 !

! ! !! ! !

œ 0 > ß 0 > ß ß 0 > Þ      " # 8
w w w

! ! !...
Therefore the function  has the derivative at point  if each of its components0 À Ä >‘ ‘8

!

0 > >3 !  has the derivative at point .
For practical calculus, the result we have found is that the derivative of a vector is still a vec-
tor, whose components are the derivatives of its components.

Example 6 Given , we have .À 0 À Ä ß > Ä >ß > 0 > œ "ß #>‘ ‘# # w     
Given , we have .0 À Ä ß > Ä > ß > 0 > œ #>ß %>‘ ‘# # % w $    
Given cos sin , we have sin cos .0 À Ä ß > Ä 0 > œ >ß >ß > 0 > œ  >ß >ß "‘ ‘$ w       
Theorem 1 If  is differentiable at , then  is continuous at .À 0 > > 0 > >   ! !

Proof À 0 > œ 0 > 0 >  0 > œWe must verify that  or that .lim lim
>Ä> >Ä>

! !
! !

         

But , i.e. the thesis.lim lim
>Ä> >Ä>

! ! !
!

!

w

! !

            
0 >  0 > œ >  > † œ ! † 0 > œ ñ

0 >  0 >

>  >


The definition of a differentiable function at  can also be written as:>!

lim
>Ä>

!

!

w w 8
! !

!

— —
— — ‘

       >  >

>  >
œ > > −; the vector  is called the tangent vector to the curve

— > > at .!
We need , null vector, to get the tangent vector .—  —w

! !
w   > Á >

The equation of the tangent line to the curve  at the point  is the function:— —     > 0 > œ >! !

< À Ä > Ä < > œ >  > † >‘ ‘ — —8 w
! !,  or     

> Ä 0 > ß 0 > ß ß 0 >  > † 0 > ß 0 > ß ß 0 >              " ! # ! 8 ! ! ! !" # 8
w w w... ... .

Example 7 Given ,  and , we get ,À 0 À Ä 0 > œ > ß > ß / > œ " 0 > œ "ß "ß /‘ ‘$ # $ >
! !      

0 > œ #>ß $> ß / 0 > œ #ß $ß /w # > w
!        and so . The equation of the tangent line to the curve

at  is then: .> œ " > Ä "ß "ß /  > † #ß $ß / œ "  #>ß "  $>ß /  />!      
Given  the derivative of , we have the following:W0 > 0 >   
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Theorem 2 If  and  are differentiable functions at , then:À 0 > 1 > >   
W W W        0 > „1 > œ 0 > „ 1 > .
That is, the derivative of a sum (of a difference) of functions is equal to the sum (the differen-
ce) of the derivatives.
As for the product, since now images are vectors, we must consider two cases: the product of
a scalar and a vector and the scalar (or dot) product of two vectors.
The following theorems are valid:

Theorem 3 If , ...  and , À 0 À Ä > Ä 0 > œ 0 > ß 0 > ß ß 0 > 1 À Ä > Ä 1 >‘ ‘ ‘ ‘8
" # 8          

are differentiable functions at , then .> 1 > † 0 > œ 1 > † 0 >  1 > † 0 >W W W            
Example 8 Given , cos sin and ,  Then:À 0 À Ä 0 > œ >ß >ß / 1 À Ä 1 > œ > Þ‘ ‘ ‘ ‘$ > #    
1 > † 0 > œ > >ß >ß / œ > >ß > >ß > /       # > # # # >cos sin cos sin . And so:
W      1 > † 0 > œ #> >  > >ß #> >  > >ß #> /  > / œcos sin sin cos # # > # >

œ #> >ß >ß /  >  >ß >ß / œ 1 > † 0 >  1 > † 0 >           cos sin sin cos .> # > W W

Theorem 4 If  and  are differentiable functions at , then:À 0 1 À Ä >‘ ‘8

W W W            0 > † 1 > œ 0 > † 1 >  0 > † 1 > .

Example 9 Given , sin and , ,À 0 À Ä 0 > œ >ß >ß / 1 À Ä 1 > œ > ß / ß >‘ ‘ ‘ ‘$ > $ # > $      
then sin sin . And so:0 > † 1 > œ >ß >ß / † > ß / ß > œ >  / >  > /       > # > $ $ > $ >

W    0 > † 1 > œ $>  / >  / >  $> /  > / œ# > > # > $ >sin cos 
œ "ß >ß / † > ß / ß >  >ß >ß / † #>ß / ß $> œ 0 > † 1 >  0 > † 1 >               cos sin .> # > $ > > # W W

In both cases, therefore, independently from the product, the rule is that the derivative of a
product is the sum of two terms, each of which is the product of the derivative of a factor and
the non-derivative of the other.

As far as composite functions are concerned, at this stage we can only deal with this case:
Theorem 5 If ,  is a differentiable function at  and ,À 1 À Ä > Ä 1 > > 0 À Ä‘ ‘ ‘ ‘  8

> Ä 0 > œ 0 > ß 0 > ß ß 0 > 1 >          " # 8...  is a differentiable function at , then the composite

function: , ...  is differentiable at ‘ ‘ ‘Ä Ä > Ä 0 1 > œ 0 1 > ß 0 1 > ß ß 0 1 > >
1 0 8

" # 8               
and: W         0 1 > œ 0 1 > † 1 > Þw w

Proof À 0 1 > œ 0 1 > ß 0 1 > ß ß 0 1 >As  ... , we get:W W W W               " # 8

W0 1 > œ 0 1 > † 1 > ß 0 1 > † 1 > ß ß 0 1 > † 1 > œ 0 1 > † 1 > ñ                           w w w w w w w w
" # 8... .

Example 10 Given , , and , cos sin , then:À 1 À Ä 1 > œ > 0 À Ä 0 > œ >ß >ß /‘ ‘ ‘ ‘     # $ >

0 1 > œ > ß > ß /    cos sin . And so:# # >#

W     0 1 > œ  > † #>ß > † #>ß / † #> œsin cos # # >#

œ  > ß > ß / † #> œ 0 1 > † 1 > Þ        sin cos # # > w w#

For a vector valued function  it is meaningless to speak about reciprocal and‘ ‘Ä 8

quotient derivative.

REAL FUNCTIONS OF A VECTOR VARIABLE  0 À Ä‘ ‘8

Since the domain is now given by  or by an appropriate subset of its, the independent va-‘8

riable is a vector and so functions  are also called functions of several variables.0 À Ä‘ ‘8
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These functions will be represented in the form ... , .C œ 0 œ 0 B ß B ß ß B B −   — ‘" # 8 3

We also use notations like  for , while it is also commonly usedD œ 0 Bß C 0 À Ä  ‘ ‘#

A œ 0 Bß Cß D 0 À Ä   for .‘ ‘$

The graph of a function , ...  is defined as the subset of0 À Ä C œ 0 œ 0 B ß B ß ß B‘ ‘ —8
" # 8   

‘ ‘ ‘8 8"
" # 8 " # 8‚ œ B ß B ß ß B ß C ß C œ 0 B ß B ß ß B  consisting of points ... ... .    

If , being the domain a subset of the real plane, the graph of  is a two-di-8 œ # D œ 0 Bß C 
mensional surface lying in  that can be represented as in the previous figure, crushing, in‘$

perspective, the plane of the independent variables  and .B C
If  we say that the graph is an -dimensional hypersurface in .8  # 8 ‘8"

The existence field  of a function of two variables is a subset of , and can therefore be‘#

represented graphically.

Example 11 Let us consider the function , .
log 

À 0 À Ä 0 Bß C œ
"

B  C
‘ ‘#

#
   

Let's determine and represent its existence field.

We should put  and so .
log   B  C  ! B  C

B  C Á ! B  C Á " Ê B Á "  C

# #

# # #

The existence field of the function is represented by the dark region of the next figure, formed
by the points on the right of the parabola , removed the points of the parabolaB œ C#

B œ "  C# .

Example 12 Let us consider the function , log .À 0 À Ä 0 Bß C œ
C  /

#  B  C
‘ ‘#

B

#
   

Let's determine and represent its existence field.
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We should put , which is satisfied if:
C  /

#  B  C
 !

B

#

  C  /  ! C  /  ! C  /

#  B  C  ! #  B  C  ! C  #  B

B B B

# # # or if , respectively equivalent to  and to

 C  /

C  #  B

B

# .

The existence field of the given function is represented by the union of the dark regions, the
central one is the solution of the first system, the remaining two, the one on the left and the
one on the right, represent the solution of the second. The edges of the areas are dashed as
they do not belong to the field of existence, since the inequalities are tight.

Example 13 Let us consider the function , .
sin 

À 0 À Ä 0 Bß C œ
"

B  C
‘ ‘#    

Let's determine its existence field.
We should put sin , or: ,  . B  C Á ! B  C Á 5 Ê C Á B  5 a 5 −1 1 ™
We must therefore remove from the plane all the straight lines, parallel to the bisector‘#

C œ B C œ B  5 5 −, with equation , .1 ™

Definition 18 ,  is a bounded function on  if there are twoÀ 0 À Ä C œ 0 ©‘ ‘ —  ‘8 8 
values, , such that ,  .C ß C − À C Ÿ 0 Ÿ C a −" # " #‘ — —  
Definition 19 A point  is called a relative maximum (minimum) point if thereÀ −— ‘!

8

exists a neighborhood  for which    .½ — & — — — — — ½ — &            ! ! ! !ß 0 Ÿ 0 0   0 a − ß

LIMITS FOR FUNCTIONS 0 À Ä‘ ‘8

Let  be an accumulation point for the domain of the function ... .— ‘! " # 8
8− C œ 0 B ß B ß ß B 

— — ‘œ B ß B ß ß B œ B ß B ß ß B 6 −   " # 8 !
! ! !
" # 8... , ... , and .

Definition 20 ...  ifÀ 0 B ß B ß ß B œ 6 Àlim
— —Ä

" # 8
!

 
a  ! b À !    Ê 0  6    ;& $ & — — $ — &      !

Definition 21 ...  ifÀ 0 B ß B ß ß B œ ∞ Àlim
— —Ä

" # 8
!

 
a b À !    Ê 0    ;& $ & — — $ — &     !

Definition 22 ...  ifÀ 0 B ß B ß ß B œ ∞ Àlim
— —Ä

" # 8
!

 
a b À !    Ê 0    .& $ & — — $ — &     !

For the limits of functions  the so called "uniqueness of the limit theorem",0 À Ä‘ ‘8

"permanence of the sign theorem" and "comparison theorem" apply, as for functions .‘ ‘Ä
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When we write , that is that  takes values closer and closer to , it means that — — — — —Ä ! !

belongs to a neighborhood with center  and radius ; as , we use, in the limit defi-— $ — ‘! !
8−

nition, the Euclidean norm . — — !

When we say that  we mean that this should be through all possible paths   Bß C Ä B ß C! !

(or curves) continuous (i.e. without gaps or jumps) that lead from  to . Limit   Bß C B ß C! !

must always be the same for every path used to say that the limit exists. If multiple paths lead
to different results, the conclusion will be that the limit does not exist.

Example 14 Let us compute . The function is defined in .À Ï !ß !
B C

B  C
lim   BßC Ä !ß!

#

# #
#‘   

Since the numerator is an infinitesimal polynomial of the third degree, while the denominator
is of the second degree, we assume that the limit is 0 and we try to verify this result using the

definition. It must result  in a neighborhood of .   B C

B  C
 !  !ß !

#

# #
&

But , as ,  .          B C C C

B  C B  C B  C
œ B † Ÿ B Ÿ " a Bß C − Ï !ß !

# # #

# # # # # #
#‘

Then it is sufficient to impose  to obtain .   B  
BC

B  C
& &

#

# #

But , that is we get a vertical strip inside which it is always possible B  Í   B & & &
to find a neighborhood of : just take . !ß ! $ &

So it is verified that .lim   BßC Ä !ß!

#

# #

B C

B  C
œ !

Example 15 Given , let us compute .
sin 

À 0 Bß C œ 0 Bß C
B À C Á !

"

C
! À C œ !

   

 lim   BßC Ä !ß!

As  approaches , while sin  is bounded, also now let us assume that the limit is , consi-B ! !
"

C
stent, moreover, with the behavior of the function along the  axis. Then let us check that:B

          B  !  !ß ! B œ B † Ÿ B
" " "

C C C
sin  in a neighborhood of . But sin sin , as&

   sin . Imposing  we find the solution as in the previous example. For the 
"

C
Ÿ " B  B&

axis points we have instead: , which is always verified.    0 Bß C  ! œ !  !  &
So .lim   BßC Ä !ß!

0 Bß C œ ! 
Example 16 Let us compute . As , let us use as approa-À Bß C Ä !ß !

B

B  C
lim   BßC Ä !ß!

#

# #
   

ching paths the straight lines passing through the origin, whose equation is .C œ 7B
Studying the limit along these paths with the substitution , we get:C œ 7B

lim lim
BÄ! BÄ!

#

# # # # #

B " "

B 7 B " 7 " 7
œ œ 7. The result depends on , varying with the

function line used. So  does not exist.lim   BßC Ä !ß!

#

# #

B

B  C

Example 17 Let us compute . Operating as in the previous example, gi-À
B

B  C
lim   BßC Ä !ß!

#

# %

ven , we compute . Then moving along anyC œ 7B œ œ "
B "

B 7 B " 7 B
lim lim
BÄ! BÄ!

#

# % % % #
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line passing through the origin the limit is . However is not strictly correct to deduct from"

this that .lim   BßC Ä !ß!

#

# %

B

B  C
œ "

In fact, if we use different paths to get closer to , such as parabolas like , !ß ! B œ 5 C#

studing the limit with these restrictions, we have:

lim lim
CÄ! CÄ!

# % # #

# % % # #

5 C 5 5

5 C  C 5  " 5  "
œ œ .

Varying the parabolas, the result is different, and then  does not exist.lim   BßC Ä !ß!

#

# %

B

B  C

ITERATED LIMITS
We should note that to calculate , it is incorrect to calculate the two li-lim   BßC Ä B ßC! !

0 Bß C 
mits:  and . These two limits, called iterated limits, consistlim lim lim lim

BÄB CÄC CÄC BÄB! ! ! !

0 Bß C 0 Bß C   
in the successive calculation of two limits of functions of a single variable, holding the other
as a constant.
Should both exist and be equal, however, this would not allow us to conclude anything about

lim   BßC Ä B ßC! !

0 Bß C  .

Even if , it is incorrect to attribute the resulting valuelim lim lim lim
BÄB CÄC CÄC BÄB! ! ! !

0 Bß C œ 0 Bß C œ 6   
6 0 Bß C to .lim   BßC Ä B ßC! !

 
Example 18 We have already seen that   does not exist. Moreover:À

B

B  C
lim   BßC Ä !ß!

#

# #

lim lim lim lim
BÄ! CÄ! BÄ! BÄ!

# #

# # #

B B

B  C B
œ œ " œ "   and

lim lim lim lim
CÄ! BÄ! CÄ! CÄ!

#

# # #

B !

B  C C
œ œ ! œ ! ,

consistently with the non-existence of the limit.

Example 19 We have already seen that for the function  it
sin 

À 0 Bß C œ
B À C Á !

"

C
! À C œ !

 



results .lim   BßC Ä !ß!
0 Bß C œ ! 

Yet we have that: sin , whereas sin  does not exist. Inlim lim lim lim lim
CÄ! BÄ! CÄ! BÄ! CÄ!

B œ ! œ ! B
" "

C C
fact the existence of  does not imply the existence of the limit along all pos-lim   BßC Ä !ß!

0 Bß C 
sible paths from  to .   Bß C !ß !

Example 20 Using the iterated limits for , we get:À
B C

B  C
lim   BßC Ä !ß! # #

lim lim lim lim
BÄ! CÄ! BÄ! BÄ!# # #

B C !

B  C B
œ œ ! œ ! , and

lim lim lim lim
CÄ! BÄ! CÄ! CÄ!# # #

B C !

B  C C
œ œ ! œ ! Þ
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If we use the straight lines passing through the origin , we get insteadC œ 7B

lim
BÄ!

#

# # # #

7B 7

B 7 B " 7
œ , and therefore the given limit does not exist, even though the two

iterated limits exist and have the same value.

LIMITS FOR FUNCTIONS  USING POLAR COORDINATES 0 À Ä‘ ‘#

It may be useful, but only for functions of two variables, to change from Cartesian to polar
coordinates to calculate a limit. Each point  can be expressed, referred to a given Bß C − ‘#

point , as: 
cos 
sin 

  B ß C Þ
B œ B 
C œ C ! !

!

!

3 *
3 *

These are the polar coordinates of the point  compared to the point .   Bß C B ß C! !

If , we get, as a special case, .
cos 
sin 

    B ß C œ !ß !
B œ
C œ! !

3 *
3 *

Operating the substitution, we have:
lim lim lim   BßC Ä B ßC Ä! Ä!! !

0 Bß C Ê 0 ß œ J ß     
3 3

 cos sin  .3 * 3 * 3 *

The limit as  becomes a limit in the single variable , as , since   Bß C Ä B ß C Ä !! ! 3 3
3 œ Bß C  B ß C    ! ! .
But the value of the limit should not depend on the particular path used, and this requires that
lim
3Ä!

J ß 3 * *, if it exists, should not depend on the particular direction, i.e. from ; we say that

convergence (or divergence) of  must be uniform with respect to , i.e. that lim
3Ä!

J ß 3 * * $

depends only on , not on .& *

We have, using polar coordinates, the following limit definitions:
Definition 23 It is  ifÀ J ß œ 6 −lim

3Ä!
 3 * ‘

a  ! b À a !   Ê J ß  6     , ;& $ & * 3 $ 3 * &    
Definition 24 It is  ifÀ J ß œ ∞lim

3Ä!
 3 *

a b À a !   Ê J ß     , ;& $ & * 3 $ 3 * &   
Definition 25 It is  ifÀ J ß œ ∞lim

3Ä!
 3 *

a b À a !   Ê J ß     , .& $ & * 3 $ 3 * &   
Uniform convergence is expressed by:     , which expresses precisely thea  ! b À a& $ & * 
independence from  in the choice of .* $ & 
So if   (or  or ) uniformly with respect to , we have that:lim

3Ä!
J ß œ 6 ∞ ∞ 3 * *

lim lim   BßC Ä B ßC Ä!! !

0 Bß C œ J ß   
3

3 * .
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Example 21 Let us compute  using polar coordinates.À
B

B  C
lim   BßC Ä !ß!

%

# #

From  we get cos  .
cos 
sin 

cos 

cos sin 
  

   B œ
C œ 

œ œ !
3 *
3 *

3 *

3 * 3 *
3 *lim lim

3 3Ä! Ä!

%

# #
# %

Let us see whether the convergence to  is uniform with respect to .! *
From the limit definition, it results that: cos   in  .    3 * & ½ $ &# %  !ß

But cos   as cos  , and so, if , i.e. , (or   3 * 3 * 3 & & 3 &# % # % #Ÿ Ÿ "    

!   œ3 & 3 $ & &  , as  is always positive), if   we get:
!   œ Ê  J ß œ !3 $ & & 3 * & 3 *     # %

Ä!
cos  , and so  and the convergence of thelim

3

limit is uniform. Then .lim   BßC Ä !ß!

%

# #

B

B  C
œ !

Example 22 Let us compute  using polar coordinates.À
B C

B  C
lim   BßC Ä !ß!

#

% #

Using the lines  we get: ,C œ 7B œ œ œ !
B C 7B 7B

B  C B 7 B B 7
lim lim lim   BßC Ä !ß!

# $

% # % # # # #BÄ! BÄ!

but we know that this is not enough to guarantee the existence of the limit.

From  we get:
cos 
sin B œ

C œ
3 *
3 *

lim lim
3 3Ä! Ä!

# # #

% % # # # % #

3 * 3 * * *

3 * 3 * 3 * *
3 3

cos  sin cos  sin 
cos  sin  cos  sin  

, as the first factor  approaches
† †

 
œ † œ !

to  while the second factor approaches to .
cos  
sin 

!
# *

*

So , but it is not true that , because the convergence islim lim
3Ä! BßC Ä !ß!

#

% #
J ß œ ! œ !

B C

B  C
 3 *    

not uniform. In fact, from the limit definition it must result that:

   
3 3 &

* * * *

3 * * 3 * *
†  ! œ †  Þ

† †

 

cos  sin cos  sin 
cos  sin  cos  sin  

 The fact that the convergence is
# #

# % # # % #

not uniform can be explained noticing that the quantity  can take arbitrari-
cos  sin 
cos  sin  

#

# % #

* *

3 * *

†



 
ly large values, for values of  near to  or to , when ; so we cannot find a greater* 1 3! Ä !

term for  being indipendent from .
cos  sin 
cos  sin  

#

# % #

* *

3 * *
*

†



 
So  does not exist.lim   BßC Ä !ß!

#

% #

B C

B  C

CONTINUOUS FUNCTIONS
Similarly to , also for functions  we have the following:0 À Ä 0 À Ä‘ ‘ ‘ ‘8

Definition 26 Given  an accumulation point belonging to the domain of ,  theÀ − 0— ‘ —!
8  

function  is continuous at  if .0 0 œ 0     — — — —! !
Ä
lim
— —!

Example 23 Let us verify that . In fact, since:À œ !
B

B  C
lim   BßC Ä !ß!

$

# #
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          B B B

B  C B  C B  C
œ B † Ÿ B B  œ  ! 

$ # $

# # # # # #
, if , we get , and then the$ & &

limit is . We can then define the function .! 0 Bß C œ
B

B  C
Bß C Á !ß !

! Bß C œ !ß !

 



   
   

$

# #

Since , the function  is continuous at .lim   BßC Ä !ß!
0 Bß C œ 0 !ß ! œ ! 0 Bß C !ß !       

For continuous functions  theorems similar to those established for continuous0 À Ä‘ ‘8

functions of only one variable apply, namely:
- Adding, subtracting and multiplying continuous functions we obtain continuous functions;
- The reciprocal and the quotient of continuous functions (with no infinitesimal denominator)
are continuous functions;
- Composing continuous functions we obtain continuous functions.

And also:
Theorem 6 (Weierstrass) If  is continuous in a compact set, then it admitsÀ 0 À Ä‘ ‘8

absolute maximum and minimum values.

Important Note: The terminology used in Italy is different from that used in the Anglo-Saxon
literature. In Italy derivable function means a function that has the derivative at a point; diffe-
rentiable function means a function that can be linearly approximated. In Anglo-Saxon litera-
ture the term differentiable function is used in both cases. For real functions of a real variable
being derivable implies being differentiable and vice versa, but this does not apply to real fun-
ctions of a vector variable.

PARTIAL DERIVATIVES
For a function  we try to determine the instantaneous rate of change (i.e. the deri-0 À Ä‘ ‘
vative) at a point  giving to the independent variable values on the left and on the right ofB!

B 0!, since the domain of  is contained in , which is a one dimension space. The derivative,‘
denoted by , is defined as the limit:0 Bw

! 
lim lim
BÄB

! ! !

! 2Ä!

w
!

!

0 B  0 B 0 B  2  0 B

B  B 2
œ œ 0 B

          , provided that this limit exists and is

finite, and it gives us the slope of the tangent at the point ,  to the graph of the fun-  B 0 B! !

ction.
For functions , being the domain a subset of an -dimensional space, taken ,0 À Ä 8‘ ‘ —8

!

we must choose one of the infinite directions (straight lines) passing through the point  to—!

determine the instantaneous rate of change of the function  at  relative to the chosen di-0 —!

rection.
If point  is interior to , it is possible to develope this analysis in any direction, while, if—! 0H
point  is on the boundary of , this is possible only in some directions.—! 0H
The above leads us to the definition of directional derivative.
If  is an interior point of , we have the following:—! 0H
Definition 27 Choosen a unit vector  ( ), the directional derivative of  inÀ @ − @ œ " 0‘8  
the direction of  at the point  is the limit , provided@ œ 0

0  > @  0

>
— W —

— —
! @ !

>Ä!

! !lim
     

that this limit exists and is finite  We note that in this definition .Þ > − ‘

Since the graph of  is a (hyper)surface,  being a segment that, varying , starting0  > @ >—!

from  leads in the direction of , the projection through  of this segment generates a curve—! @ 0
< > , lying on the (hyper)surface rapresenting the graph; to this curve we can draw the tangent
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line at , which will form an angle  with the line passing through  in the  — — α —! ! !ß 0
direction of . As a result, is tg , which represents the slope of the tangent line.@ 0 œW — α@ ! 
If , , every unit vector  can be expressed in the form0 À Ä D œ 0 Bß C @ −‘ ‘ ‘# # 
@ œ ß ! Ÿ  # 0   cos sin , with . The directional derivative  can then be ex-α α α 1 W —@ !

pressed as: 
cos sin 

W —
α α

@ !
>Ä!

! ! ! !
0 œ Þ

0 B  > ß C  >  0 B ß C

>
     

lim

The figure shows the example for a function .0 À Ä‘ ‘#

If we compute the directional derivative using an unit vector of the canonical (also called
natural or standard) basis  we obtain the partial derivative with respect toI œ / ß / ß ÞÞÞß / " # 8

the variable :B3

Definition 28 Chosen , the partial derivative of a function  in the direction  (orÀ / − I 0 /3 3

respect to the variable ) at  is defined as  , providedB œ
0  > /  0 `0

> `B
3 !

>Ä!

! 3 ! !

3
—

— — —
lim

     
that this limit exists and is finiteÞ
If ...  this limit can also be written:—! " # 8œ B ß B ß ß B 
lim
2Ä!

" # 3 8 " # 3 8 !

3

0 B ß B ß ß B  2 ß B  0 B ß B ß ß B ß ß B `0

2 `B
œ

     ... ,... ... ...
.

—

We use also other notations such as: .
`0

`B
œ 0 œ 0 œ 0 œ 0

         —
— — W — W —

!

3

w w
B 3! ! B ! 3 !3 3

To move in a direction parallel to an axis means to increase only one variable and to keep all
the other constant.
If we consider a function of two variables , we have two possible partial derivatives at0 Bß C 
point : B ß C! !

-the partial derivative with respect to , defined asB À

lim
2Ä!

! ! ! ! ! !
B
w

! !
0 B  2ß C  0 B ß C `0 B ß C

2 ` B
œ œ 0 B ß C

       
 

 

-the partial derivative with respect to , defined asC À

lim
2Ä!

! ! ! ! ! !
C
w

! !
0 B ß C  2  0 B ß C `0 B ß C

2 ` C
œ œ 0 B ß C

       
 

 

if these limits exist and are finite.
If we consider a function of three variables  we have three possible partial derivati-0 Bß Cß D 
ves, defined as À

lim
2Ä!

! ! ! ! ! ! ! ! !
B
w

! ! !
0 B  2ß C ß D  0 B ß C ß D `0 B ß C ß D

2 ` B
œ œ 0 B ß C ß D

       
 

 

lim
2Ä!

! ! ! ! ! ! ! ! !
C
w

! ! !
0 B ß C  2ß D  0 B ß C ß D `0 B ß C ß D

2 ` C
œ œ 0 B ß C ß D
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lim
2Ä!

! ! ! ! ! ! ! ! !
D
w

! ! !
0 B ß C ß D  2  0 B ß C ß D `0 B ß C ß D

2 ` D
œ œ 0 B ß C ß D

       
 

 

if these limits exist and are finite.
For a function  at , interior point of the domain, we can have then, if they0 À Ä‘ ‘ —8

!

exist, exactly  partial derivatives.8

If a function is differentiable at  with respect to all its variables, then there exists a vector,—!

called the gradient of the function, denoted by , whose components are the partialf0 —!

derivatives of the function at the point :—!

f0 œ ß ß ß f0 0
` 0 ` 0 ` 0

` B ` B ` B
        
—

— — —
!

! ! !

" # 8

   
   

... . The symbol  is read "del  ".

As the partial derivatives are defined by the limit of a difference quotient in which only one
variable increases while all others remain constant, we have an important consequence for the
practical calculus of partial derivatives: it is sufficient to apply the usual rules to find the deri-
vative for functions of only one variable, the one with respect to which we derive, treating all
other variables as constant.

Example 24 Given ,  we have:À 0 À Ä 0 Bß C œ B‘ ‘# C 
`0

`B
œ C B B CC"   (derivative of a power, as  is the variable while  is a constant)

`0

`C
œ B B C BC log   (derivative of an exponential, as  is the variable while  is a constant).

Example 25 Given , arctg  we have:À 0 À Ä 0 Bß C œ B
B

C
‘ ‘#  

`0 B " "

`B C C
œ " †  B † †

" 
B

C

arctg  ;

 #

`0 " "

`C C
œ B † † B † 

" 
B

C
 

 # #
 .

Example 26 Given ,  we have:À 0 À Ä 0 Bß C œ C‘ ‘# BC 
`0

`B
œ C † C B CBC log   (derivative of an exponential, as  is the variable while  is a constant)

`0 B  C

`C C
œ / œ C  " † C  0 CWC

BC C BC 1 C log  (derivative of a ).   log    
Example 27 Given , sin  we have:À 0 À Ä 0 Bß Cß D œ D 

B  D

B
‘ ‘$

#
   

`0 B  D B  #B B  D

`B B B
œ !  †cos  ;   

# %

#

`0

`C
œ ! C as the given function is constant with respect to  ;

`0 B  D "

`D B B
œ "  † †  "cos .   

# #

Example 28 Given , , we calculate the directional derivative atÀ 0 À Ä 0 Bß C œ /‘ ‘# BC 
point  in the direction of the vector .   Bß C A œ "ß "
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As , we have  and so:     A œ # @ œ ß
" "

# #

W@
>Ä! >Ä!

0 Bß C œ œ œ
0 Bß C  > @  0 Bß C

> >

0 B  >ß C  >  0 Bß C
" "

# #           
lim lim

œ œ œ
/  /

> >

/ /  "
lim lim
>Ä! >Ä!

B >C > BC
BC # >" "

# #   

œ / † # † œ / † # † œ # / Þ
/  " /  "

# > A
BC BC BC

>Ä! AÄ!

# > A  lim lim


DIFFERENTIABILITY AND CONTINUITY
For functions of only one variable we know that continuity is a necessary condition for diffe-
rentiability, and therefore also that differentiability is a sufficient condition for continuity.
This does not apply, however, to functions .‘ ‘8 Ä

Example 29 Given the function , we compute its partial derivati-
 :
 :

À 0 Bß C œ
" B C œ !
! B C Á !

  
ves at . We get: !ß !
`0 !ß ! 0 !  2ß !  0 !ß ! "  "

`B 2 2
œ œ œ !

     
lim lim
2Ä! 2Ä!

,

`0 !ß ! 0 !ß !  2  0 !ß ! "  "

`C 2 2
œ œ œ !

     
lim lim
2Ä! 2Ä!

.

So the function has partial derivatives at  although it is clearly discontinuous, as in every !ß !
neighborhood of  there are points where  and points where .     !ß ! 0 Bß C œ " 0 Bß C œ !

Example 30 For ,  does non exist,À 0 Bß C œ 0 Bß C
B C

B  C
Bß C Á !ß !

! Bß C œ !ß !

   



   
   

#

% #
BßC Ä !ß!

lim   
see Example 22, so the function is not continuous at . Let us check, however, if the fun- !ß !
ction at  has derivatives in some direction cos sin .   !ß ! @ œ ßα α
We must then calculate:

lim lim
>Ä! >Ä!

0 !ß !  > @  0 !ß ! 0 > ß >  !

> >
œ œ

       cos sin α α

œ † œ œ œ
" > † > > † †

> >  > > > 
lim lim
>Ä! >Ä!

# # $ # # #

% % # # $ # % # #

cos  sin cos  sin cos  sin cos  
cos  sin  cos  sin  sin  sin 

,
α α α α α α α

α α α α α α 
provided that sin , i.e.  e .α α α 1Á ! Á ! Á
If  or , the direction is the one of the  axis, so the directional derivative is theα α 1œ ! œ B
partial derivative with respect to , for which:B

lim lim
>Ä! >Ä!

#

%

0 !  >ß !  0 !ß ! " > † !

> > >  !
œ † œ !

   
.

So this function has derivatives in every direction without being continuous at . It is no !ß !
longer so necessary to be a continuous function to have derivatives.

DIFFERENTIABLE FUNCTIONS
Let us recall the concept of differentiable functions for , to extend it to functions0 À Ä‘ ‘
0 À Ä‘ ‘8 .
Given  and  interior point of , the function  is differentiable at  if0 À Ä B H 0 B B‘ ‘ ! 0 ! 
there exists a constant  for which the following relation is valid:α ‘−



16

0 B œ 0 B  B  B  9 B  B       ! ! !α .
Some important theorems apply:
- a differentiable function at  is continuous at ;B B! !

- a differentiable function at   has derivative at  and .B B œ 0 B! ! !
wα  

So we have: .0 B œ 0 B  0 B B  B  9 B  B         ! ! ! !
w

To be differentiable means, therefore, that the function can be linearly approximated by the
tangent line to the graph of  in , with an error, , which is negligible0 B B 9 B  B   ! !

compared with , i.e. such that .   
B  B œ !

9 B  B

B  B
!

BÄB

!

!
lim

!

For functions  the following applies:0 À Ä‘ ‘8

Definition 29 Given  and  interior point of ,  is differentiable at À 0 À Ä H 0‘ ‘ — — —8
! 0 ! 

if there is one constant terms vector  for which:Š ‘− 8

0 œ 0  †   9         — — Š — — — —! ! ! ,
where  is the scalar (or dot) product of two vectors of .Š — — ‘†  ! 8

The error that arises from this approximation should be negligible compared to , the — — !

norm (or lenght) of .— — !

The definition of differentiable function can also be written so:

lim
— —Ä

! !

!!

0  0  † 


œ !

      — — Š — —

— —
.

We note that  is a linear application .Š — — ‘ ‘†  Ä ! 8

Let us consider the relationship between differentiability and continuity, differentiability and
the existence of partial derivatives, differentiability and the existence of directional
derivatives. The following applies:
Theorem 7 If  is differentiable at  then  is continuous at .À 0 0— —! !

Proof À 0Since by hypothesis  is differentiable at , then:—!

0  0 œ †   9         — — Š — — — —! ! ! .
We need to show that , or that  . Butlim lim

— — — —Ä Ä
! !

! !

0 œ 0 0  0 œ !       — — — —

lim lim
— — — —Ä Ä

! ! !
! !

0  0 œ †   9  œ !         — — Š — — — — , since:

lim
— —Ä

! !
!

Š — — Š — — †  œ !  Ä  , as  is a constant vector while , while by hypothesis

9  Ä ! ñ  — —! , and then the theorem is proved.

Being a continuous function is therefore a necessary condition to be a differentiable function.
Also the following applies:
Theorem 8 If  is differentiable at , interior point of , then  has all its partial deriva-À 0 H 0—! 0

tives at , so exists , and .— — Š —! ! !f0 œ f0   
Furthermore  has directional derivatives   at  and also: .0 a @ 0 œ f0 † @— W — —! @ ! !   
Proof À 0First of all, we prove that  has all its partial derivatives at .—!

If :  Š
— — — Š

œ 5 ß 5 ß ÞÞÞß 5 œ œ œ
`0 0  > /  0 † > /  9 > /

`B > >
          

" # 8
! ! 3 ! 3 3

3 >Ä! >Ä!
lim lim

œ œ œ
> † 5 ß 5 ß ÞÞÞß 5 ß ß 5 † !ß !ß ÞÞÞß " ß ß !  9 > † / > 5  9 >

> >
  

... ...
lim lim
>Ä! >Ä!

" # 3 8 3 3 3              
œ 5  œ 5 œ !

9 > 9 >

> >
 , as   by definition.lim lim
>Ä! >Ä!

3 3       
Being , the limit exists finite, so  and then .5 − œ 5 œ f0

`0

`B
3 3 !

!

3
‘ Š —

—   
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Therefore, differentiability for  at  can be expressed as:0 —!

0 œ 0 f0 †   9           — — — — — — —! ! ! ! .
The gradient of a function  at a point  characterizes the best linear approxima-0 À Ä‘ ‘ —8

!

tion for  at .0 —!

C œ 0 f0 †  0 À Ä     — — — — ‘ ‘! ! !
# gives the equation of the tangent plane (if ) or

of the hyperplane (if ) tangent to the (hyper)surface at .8  # ß 0  — —! !

To be differentiable means, therefore, to be approximated by tangent plane (or hyperplane)
with an error that is negligible compared to . — — !

Finally let us calculate the derivative of  at  in any direction . We have:0 @—!

W —
— — Š — — — —

@ !
>Ä! >Ä!

! ! ! ! ! !
0 œ œ œ

0  > @  0 †  > @   9  > @ 

> >
          

lim lim

œ œ f0 † @  œ f0 † @ œ 0
>f0 † @  9 > 9 >

> >
lim lim
>Ä! >Ä!

!
! ! @ !

              —
— — W — .

Then the function is differentiable in every direction , and we also see that to calculate dire-@
ctional derivatives we need not to compute the limit set by the definition, but rather just to
compute the scalar (or dot) product of the gradient of  at point  and the unit vector , so it0 @—!

is sufficient to know the  partial derivatives of  at . This of course if the function is8 0 —!

differentiable at .—!

THE MEANING OF THE GRADIENT
From Schwarz's formula we know that: cos , where  is— ˜ — ˜ α α α 1† œ † † À ! Ÿ    
the angle between the vectors  and . If  is differentiable at , as  is a unit vector we— ˜ —0 @!

get: cos cos .W — — — α — α@ ! ! ! !0 œ f0 † @ œ f0 † @ † œ f0 †            
If , then cos  and so , and this is the maximum possibleα α W — —œ ! œ " 0 œ f0@ ! !    
value  can take; but  means that  and  are on the same straight lineW — α —@ ! !0 œ ! f0 @   
and are oriented towards the same side; as  is the direction of the derivative, and as @ f0 —!

expresses the same direction, we can deduce that  expresses the direction of the maxi-f0 —!

mum growth (or maximum change) of  at . The gradient of a real function is a vector that0 —!

points towards the direction of the greatest rate of increase of the function, and whose norm is
the greatest rate of change.
Similarly, if ,  and  are on the same straight line but are oriented towards op-α 1 —œ f0 @ !
posite directions, and as cos  it follows that , and this isα W — —œ  " 0 œ  f0@ ! !    
the minimum value that  can take.W —@ !0 
CONDITIONS FOR DIFFERENTIABILITY
The existence of the gradient at a certain point is a necessary but not sufficient condition to
ensure the differentiability of the function at the same point.

Function  (see Example 29) provides us an example of a function
 :
 :

0 Bß C œ
" B C œ !
! B C Á !

  
that has all its partial derivatives at , and therefore it has the gradient, but it is not conti- !ß !
nuous, and so, following Theorem 7, it is not differentiable.

Example 31 Let us check if  is differentiable at . First we calculateÀ 0 Bß C œ B C !ß !     
f0 !ß ! :
`0 !ß ! 0 !  2ß !  0 !ß !

`B 2 2
œ œ œ !

!  2 † !  !        
lim lim
2Ä! 2Ä!

,

`0 !ß ! 0 !ß !  2  0 !ß !

`C 2 2
œ œ œ !

! † !  2  !        
lim lim
2Ä! 2Ä!

.
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So . If the function were differentiable at  it should be:f0 !ß ! œ !ß ! !ß !     
0 Bß C  0 !ß ! œ † B  !  † C  !  9 B  !  C  !

`0 !ß ! `0 !ß !

`B `C
                 # #

0 Bß C  ! œ !  !  9 B  !  C  !       # #

i.e. it should be ; using polar coordinates we have:lim   BßC Ä !ß! # #

  B C

B  C
œ !

lim lim
3 3Ä! Ä!

#

#

      3 * *

3
* * * *

cos sin 
cos sin cos sin , whose value is  only

†
œ † œ † !

when . Even if  exists, the function is therefore not differentiable at .*
1

œ 5 f0 !ß ! !ß !
#

   
However, if the partial derivatives are continuous functions at , this condition is sufficient—!

to ensure differentiability at . In fact, the following applies:—!

Theorem 9 (Total differential) If the function has all its partial derivatives at , that is ifÀ —!

f0 0 — —! ! exists, and if partial derivatives are continuous functions at , then  is
differentiable at .—!

We do not give the proof of this theorem.
We observe, however, that to have continuous partial derivatives at  is only sufficient but—!

not necessary condition to be a differentiable function at .—!

Example 32 For  we compute  when  À 0 Bß C œ / 0 !ß ! @ œ ß  Þ
" "

# #
      BC

@W

The function is the result of the composition of an exponential with the polynomial ,B  C
therefore it is continuous and differentiable  .a Bß C −  ‘#

As  and , also the two partial derivatives are
`0 Bß C `0 Bß C

`B `C
œ / œ  /

   BC BC

continuous functions  , and then the given function is differentiablea Bß C −  ‘#

a Bß C − .  ‘#

As  and , we get:
`0 !ß ! `0 !ß !

`B `C
œ " œ  "

   
W@0 !ß ! œ f0 !ß ! † ß  œ "  " † ß  œ #

" " " "

# # # #
             ,  .

PARTIAL AND DIRECTIONAL DERIVATIVES OF HIGHER ORDER
If  has its  partial derivatives, each of these is still a function0 À Ä 8‘ ‘8

`0

`B
À Ä 8

 —
‘ ‘

3

8 , which, if differentiable, can be derived with respect to each of its  varia-

bles: .
` `0

`B `B4 3
  —

So we get  second order partial derivatives, which, if differentiable, can be derived8 œ 8 † 8#

with respect to its  variables, giving course to  third order partial derivatives and8 8 œ 8 † 8$ #

so on.
Therefore we can draw the following scheme, valid for , :0 À Ä Bß C Ä 0 Bß C‘ ‘#    
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0 Bß C Ê

`0 Bß C

`B
Ê

` 0 Bß C

`B
œ 0 Ê

` 0 Bß C

 



 



 


 
2

2

3

BB
ww `B `B `B `B

œ œ 0
` 0 Bß C

` 0 Bß C ` 0 Bß C

`B `B `C `B `C
œ œ 0

` 0 Bß C

`B `C ` 0 Bß C
œ 0 Ê

` 0 Bß C

`B `C `B
œ 0

`

  

    

 
  

3

3

3 3

2

3

3

 
   

 


 
 

BBB
www

# BBC
www

BC
ww

BCB
www

B `C `C `B `C
œ œ 0

` 0 Bß C

`0 Bß C

`C
Ê

` 0 Bß C

`C `B
œ 0 Ê

` 0 Bß C ` 0 Bß C

`C `B `B `C `B
œ œ 0

   

 
   

3

2

3 3

2

 

 



 


   
# BCC

www

CB
ww

CBB
www

CBC
www

CC
ww

# CCB
www

CCC
www

` 0 Bß C

`C `B `C
œ 0

` 0 Bß C

`C ` 0 Bß C ` 0 Bß C
œ 0 Ê

` 0 Bß C ` 0 Bß C

`C `C `B `C `B
œ œ 0

`C `C `C `C
œ œ 0

3

2

2

3 3

3 3

3

 

 


   
   

  

   

  

Note the different position of the pseudo-exponent : in  it means to derive  times# #
` 0 Bß C

`B

#

#

 
   ` 0 0 B `B# # the function  with respect to the variable  both times , thus explaining the dif-
ferent position.

The derivatives made with respect to the same variable,  and , are called
` 0 Bß C ` 0 Bß C

`B `C

# #

# #

   
pure derivatives, while  and  are called mixed derivatives.

  
` 0 Bß C ` 0 Bß C

`B `C `C `B

# #   
For , similarly to the partial derivatives of the second and subsequent orders, we0 À Ä‘ ‘8

can define the directional derivatives of the second and subsequent orders.

We formally define a second order partial derivative as:
` 0 " `0

`B `B > `B `B
œ † 

`0  > /#
! !

3 4 3 3>Ä!

! 4     — ——

 
 , provided that this limit exists and is finite.lim

We formally define a second order directional derivative as:

W W — W —
W — W —

A @ ! !
>Ä!

@ ! @ !
@ A
#        

0 œ œ 0
0  >A  0

>
lim  , provided that this limit

exists and is finite.
In the same way we define partial and directional derivatives of higher orders.

It is not generally true that , nor that .
  

` 0 ` 0

`B `B `B `B
œ 0 œ 0

# #
! !

3 4 4 3
@ A A @
# #

! !
       — —

W — W —  

However, the following applies:

Theorem 10 (Schwarz) If  has second order mixed derivatives  and
 

À 0 À Ä
` 0

`B `B
‘ ‘

—8
#

3 4

 
` 0

`B `B

#

4 3
! !

 —
— —

 
 in a neighborhood of , and if they are continuous functions at , then they are

equal: .
  

` 0 ` 0

`B `B `B `B
œ

# #
! !

3 4 4 3

   — —

We omit the proof of this theorem.



20

There is also a more general form of this theorem, whose assumptions include existence and
continuity of only one of the two second order mixed derivatives, then it proves that the other
second order mixed derivative exists, is continuous and is equal to the first.

Example 33 Let , then we have:À 0 Bß C œ B /  C /  C B

0 Bß C œ B /  C / Ê 0 œ 0

0 œ /  C / Ê
0 œ  C /
0 œ /  /

0 œ B /  / Ê
0 œ /  /

0 œ B /

 





C B ww ww
B
w C B BB

ww B

BC
ww C B

C
w C B CB

ww C B

CC
ww C

BC CB

 
 

 

 
 

 

  

   

, and so  .

Schwarz's theorem expresses a sufficient and not necessary condition, however, for the equa-
lity of the second order mixed derivatives.

Remark " À Schwarz's theorem applies not only to the second order partial derivatives, but al-
so to mixed derivatives of any order, since a derivative of order  is still the second order de-8
rivative of a derivative of order  .8  # À ` 0 œ ` ` 0   8 # 8# 
Extending the hypotheses of Schwarz's theorem to the continuity of mixed derivatives of the

proper order, we can write, for a function of two variables, , with , to
 

` 0

`B `B
:  ; œ 7

7

: ;
3 4

 —
denote the mixed partial derivative of order , obtained by differentiating  times with7 :
respect to  and  times with respect to , without specifying the order with respect toB ; B3 4

which we have derived with respect to  and , since this is irrelevant using Schwarz'sB B3 4

theorem.

Example 34 Given , if its third order derivatives are continuous, it results:À 0 À Ä‘ ‘8

` 0 ` 0 ` 0 ` 0 ` 0

`B `B `B `B
œ œ œ œ

`B `B `B `B `B `B `B `B `B

$ $ $ $ $

3 3
# #

4 43 3 4 3 4 3 4 3 3

         — — — — —

        
.

Remark # À Schwarz's theorem applies not only to partial derivatives but also to all directio-
nal derivatives at least of the second order. If  exists and is continuous at , thenW — —@ A

#
! 0 

W — W — W —A @ @ A A @
# # #

! ! !   0 0 œ 0      exists, is continuous and also .
Similar conclusions are valid for the higher orders directional derivatives.

DIFFERENTIABILITY OF THE SECOND AND HIGHER ORDERS
Let us consider  and suppose that it is a differentiable function  ,0 À Ä a −‘ ‘ — 8

 —  ‘ ‘
—

© H − 8 À Ä
`0

`B
0 !

3

8. There exist at  the  partial derivative functions . Let's
 

take the following:
Definition 30  is twice differentiable at  if each of its first order derivative functionsÀ 0 — —!

`0

`B

 —
—

3
! is differentiable at .

So to be a twice differentiable function means to be a function having differentiable first order
derivatives.
Therefore it is easy to extend this definition to that of  times differentiable functions.5
Definition 31  is -times differentiable at  if each of its  order derivative fun-À 0 5 5  " — —!

ctions is differentiable at .—!

For twice differentiable functions the following theorem applies:
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Theorem 11 If a function is twice differentiable at , interior point of , then all the se-À H—! 0

cond order (partial and directional) derivatives exist at . In addition, the mixed (partial and—!

directional) derivatives are equal:  and .
  

` 0 ` 0

`B `B `B `B
œ 0 œ 0

# #
! !

3 4 4 3
@ A A @
# #

! !
       — —

W — W —  

The latter theorem provides a further sufficient, and not necessary, condition for the equality
of the mixed derivatives in addition to the one extablished by Schwarz's theorem.
Similarly to what we have seen for the differentiability of the first order, it is not necessary
but only sufficient that the second order derivatives are continuous to ensure that the function
is twice differentiable.

TOTAL DIFFERENTIALS OF THE FIRST AND HIGHER ORDERS
For  differentiable at  we can write:0 —!

0 œ 0 f0 †   9           — — — — — — —! ! ! ! .
f0 †    — — —! !  is called the total differential of the first order, and we also write
d .0 œ f0 †      — — — —! ! !

If ... ...  and iff0 œ ß ß ß œ 0 ß 0 ß ß 0
`0 `0 `0

`B `B `B
               — — — —

— — —
! ! ! !

! ! !

" # 8
" # 8
w w w

    — — œ B  B ß B  B ß ß B  B œ B ß B ß ß B! " # 8 " # 8
! ! !
" # 8... d d ... d , with these symbols we

can also write:

d ... d d ... d  d .0 œ 0 ß 0 ß ß 0 † B ß B ß ß B œ 0 † B             — — — — —! ! ! ! " # 8 ! 3" # 8 3
w w w w

3œ"

8

If it does not matter to specify the point , we can also write:—!

d .. d d ... d  d d d  ... d .0 œ 0 ß 0 ß ß 0 † B ß B ß ß B œ 0 B œ 0 B  0 B   0 B    " # 8 3 " # 8
w w w w w w w

" # 8 3 " # 8

3œ"

8

This expression defines the first order total differential for a function of  variables.8
If , we get d d d , if the variables are  and , or0 À Ä 0 œ 0 B  0 B B B‘ ‘# w w

" #" # " #

d d d , if the variables are  and .0 œ 0 B  0 C B CB C
w w

For a function of three variables  we have d d d d .0 Bß Cß D 0 œ 0 B  0 C  0 D  B C D
w w w

Let us now define the second order total differential for . Starting from:0 À Ä‘ ‘#

d d d d d , as  and  are functions of  and , while d  and
d d#

B C
w w0 œ 0 œ B  C 0 0 B C B

` 0 ` 0

`B `C
     

d  are constant with respect to  and , we get:C B C

d d d
d d d d

# B C B C
w w w w

0 œ B  C œ
` 0 B  0 C ` 0 B  0 C

` B ` C

   
œ 0 B  0 C B  0 B  0 C C œ 0 B  # 0 B C  0 C       BB CB BC CC BB BC CC

ww ww ww ww ww ww ww# #d d d d d d d d d d ,
if we suppose that the function is twice differentiable, wherefore .0 œ 0BC CB

ww ww

For  similarly we get:0 À Ä‘ ‘$

d d d d d d d d d d .# ww ww ww ww ww ww
BB CC DD BC BD CD

# # #0 œ 0 B  0 C  0 D  #0 B C  #0 B D  #0 C D     
For , ... , we shall write in a compact form:0 À Ä C œ 0 B ß B ß ß B‘ ‘8

" # 8 
d d   d d  d d .

  
# #

3œ" 4œ" 3ß4œ"

8 8 8# #

3 4 3 4
3 4 3 40 œ C œ B B œ B B

` 0 ` 0

`B `B `B `B
     — —

Note the similarities (not the identity) between the second order differential of a function of
two variables and the square of a binomial, between the second order differential of a function
of three variables and the square of a trinomial, and so on for second order differential of a
function of  variables, which is analogous to the square of an -omial. These similarities are8 8
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also reflected in the total differentials of third, fourth order an so on, analogous to a third,
fourth power of a binomial, a trinomial and so on.

In fact, the third order total differential of  is:0 À Ä‘ ‘#

d d d d d d d .$ www www www www
BBB BBC BCC CCC

$ # # $0 œ 0 B  $ 0 B C  $ 0 B C  0 C       
The fourth order total differential of  is:0 À Ä‘ ‘#

d d d d d d d d d .% % % % % %
BBBB BBBC BBCC BCCC CCCC

% $ # # $ %0 œ 0 B  %0 B C  '0 B C  %0 B C  0 C                    
VECTOR-MATRIX FORM OF SECOND ORDER TOTAL DIFFERENTIALS
The second order total differential of a function of any number of variables can be expressed
also in matrix-vector form, using the so-called Hessian matrix .‡
The Hessian matrix is the matrix formed with the second order partial derivatives, ordered by
row with respect to the first derivation variable and by column with respect to the second, and

in case of a function of  variables it takes the form: 

... ...

8 œ

0 0 0
0 0

‡

          

          

"" "# "8
ww ww ww

#" ##
ww ww ww

#8

8" 8#
ww ww ww

88

... ...
... ... ... ... ... .
... ... ... ... ...

... ...

0

0 0 0

If the hypothesis of Schwarz's theorem are valid, or if the function is twice differentiable, the
Hessian matrix is a symmetric one.

If d d d ... d , the following equality holds:— œ B ß B ß ß B " # 8

d d d d d ... d ... ... ... ...

... ...

... ...
#

" # 8

"" "# "8
ww ww ww

#" ## #8
ww ww ww

0 œ † † œ B ß B ß ß B †

0 0 0
0 0 0

— ‡ —   
          

          
T ... .

... ... ... ... ...
... ...

d
d
...
...

d0 0 0

†

B
B

B8" 8#
ww ww ww

88

"

#

8

          

          
Verifying it only in the simplest case, the one of a function of two variables, , we0 À Ä‘ ‘#

have:

d d d
d d
d d

d d
d d

# BB BC BB CB
ww ww ww ww

CB CC BC CC
ww ww ww ww0 œ Bß C † † œ † œ

0 0 0 B  0 C

0 0 0 B  0 C
B B
C C

                
œ 0 B  # 0 B C  0 CBB BC CC

ww ww ww# #   d d d d .
Higher order than the second differentials cannot be expressed in matrix-vector form.

As far as the practical calculus of a second-order directional derivative is concerned, there is a
result similar to that found for the first-order directional derivatives .W — —@ ! !0 œ f0 † @   
If ...  and ...  are unit vectors of , the following holds:@ œ @ ß @ ß ß @ A œ A ßA ß ß A   " # 8 " # 8

8‘
Theorem 12 Let  be twice differentiable at . Then:À 0 — —!

W — ‡ — ‡ — W —@A A@
# #

! ! ! !0 œ @ † † A œ A † † @ œ 0       T T .

Example 35 For , , we compute , using two diffe-À 0 À Ä 0 Bß C œ / 0 Bß C‘ ‘ W# BC #
@A   

rent procedures, leaving general ,  and .@ A Bß C 
If cos sin  and cos sin , the function , being the compo-@ œ ß A œ ß 0 Bß C œ /     α α " " BC

sition of an exponential and a polynomial, which are continuous and derivable functions with
continuous derivatives of any order, is twice differentiable throughout .‘#

So . Then:W ‡@A
# 0 Bß C œ @ † Bß C † A    T
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`0 `0 ` 0 ` 0 ` 0 ` 0

`B `C `B `B`C `C `B `C
œ / œ  / œ / à œ œ  / à œ /BC BC BC BC BC

# # # #

# #
; ; , and so:

W α α
"
"@A

#
BC BC

BC BC0 Bß C œ † † œ
/  /
 / /

          cos  sin
cos
sin

œ † œ
/  /
 /  /

    cos  sin
cos sin

cos sin
α α

" "
" "

BC BC

BC BC

œ / †  / †  / †  / † œBC BC BC BCcos cos sin cos cos sin sin sin" α " α " α " α
œ /   /  œ /    ÞBC BC BCcos sin cos sin        α " α " α " α "

Alternatively, we can compute the second order directional derivative as the directional deri-
vative of the first order directional derivative, and then we get:

W α α@
BC BC0 Bß C œ f0 Bß C † @ œ ß † @ œ / ß  / † ß œ

`0 `0

`B `C
         cos sin

œ /  / ÞBC BCcos sinα α
We now calculate  and then we shall calculate . We get:f 0 Bß C f 0 Bß C † A      W W@ @

` 0 Bß C ` 0 Bß C

`B `C
œ /  / œ  /  /

      W W
α α α α

@ @BC BC BC BCcos sin  and cos sin .

And so:

W W " "
W W

@A
#

@
@ @

0 Bß C œ f 0 Bß C † A œ ß † ß œ
` 0 Bß C ` 0 Bß C

`B `C
              

cos sin

œ /  / à  /  / † ß œ   BC BC BC BCcos sin cos sin cos sinα α α α " "
œ / †  / †  / †  / † œBC BC BC BCcos cos sin cos cos sin sin sinα " α " α " α "
œ /   BC     cos sin ,α " α "

i.e. the same result as with the other process.

TAYLOR AND MACLAURIN POLYNOMIAL
Also for functions  we can provide a better approximation than that obtained0 À Ä‘ ‘8

with the differentiability formula, creating a polynomial (in  variables) of degree  suitably8 7
chosen, for which the followig equality holds:
0  ß œ 9       —  — — — —7 ! !

7 .
For a function  Taylor's polynomial at  is:0 À Ä B‘ ‘ !

7 ! ! ! ! ! !
w

ww www
! !# $              

Bß B œ 0 B  0 B B  B  B  B  B  B 
0 B 0 B

# $!  !
...

There is a unique polynomial of degree  if the function is  times differentiable in a nei-7 7
ghborhood of .B!

For a function  the following applies instead:0 À Ä‘ ‘8

Theorem 13 (Taylor) If the function , , is differentiable up to order  in aÀ 0 Ä 7 — ‘ ‘8

neighborhood of the point , then there exists a unique Taylor's polynomial of degree —! 7
such that: .0  ß œ 9       —  — — — —7 ! !

7

This polynomial has the following expression:

 — — — —
— — —

7 ! ! !

# $ 7
! ! !           

ß œ 0  0    
0 0 0

# $ 7
d ...  .

d d d
! ! !

As can be seen, the polynomial is built using total differentials, from the first order up to the
order .7
If , null vector, we call it, instead Taylor's, MacLaurin's polynomial.— ! œ
The second-degree polynomial can be expressed, as it has been already seen, using a vector-
matrix form, and we have the following expression:

 — — — — — — ‡ — — — — —# ! ! ! ! !         ß œ 0  f0 †  † † œ 
"

#
d d d ; since d  we get:T

0 œ 0 f0 †    † †   9 
"

#
                — — — — — — — ‡ — — — — —! ! ! ! ! ! !

#T .
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Example 36 Given sin , let us determine the expression of second-À 0 Bß Cß D œ B C  D   #

degree Taylor's polynomial at the point . "ß "ß "
First of all, we get . Then:0 œ 0 "ß "ß " œ !   —!

0 œ #B C  D Ê 0 "ß "ß " œ !B B
w wsin ;   

0 œ B C  D Ê 0 "ß "ß " œ "C C
w # wcos ;   

0 œ  B C  D Ê 0 "ß "ß " œ  "D D
w # wcos ;   

0 œ # C  D Ê 0 "ß "ß " œ !BB BB
ww wwsin ;   

0 œ  B C  D Ê 0 "ß "ß " œ !CC CC
ww # wwsin ;   

0 œ  B C  D Ê 0 "ß "ß " œ !DD DD
ww # wwsin ;   

0 œ #B C  D Ê 0 "ß "ß " œ #BC BC
ww wwcos ;   

0 œ  #B C  D Ê 0 "ß "ß " œ  #BD BD
ww wwcos ;   

0 œ B C  D Ê 0 "ß "ß " œ !CD CD
ww # wwsin .   

We get then, in analytical form:
 —#        ß "ß "ß " œ !  ! † B  "  " † C  "  " † D  " 

 ! † B  "  ! † C  "  ! † D  " 
"

#
      # # #

 # † # B  " C  "  #  # B  " D  "  # † ! † C  " D  " œ
"

#
              

œ D  C  #B C  #B D .
In vector-matrix form, putting d , d , d , we get:B œ B  " C œ C  " D œ D  "

 —#        
                  
                  ß "ß "ß " œ !  !ß "ß  " † Bß Cß D  B C D † †

"

#

! #  # B
# ! ! C
 # ! ! D

d d d d d d .
d
d
d

CONVEX AND CONCAVE FUNCTIONS
First of all, it is important to know that for functions  the concept of increasing0 À Ä‘ ‘8

or decreasing function is not definable. This concept could be recovered if we spoke about in-
creasing or decreasing in a certain direction, i.e. bringing it back to a one-dimensional type
analysis, which is not generally useful to draw global conclusions. There are not, therefore,
criteria like that of the study of the sign of , valid for functions . It is howe-0 B 0 À Äw  ‘ ‘
ver valid and useful for applications, primarily for the study of maxima and minima, the
definition of convex and concave function.
First of all we give the following:
Definition 32 A set  is said a convex set if , the segment that joinsÀ © a ß − ‘ — — 8

" #

them is all contained in .
This condition is equivalent to:
a − À a − !ß " Ê †  "  † − ,    ,— —  α α — α — " # " #   
where   is the line passing through the points  and .α — α — α ‘ — —†  "  † ß −" # " # 
If a set  is not convex, it is concave. ‘© 8

Definition 33 For , the epigraph of the function on , is the set:À 0 À Ä ©‘ ‘  ‘8 8

X — ‘ —  —      0 œ ß C − ß − À C   08" .
The epigraph is therefore the region above the graph, including the graph.
From this it follows the
Definition 34 Given , and  a convex set, the function  is said to beÀ 0 À Ä © 0‘ ‘  ‘8 8

convex on  if its epigraph on  is a convex set. 
So a function is convex if the region above its graph is a convex set.
The definition of convex function is not given in any set, but only in a convex domain.

As for functions , unlike sets, a function that is not convex is not called concave, but:‘ ‘Ä
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Definition 35 Given , and  a convex set, the function  is said to beÀ 0 À Ä © 0‘ ‘  ‘8 8

concave on  if the function  is convex on .  0

Concave functions are therefore the symmetrical ones, with respect to the (hyper)plane of in-
dipendent variables, of convex functions and, in a given set, there are functions which are nei-
ther concave nor convex, while sets are always concave or convex.
Considering for obvious reasons only the case of functions , we see the figure of0 À Ä‘ ‘#

an example of a convex and one of a concave function.

Finally we state two theorems that link the convexity of a function to the differentiability of
the first and second order.
Theorem 14 Let  be differentiable on  convex set.  is convex on  ifÀ 0 À Ä © 0‘ ‘  ‘ 8 8

and only if  d , or, equivalently:a ß − À 0   0  0— —  — — —! ! !     
0   0 f0 †        — — — — —! ! ! .
This formula allows us to express the convexity of a differentiable function by stating that the
graph of the function does not lie below the tangent (hyper)plane at any point .— ! −
Using Taylor's polynomial we can then prove that is also true that:
Theorem 15 Given  twice differentiable on  convex set. Then  isÀ 0 À Ä © 0‘ ‘  ‘8 8

convex on  if and only if d ,  . — — #0   ! a − 
In fact, being  twice differentiable, we get:0

0 œ 0  0  0  9 
"

#
          — — — — — —! ! ! !

# #d d , and so:

0  0  0 œ 0  9  0   !
"

#
              — — — — — — —! ! ! ! !

# ##d d , and if d  we get:

0   0  0     — — —! !d .
Using instead the vector-matrix form, the previous theorem leads to:

0  0 f0 †  œ  † †   9 
"

#
                  — — — — — — — ‡ — — — — —! ! ! ! ! ! !

#T

from which we get: d d d .#
! !0   ! Í † †   !     — — ‡ — — T

The term d d d  represents a qua-#
! ! ! ! !0 œ † † œ  † †            — — ‡ — — — — ‡ — — —T T

dratic form in  variables d d ... d ; if d   it is called a positive de-8 B ß B ß ß B 0  !   !" # 8 !
#    —

finite (semi-definite) quadratic form.
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The study of convexity and concavity of a function is related to the study of the sign of the
quadratic form d , and this will be discussed below, in the section dealing with the#

!0 —
search for the maximum and minimum relative points.

If d  or if d , we have a strictly convex function.0  0  0 0  !       — — — —! ! !
#

FUNCTIONS 0 À Ä‘ ‘8 7

Let us extend the concepts up here worked out to vector valued functions of a vector variable,
i.e. to functions , with ... , ... .˜ — — ‘ ˜ ‘œ 0 œ B ß B ß ß B − œ C ß C ß ß C −     " # 8 " # 7

8 7

A first example of such a function  are linear applications, that is functions that0 À Ä‘ ‘8 7

can be expressed as , where  is a  matrix whose elements are real˜ —  — œ 0 œ † 7 † 8 
or complex numbers.

In case of need, the notation ,  can be written, in an expanded form,˜ — ‘ ‘œ 0 0 À Ä  8 7

as: ... ... ... .... ... .        C ß C ß ß C œ 0 B ß B ß ß B ß 0 B ß B ß ß B ß ß 0 B ß B ß ß B" # 7 " " # 8 # " # 8 7 " # 8

Therefore, a function  can be seen as an -dimension vector whose0 À Ä 7‘ ‘8 7

components are functions .0 À Ä3
8‘ ‘

It will be sufficient to repeat what we did for functions  adapting the theory to0 À Ä‘ ‘7

what we saw for functions  to get the extension of main definitions and proper-0 À Ä‘ ‘8

ties relevant to functions .0 À Ä‘ ‘8 7

LIMITS, CONTINUITY, DERIVABILITY, DIFFERENTIABILITY
Definition 36 The function ,  has limit when , being  anÀ 0 À Ä œ 0 Ä‘ ‘ ˜ — — — —8 7

! ! 
accumulation point of , if each component ,  has limit whenH 0 À Ä " Ÿ 3 Ÿ 70 3

8‘ ‘
— —Ä ! .
Definition 37 Given  an accumulation point belonging to ,  is continuo-À H 0 À Ä— ‘ ‘! 0

8 7

us at  if , or , i.e. if each component— — — — —! ! 3 3 !
Ä Ä
lim lim
— — — —! !

0 œ 0 0 œ 0 ß " Ÿ 3 Ÿ 7       
03 ! is continuous at .—

As far as the differentiability is concerned, since each component is a function ,0 À Ä3
8‘ ‘

we can define partial and directional derivatives.
Given  interior point of  and  unit vector, we have— ‘! 0

8H @ −
Definition 38 The directional derivative of ,  in the direction of  atÀ 0 À Ä œ 0 @‘ ‘ ˜ —8 7  
the point  is the limit , provided that this limit exists— W —

— —
! @ !

>Ä!

! !lim
0  > @  0

>
œ 0

     
and is finiteÞ
So each function ,  must have the directional derivative at  in the0 À Ä " Ÿ 3 Ÿ 73 !

8‘ ‘ —

direction of  and , .@ œ 0 " Ÿ 3 Ÿ 7
0  > @  0

>
lim
>Ä!

3 ! 3 !
@ 3 !

     — —
W —

Partial derivatives for  are  partial derivatives of its components .0 À Ä 0 À Ä‘ ‘ ‘ ‘8 7 8
3

0 À Ä B 0‘ ‘8 7
4 3 has partial derivative with respect to the variable  if each component  has

partial derivative with respect to .B4

So we compute  partial derivatives, differentiating , , with respect to the7 † 8 0 " Ÿ 3 Ÿ 73

variables , . All these first order partial derivatives form the so-called JacobianB " Ÿ 4 Ÿ 84

matrix :7 † 8
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N œ œ
` 0 ß 0 ß ß 0

` B ß B ß ß B

`0 `0 `0

`B `B `B
ÞÞÞÞ

`0 `0

`B `B
Þ

0
" # 7

" # 8

" " "

" # 8

# #

" #    

              

              
—

...
...

ÞÞÞ
`0

`B
ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ
`0 `0 `0

`B `B `B
ÞÞÞÞ

#

8

7 7 7

" # 8

,

in which the element  is the partial derivative of  with respect to . 3ß 4 0 B3 4

Each row of the Jacobian matrix is a gradient: the -th row is in fact the gradient .3 f03 —
For a function ... , we follow the previous definitions, i.e.:0 À Ä ß 0 œ 0 ß 0 ß ß 0‘ ‘8 7

" # 7 
Definition 39 ,  is differentiable at  if each of its components,À 0 À Ä œ 0‘ ‘ ˜ — —8 7

! 
C œ 03 3 ! — —, is differentiable at  i.e.:
0 œ 0  †   9  − a 3 À " Ÿ 3 Ÿ 73 3 ! 3 ! ! 3

8        — — Š — — — — Š ‘, with ,  .

Equivalently, we may request that there exists a constant terms matrix , for which:Œ7ß8

0 œ 0  †   9         — — Œ — — — —! ! !  is valid.
Vectors  are the rows of the matrix .Š Œ3

As a consequence of what we have seen for the functions , if  is differentiable0 À Ä 0‘ ‘8
3

at  we have , and so the differentiability of  can be expressed— Š — ‘ ‘! 3 3 !
8 7œ f0 0 À Ä 

as: ,  .0 œ 0 f0 †   9  a 3 À " Ÿ 3 Ÿ 73 3 ! 3 ! ! !          — — — — — — —
These equalities can be written with a unique formula, as :Œ —œ N0 ! 
0 œ 0  N †   9           — — — — — — —! 0 ! ! ! ,
where , ,  while  and  is a0 0 − 9  −  − N          — — ‘ — — ‘ — — ‘ —! ! ! 0 !

7 7 8

 7 † 8  matrix.
In order to compute , if  is differentiable at , it will be sufficient to computeW — —@ ! !0 0 
N † @ 0 ß 0 ß ß 0 −0 ! @ " ! @ # ! @ 7 !

7        — W — W — W — ‘, to get the vector ... .

The Jacobian matrix expresses and summarizes the concept of derivative in the more general
case, i.e. that of , including as special cases all types of derivatives encountered0 À Ä‘ ‘8 7

so far.
For , the derivative  is a  Jacobian matrix, i.e. a real number;0 À Ä 0 B " † "‘ ‘ w   
for  we have the gradient, which is a  Jacobian matrix, that is a Jacobian0 À Ä " † 8‘ ‘8  
having only a row;
for , we have the tangent vector, which is a  Jacobian matrix, a Jacobian0 À Ä 8 † "‘ ‘8  
having only a column.

Example 37 If  is a linear application, , it is easy to seeÀ 0 À Ä œ 0 œ †‘ ‘ ˜ —  —8 7  
that ,  .N œ a −0 ! !

8 —  — ‘

Example 38 If  is a change of coordinates from Cartesian  to polar onesÀ 0 À Ä Bß C‘ ‘# #       3 * 3 * 3 * 3 *ß 0 ß œ B  ß C : cos sin , we get:! !

N ß œ œ œ
` Bß C

` ß

`B `B

` `
`C `C

` `


0     

        

        
  3 *

3 *

3 *

3 *

* 3 *
* 3 *

cos sin
sin cos

.

DERIVATIVES FOR COMPOSITE FUNCTIONS (CHAIN RULE)
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Purpose of this section is to explain the rule of the derivative of a composite function (chain

rule) in the more general case: , , where:‘ ‘ ‘ “ — ˜7 8 :Ä Ä Ä Ä
1 0 1 0

“ — ˜œ > ß > ß ß > œ B ß B ß ß B œ C ß C ß ß C     " # 7 " # 8 " # :... ; ... ; ... ;
— “ “ “ “œ 1 œ 1 ß 1 ß ß 1 œ 1 > ß ß > ß 1 > ß ß > ß ß 1 > ß ß > à                " # 8 " " 7 # " 7 8 " 7.. .. .. .. ..
˜ — — — —œ 0 œ 0 ß 0 ß 0 œ 0 B ß ß B ß 0 B ß ß B ß ß 0 B ß ß B                " # : " " 8 # " 8 : " 8,.. ... ... .. ...
so as to get .˜ — “œ 0 œ 0 1    
If  we get , i.e. the derivative of7 œ 8 œ : œ " 0 1 B œ 0 1 B † 1 BW         ! ! !

w w

composite function is given by the product of two numbers:  and .0 1 B 1 Bw w    
If , , see Theorem 5, we get:‘ ‘ ‘ ˜ ˜Ä Ä > Ä B Ä ß œ 0 1 >

1 0 1 0:   
W ˜

˜            
0 1 > œ œ B > † B >

B >

>
! ! !

! w wd
d

,

i.e. the derivative of composite function is given by the product of the tangent vector
˜ w w

! !    B > B > and the scalar .

Let us determine now the rule if  , , .‘ ‘ ‘ —Ä Ä > Ä Ä C 8  "
1 0 1 08

If ... ... , we have theC œ 0 œ 0 B ß B ß ß B œ 0 1 > œ 0 B > ß B > ß ß B >              — " # 8 " # 8

following
Theorem 16 If ... ,  is differentiable at À > œ 1 > œ B > ß B > ß ß B > Ä > œ >— ‘ ‘          " # 8 !

8

and ,  is differentiable at , then  isC œ 0 Ä > œ 1 > C œ 0 1 >        — ‘ ‘ —8
! !

differentiable at  and: ,
d

d
> œ > 0 1 > œ œ f0 > † >

C >

>
! ! ! !

! wW — —           
i.e. the derivative of the composite function is given by the scalar (or dot) product of the
gradient vector  and the tangent vector ... .f0 > > œ B > ß B > ß ß B >            — —! ! ! ! !

w w w w
" # 8

Proof À By definition, we have:
d

d
.

C > 0 1 >  0 1 > 0 >  0 >

> >  > >  >
œ œ

                ! ! !

>Ä> >Ä>! !
lim lim

! !

— —

As  is differentiable at  we get:0 —!

0 >  0 > œ f0 > † >  >  9 >  >                       — — — — — — —! ! ! ! ,
from which, by substitution, we get:

lim lim
>Ä> >Ä>

! ! ! !

! !! !

0 >  0 > f0 > † >  >  9 >  >

>  > >  >
œ œ

                       — — — — — — —

œ f0 > †  † „ Þ
>  > 9 >  > >  >

>  > >  > >  >
lim lim
>Ä> >Ä>

!
! ! !

! ! !! !

                        —
— — — — — —

— —
But  is a constant vector, whilef0 >  — !

lim lim lim
>Ä> >Ä> >Ä>

! " " ! 8 8 !

! ! !! ! !

   
— —            >  > B >  B > B >  B >

>  > >  > >  >
œ ß ÞÞÞ ß œ

œ B > ß B > ß ß B > œ >        " # 8
w w w w

! ! ! !... —
as  is differentiable at Finally— > > Þ!

lim
>Ä>

!

!!

9 >  >

>  >
œ !

         — —

— —
 by definition and

lim
>Ä>

!

!

w
! !

!
         — —

— —
>  >

>  >
œ > > >, finite number as  is differentiable at . So

W — —           
0 1 > œ œ f0 > † > ñ

C >

>
! ! !

! wd
d

.

This result can also be expressed in the form:
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d d d d
d d d d

... ...  and so:
C `0 `0 `0 B B B

> `B `B `B > > >
œ ß ß ß † ß ß ß   

" # 8

" # 8

d d d d d
d d d d d

...  .
C `0 B `0 B `0 B `0 B

> `B > `B > `B > `B >
œ †  †   † œ †

" # 8 3

" # 8 3

3œ"

8

Using this result, we treat the case , .‘ ‘ ‘ — ˜Ä Ä > Ä Ä
1 0 1 08 :

Now ... , with ... , , and . If each˜ œ C ß C ß ß C C œ 0 B ß B ß ß B " Ÿ 3 Ÿ : B œ 1 >     " # : 3 3 " # 8 4 4

0 B ß B ß ß B œ 0 > > œ B > ß B > ß ß B >3 " # 8 3 ! " # 8              ..  is differentiable at  and if .  is— — —
differentiable at , from the previous theorem we get:>!
d

d
 or:

C >

>
œ f0 > † >

3 !
3 ! !

w      — —

d d d d
d d d d

... , .
C `0 B `0 B `0 B

> `B > `B > `B >
œ †  †   † " Ÿ 3 Ÿ :

3 3 " 3 # 3 8

" # 8

These  equalities can be written in matrix form as::             

             

              

              

d
d

d
d

d
d

C

>
C

>
ÞÞÞÞ
C

>

œ

"

#

:

`0 `0 `0

`B `B `B
ÞÞÞÞ

`0 `0 `0

`B `B `B
ÞÞÞÞ

ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ
`0 `0 `0

`B `B `B
ÞÞÞÞ

†

" " "

" # 8

# # #

" # 8

: : :

" # 8

             

      


d
d

d
d

d
d

, or:

B

>
B

>
ÞÞÞÞ
B

>

"

#

8

W —
˜ — —              0 1 > œ œ † >

> ` 0 ß 0 ß ß 0 >

> ` B ß B ß ß B
! !

! " # : !

" # 8

wd ...
d ...

  and also:

˜ — — —w w
! 0 ! !        > œ N > † > Þ

The tangent vector   is then given by the product of the Jacobian matrix ˜ — —w
! 0 !      > N >

and the tangent vector .—w
! >

Finally we treat the general case , . The following applies:‘ ‘ ‘ “ — ˜7 8 :Ä Ä Ä Ä
1 0 1 0

Theorem 17 Given  ... , ... , ...  with:À œ > ß > ß ß > œ B ß B ß ß B œ C ß C ß ß C“ — ˜     " # 7 " # 8 " # :

B œ 1 > ß > ß ß > C œ 0 B ß B ß ß B3 3 " # 7 4 4 " # 8    ... ; ... .
If , and  is differentiable at , and  is dif-˜ — “ “ — “ “ ˜ —! ! ! !œ 0 œ 0 1 œ 1 œ 0          
ferentiable at , we have the following:— “ !
W “

— “ — “                    0 1 œ œ †
` C ß C ß ß C ` 0 ß 0 ß ß 0 > ` B ß B ß ß B

` > ß > ß ß > ` B ß B ß ß B ` > ß > ß ß >
!

" # : ! " # : ! " # 8 !

" # 7 " # 8 " # 7

... ... ...
 ... ...  ...

.

So: , which in general form can also be expressed as:N œ N † N0 1 ! 0 ! 1 !       “ — “ “
` C ß C ß ß C ` C ß C ß ß C ` B ß B ß ß B

` > ß > ß ß > ` B ß B ß ß B ` > ß > ß ß >
œ †

          " # : " # : " # 8

" # 7 " # 8 " # 7

... ... ...
 ... ...  ...

.

In matrix form, we have:              

              

`C `C `C

`> `> `>
ÞÞÞÞ

`C `C `C

`> `> `>
ÞÞÞÞ

ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ
`C `C

`> `>

" " "

" # 7

# # #

" # 7

: :

" #
ÞÞÞÞ

`C `

`>

`C `C `C

`B `B `B
ÞÞÞÞ

`C `C `C

`B `B `B
ÞÞÞÞ

ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ ÞÞÞÞ

:

7

" " "

" # 8

# # #

" # 8=

              

              C `C `C

`B `B `B
ÞÞÞÞ

†

`B `B `B

`> `> `>
ÞÞÞÞ

`B `B `B

`> `> `>
ÞÞÞÞ

ÞÞÞÞ ÞÞ

: : :

" # 8

" " "

" # 7

# # #

" # 7

              

              
ÞÞ ÞÞÞÞ ÞÞÞÞ

`B `B `B

`> `> `>
ÞÞÞÞ

8 8 8

" # 7
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It is easy now to see how all cases of derivatives of composite function encountered before
are included in , where  is a  matrix,N œ N 1 † N N : † 70 1 0 1! 0 ! 1 ! !           “ “ “ “

N 1 : † 8 N 8 † 70 ! 1 !    “ “ is a   matrix, and  a  matrix.

If we want to highlight the expression of a single derivative of  we write:0 1  “
`C `0 `B `0 `B `0 `B

`> `B `> `B `> `B `>
œ †  †   † " Ÿ 3 Ÿ : " Ÿ 4 Ÿ 7

3 3 " 3 # 3 8

4 " 4 # 4 8 4
... , , , and also:

`C `C `B `C `B `C `B

`> `B `> `B `> `B `>
œ †  †   † " Ÿ 3 Ÿ : " Ÿ 4 Ÿ 7

3 3 " 3 # 3 8

4 " 4 # 4 8 4
... , , .

For a three functions composition: , , to get‘ ‘ ‘ ‘ – “ — ˜5 7 8 :Ä Ä Ä Ä Ä Ä
2 21 0 1 0

˜ –œ 0 1 2     derivatives, we must compute:
N œ N † N † N œ N 1 2 † N 2 † N0 1 2 ! 0 ! 1 ! 2 ! 0 ! 1 ! 2 !                    – — “ – – – – , or:
` C ß C ß ß C ` C ß C ß ß C ` B ß B ß ß B ` > ß > ß ß >

` A ßA ß ß A ` B ß B ß ß B ` > ß > ß ß > ` A ßA ß ß A
œ † †

              " # : " # : " # 8 " # 7

" # 5 " # 8 " # 7 " # 5

... ... ... ...
... ... ... ...

.

Since matrices product is not commutative, it is important to stress the proper order of this
product.

Example 39 Given , let us change from Cartesian coordinates  to polarÀ D œ 0 Bß C Bß C   
coordinates  with cos sin     3 * 3 * 3 * 3 *ß 1 ß œ B  ß C  Þ! !

We get a composite function . If  is differentiable we have:D œ 0 1 ß 0  3 *

N ß œ N B ß ß C ß † N ß œ †
`D `D ` Bß C

` ß ` Bß C ` ß
0 1 0 1                

3 * 3 * 3 * 3 *
3 * 3 *

, or: from which:

          
        

        
  `D `D

` `
œ † œ † œ

`D `D

`B `C

`B `B

` `
`C `C

` `

D D


3 *
3 *

3 *

* 3 *
* 3 *B C

w w cos sin
sin cos

œ ÞD  D  D  D  B C B C
w w w wcos sin sin cos* * 3 * 3 *

Example 40 Given  andÀ 1 À Ä ß B œ 1 > ß > ß > 0 À Ä ß C ß C œ 0 B ß 0 B‘ ‘ ‘ ‘$ #
" # $ " # " #        

differentiable functions. So: , i.e.:N œ N 1 † N0 1 0 1       “ “ “
` C ß C ` C ß C `B

` > ß > ß > `B ` > ß > ß >
œ †

      " # " #

" # $ " # $
  and so:        

        

       
          

`C `C `C

`> `> `>
`C `C `C `C

`> `> `> `B

œ †

`C

`B `B `B `B

`> `> `>

" " "

" # $

# # # #

" # $

"

" # $
 from which:

                        

                        

`C `C `C `C `B `C `B `C

`> `> `> `B `> `B `> `B
`C `C `C

`> `> `>

œ
† †

" " " " " "

" # $ " #

# # #

" # $

†
`B

`>
`C `B `C `B `C `B

`B `> `B `> `B `>
† † †

Þ$

# # #

" # $

Example 41 Given  and:À 1 À Ä ß > ß > Ä B ß B ß B œ #>  > ß > > ß >‘ ‘# $ # #
" # " # $ " " ## "     

0 À Ä ß B ß B ß B Ä C ß C œ B  B ß B B Þ‘ ‘$ #
" # $ " # " # " $       We have:

` C ß C ` C ß C ` B ß B ß B

` > ß > ` B ß B ß B ` > ß >
œ †

          " # " # " # $

" # " # $ " #
 and so:
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`C `C

`> `>
`C `C `C `C `C

`> `> `B `B `B

œ †

`C `C `C

`B `B `B
" "

" #

# # # # #

" # " # $

" " "

" # $

          

            

`B `B

`> `>
`B `B

`> `>
`B `B

`> `>

" "

" #

# #

" #

$ $

" #

, and substituting:

                    

                    
      

`C `C

`> `>
`C `C

`> `>

œ † œ
" " ! #  > >  #>
B ! B #B  #B

#  #>
> >
#> !

" "

" #

# #

" #

$ " $

#

# "

"

# " #

" " $ #>  #B >
œ

and finally substituting  and  with their expressions:B B" $

œ Þ
#  > >  #>

'>  #> >  #> >  # " #

" # "
# # #

" #

SECOND ORDER DERIVATIVES FOR COMPOSITE FUNCTIONS
We begin treating the following:  and  or1 À Ä ß > Ä B ß B 0 À Ä ß B ß B Ä C‘ ‘ ‘ ‘# #

" # " #   
C œ 0 B ß B œ 0 B > ß B >      " # " # .

If  and  are twice differentiable functions,  and , using
d
d

1 0 œ B ß B œ œ B ß B
>

— —
—   " #

w w w
" #

the chain rule we get:
d d d
d d d

.
C `0 B `0 B

> `B > `B >
œ f0 > † > œ †  †    — —w

" #

" #

Now we must compute:
d d d d d d
d d d d d d

.
#

#
" #

" #C C `0 B `0 B

> > > > `B > `B >
œ œ †  †   

But  and  are functions of the variables  and  and so, using again the chain rule
`0 `0

`B `B
B B

" #
" #

and the sum and product derivative, we get:
d d d d d d d d d
d d d d d d d d d

#

#
" " # #

" " # #C `0 B `0 B `0 B `0 B

> > `B > `B > > > `B > `B > >
œ †  †  †  † Þ       

From composite function derivative it results:
d d d d d
d d d d d

, and
> `B `B `B > `B `B > > `B `B >

`0 ` `0 B ` `0 B ` 0 B ` 0 B
œ †  † œ †  †

`B
     

" " " # " " #

" # " #
# #

"
#

d d d d d
d d d d d

,
> `B `B `B > `B `B > `B `B > >

`0 ` `0 B ` `0 B ` 0 B ` 0 B
œ †  † œ †  †

`B
     

# " # # # # "

" # " #
# #

#
#

from which we get:
d d d d d
d d d d d

# # # #

# #
"
#

" # " "

" # "

C ` 0 B ` 0 B B `0 B

> > `B `B > > `B >
œ †  † †  † 

`B
 

 †  † †  † œ
` 0 B ` 0 B B `0 B

`B `B > > > `B >`B
 # # #

# " #

" # # #

#
# #

d d d d
d d d d

œ  #   
` 0 B ` 0 B B ` 0 B `0 B `0 B

`B `B> `B `B > > > `B > `B >

# # # # #

" #
# #

" " # # " #
# #

" # " #
# #   d d d d d d

d d d d d d
,

as .
` 0 ` 0

`B `B `B `B
œ

# #

" # # "

In shorthand notation the above equality can be written as:
C œ 0 B  # 0 B B  0 B  0 B  0 Bww ww w ww w w ww w w ww w ww

"" " "# " # ## # " " # #
# #     and also:

C œ C B  # C B B  C B  C B  C Bww ww w ww w w ww w w ww w ww
"" " "# " # ## # " " # #

# #    .
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From  and  we get , and since then
d d
d d

— — —
— —

œ B ß B œ œ B ß B œ œ B ß B
> >

     " #
w w w ww ww ww

" # " #

#

#

f0 B ß B œ 0 ß 0 œ C ß C 0 B ß B œ œ
C C 0 0
C C 0 0

               " # " #
w w w w
" # " #

ww ww ww ww
"" "# "" "#

"# ## "# ##
ww ww ww ww and , the‡

previous equality can also be expressed as:
C œ > † 0 > † >  f0 > † >ww w w ww— ‡ — — — —                T ,
where  and  is a  matrix.— — — ‘ ‡ —w ww #           > ß > ßf0 > − 0 > # ‚ #

This equality can be generalized. Let us see the various cases.

If , let be:— œ B ß B ß ÞÞÞß B " # 8

1 À Ä > Ä B ß B ß ÞÞÞß B 0 À Ä ß B ß B ß ÞÞÞß B Ä C‘ ‘ ‘ ‘8 8
" # 8 " # 8,  and , i.e.:   

‘ ‘ ‘ — —Ä Ä > Ä Ä C C œ 0 > Þ8 , ,   
Similarly we obtain:
d
d

,
#

#
w w wwC

>
œ > † 0 > † >  f0 > † >— ‡ — — — —                T

where  and  is a  matrix— — — ‘ ‡ —w ww 8           > ß > ßf0 > − 0 > 8 ‚ 8 Þ

If  and , let be:— ˜ —œ B ß B ß ÞÞÞß B ß œ C ß C ß ÞÞÞß C C œ 0     " # 8 " # : 3 3

1 À Ä > Ä B ß B ß ÞÞÞß B 0 À Ä ß B ß B ß ÞÞÞß B Ä C ß C ß ÞÞÞß C‘ ‘ ‘ ‘8 8 :
" # 8 " # 8 " # :,  and , or:     

‘ ‘ ‘ — ˜ ˜ — — —Ä Ä > Ä Ä œ 0 > œ 0 > ß ÞÞÞß 0 > Þ8 :
" :, ,            

Similarly we obtain  equalities::
d
d

#
3

#
w w ww

3 3
C

>
œ > † 0 > † >  f0 > † > ß " Ÿ 3 Ÿ :— ‡ — — — —                T

where  and  is a  matrix— — — ‘ ‡ —w ww 8
3           > ß > ßf0 > − 0 > 8 ‚ 8 Þ

Finally, if ,  and , the following“ — ˜œ > ß > ß ÞÞÞß > œ B ß B ß ÞÞÞß B œ C ß C ß ÞÞÞß C     " # 7 " # 8 " # :

applies:
Theorem 18 Given , À 1 À Ä > ß > ß ÞÞÞß > Ä B ß B ß ÞÞÞß B ß‘ ‘7 8

" # 7 " # 8   
0 À Ä ß B ß B ß ÞÞÞß B Ä C ß C ß ÞÞÞß C‘ ‘8 :

" # 8 " # :    , or:
‘ ‘ ‘ “ — ˜ ˜ — “ — “ — “ “7 8 :

" :Ä Ä Ä Ä œ 0 œ 0 ß ÞÞÞß 0 œ 0 1, ,                
both twice differentiable functions. We get the following general formula:
` C ` ` `

`> `> `> `> `> `>
œ † 0 †  f0 †

# #
3

4 5 4 5 4 5
3 3

— “ — “ — “
‡ — “ — “

              T

,

" Ÿ 3 Ÿ : " Ÿ 4ß 5 Ÿ 7 : †
7 7

#
, , formed by  equalities, where:

#

` `

`> `> `>
ß ßf0 − 0 8 ‚ 8 Þ

— “ — “
— “ ‘ ‡ — “

           
4 4 5

#

3 3
8  and  is a  matrix

Example 42 Let À 1 À Ä ß B œ 1 > ß > ß > ß 0 À Ä ß C ß C œ 0 B ß 0 B‘ ‘ ‘ ‘$ #
" # $ " # " #        

be twice differentiable functions.

As: , , , ,
d d
d d

`B `B C C ` B ` B

`> `> B B `> `> `> `>
œ 0 œ f0 œ œ

          “ “
‡ — “ — “

3 3 " $ " $
" "

# # #
" "

#

we get:
` C ` ` `

`> `> `> `> `> `>
œ † 0 †  f0 †

# #
"

" $ " $ " $
" "

— “ — “ — “
‡ — “ — “

              T

 and so:

` C `B C `B C ` B

`> `> `> B `> B `> `>
œ † †  † Þ

# # #
" " "

" $ " $ " $
#

d d
d d
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Example 43 Let  be twiceÀ 1 À Ä ß B ß B œ 1 > ß > ß 0 À Ä ß C œ 0 B ß B‘ ‘ ‘ ‘# # #
" # " # " #     

differentiable functions. As:

` `B `B

`> `> `>
œ ß 0 œ œ

` C ` C

`B `B `B

` C ` C

`B `B `B

C C
C C

— “
‡ — “

        
         

         
 

3 3 3

" #

# #

"
#

" #
# #

" # #
#

ww ww
"" "#
ww ww
"#

, 
##

,

f0 œ ß œ C ß C œ ß
`C `C ` ` B ` B

`B `B `> `> `>
         
— “

— “

" #

w w
" #

# # #

" " "
# # #

" #, , we get:

` C `B `B `C `C ` B ` B

`> `> `>
œ ß † †  ß † ß œ

`> `> `B `B

C C
C C

`B

`>
`B

`>

# # #

" " "
# # #

" # " #

" " " #

ww ww
"" "#
ww ww
"# ##

"

"

#

"

        
        

        
` C `B `B `B `B ` B ` B

`> `> `>
œ C  # C  C  C  C

`> `> `> `>

# # #

" " "
# # #

" " # # " #

" " " "

# #
ww ww ww w w
"" "# ## " #    ;

` C `B `B `C `C ` B ` B

`> `> `> `> `B `B `> `> `
œ ß † †  ß † ß

C C
C C

`B

`>
`B

`>

# # #

" # " " " # " #

" # " #
ww ww
"" "#
ww ww
"# ##

"

#

#

#

        
        

         > `>
œ

" #

` C `B `B `B `B `B `B `B `B

`> `> `> `> `> `> `> `> `> `>
œ C   C  C 

#

" # " # # " " # " #

" " " # " # # #ww ww ww
"" "# ## 

 C  C
` B ` B

`> `> `> `>
w w
" #

# #
" #

" # " #
;

` C `B `B `C `C ` B ` B

`> `> `>
œ ß † †  ß † ß œ

`> `> `B `B

C C
C C

`B

`>
`B

`>

# # #

# # #
# # #

" # " #

# # " #

ww ww
"" "#
ww ww
"# ##

"

#

#

#

        
        

        
` C `B `B `B `B ` B ` B

`> `> `>
œ C  # C  C  C  C

`> `> `> `>

# # #

# # #
# # #

" " # # " #

# # # #

# #
ww ww ww w w
"" "# ## " #    .

IMPLICIT FUNCTIONS

Let , , . The function is called "in explicit form" when we know0 À Ä 8   " 7   "‘ ‘8 7

the law  that allows us to associate to each element of the domain its unique image.0
All functions used up to now are functions in explicit form.
Now let us consider the equation . Points  that satisfy this equationB  C œ " Bß C −# # #  ‘
form the circumference with center in the origin and radius equal to , i.e. the trigonometric"
circle.
However this circle is not the graph of a function , because to each value  corre-C œ 0 B B 
spond two values  (excluding ) as well as to each value  correspond two values C B œ „" C B

(excluding ). Solving the equation algebrically we get , that is, theC œ „" C œ „ "  B #

explicit expression of two possible functions , having respectively as graph theC œ C B 
upper and the lower semicircle, or we can get , that is, two possible explicitB œ „ "  C #

expressions of functions , where the roles of the independent and dependentB œ B C 
variables have been exchanged, these latter functions have as graph, respectively, the semi-
circle on the right and the one on the left.
It is easily seen that .B  C B œ B C  C œ "# ## #      
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We could still break the circle into a suitable number of not overlapping traits, to form other
functions which, unlike the four previous ones, would not be continuous.
Now let us consider instead the equation .0 Bß C œ B /  B C œ "  C # #

The point  satisfies it; this equation is not solvable with respect to  while it canT œ "ß ! C!  
be solved with respect to , since it is a second degree polynomial B C B  / B  " œ !# # C

having as solutions , which are the two possible forms of explicitB œ
 / „ /  %C

#C

C #C #

#


function  obtainable from this equation. We easily verify that .B œ B C 0 B C ß C œ "    
Finally, let us consider the equation . The point  sati-0 Bß C œ B /  B C œ " T œ "ß !   C $ #

!

sfies it, but this equation cannot be solved with respect neither to  nor to . We wonder whe-B C
ter by the latter equation it is possible to guarantee the existence of functions  orC œ C B 
B œ B C  , which we, being unable to obtain the explicit expression, will call functions in im-
plicit form.
We will examine below some introductory examples, each time increasing first the number of
variables and then the number of the equations, to arrive finally to establish a theorem valid
for the general case.
We start with the simplest case, namely that of an equation with two variables.

FUNCTIONS IMPLICITLY DEFINED BY AN EQUATION
I case: Equation implicit function 0 Bß C œ 5 Ä  : ‘ ‘
Let us suppose we have a general equation with two variables .0 Bß C œ 5ß 5 −  ‘
Let us first find a point P  that satisfies such equation .! ! ! ! !œ B ß C 0 B ß C œ 5   
Once we have found P  we want to see if, in a neighborhood of  (or ), the set of points! ! !B C       Bß C 0 Bß C œ 5 C œ C B B œ B C such that  is the graph of a function  or , even if we
cannot find its explicit expression, but however we try to verify if it is a continuous and diffe-
rentiable function.
If so, i.e. if  and ,   we shall say that the functionC œ C B 0 Bß C B œ 5 a B − B! ! !       ½
C œ C B 0 Bß C œ 5    is implicitly defined by the equation .

 

This problem can also be seen geometrically using the so-called level curves. Confining our-
selves to the case of  to graphically represent the situation, if , the0 À Ä A œ 0 Bß C‘ ‘#  
equation  leads to determine the pairs  for which , and this is similar0 Bß C œ 5 Bß C A œ 5   
to cut the surface  with a plane, parallel to the  plane, at an height equal toA œ 0 Bß C Bà C   
5.
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The intersection between the surface and the plane generates a curve, which is the projection
by means of  of a curve lying on the  plane: the level curve.0 Bà C 
We can then see this level curve as a curve in the true sense of the term, that is a function
1 À Ä > Ä B > ß C >‘ ‘#, .    
We then have the following composite function:

‘ ‘ ‘Ä Ä > Ä B > ß C > Ä A ß A œ 0 Bß C œ 5
1 0 1 0# , where  is a constant.      

We get so, differentiating:
d d d d
d d d d

,
A Bß C `0 B `0 C

> > `B > `C >
œ f0 Bß C † œ †  † œ 0 † B >  0 † C >       w w w w

B C

where  is the tangent vector to the given curve.    B > ß C >w w

But , since  is constant, and so , i.e. the gradient of 
d
d
A

>
œ ! A f0 Bß C † B > ß C > œ ! 0      w w

and the tangent vector are perpendicular, at any point of the level curve. We will use this pro-
perty below.

Let us come back to the problem of the existence of the implicit function  definedC œ C B 
by the equation .0 Bß C œ 5 
The existence and the properties of such an implicit function are established as follows:
Teorema 19 (U. Dini) Let us suppose that  is a continuous function havingÀ 0 À Ä‘ ‘#

continuous derivative  in ; let  and . Then there0 © 0 B ß C œ 5 0 B ß C Á !w
C C

# w
! ! ! ! ‘    

exists a neighborhood  and a single continuous function , such that½   B C œ C B!

C œ C B 0 Bß C B œ 5 a B − B! ! !       and ,  .½
Moreover, if also  is continuous in , then  is differentiable in  and so:0 C B Bw

B ! ½   
C B œ œ  a B − B

C 0

B 0
w

w
B
w
C

!   d
d

,  .½

Finally, the function  is also continuous  .C B a B − Bw
!   ½

We don't give the proof of this theorem, but we shall verify, using the derivative of composite
function, the result found with regard to the derivative .C Bw 
Note how the hypotheses of the theorem give a sufficient and not necessary condition for the
existence of an implicit function.
In addition, if all assumptions were met, they would imply the differentiability of  in0 Bß C 
.
With appropriate changes in assumptions we can deduce existence, continuity and differentia-
bility of an implicit function  in .B œ B C C   ½ !

Example 44 Let us consider the equation . At  isÀ 0 Bß C œ B  C œ ! B ß C œ !ß !     #
! !

0 !ß ! œ ! 0 Bß C   ;  is continuous with continuous derivatives throughout the whole  and‘#

moreover  while , which vanishes for .0 œ  " Á ! 0 œ #B B œ !w w
C B

The function defined by  can be made explicit as , is0 Bß C œ B  C œ ! C œ C B œ B   # #

continuous and differentiable throughout the whole . On the contrary, in a neighborhood of‘
C œ ! B œ B C C  ! it is not possible to define a function , as each  has two corresponding 
B œ „ C Þ C œ B C œ  B   Searching for the inverse function leads in fact to  or , de-
pending on whether we restrict the domain of  to or .1 B œ B  #

 ‘ ‘

Example 45 Given the equation . At  isÀ 0 Bß C œ B  C œ ! B ß C œ !ß !     $
! !

0 !ß ! œ ! 0 Bß C   ; moreover  is continuous with continuous derivatives throughout  and‘#

0 œ  " Á ! 0 œ $B B œ !w w #
C B while , which vanishes for .
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The function defined by  is made explicit as , is conti-0 Bß C œ B  C œ ! C œ C B œ B   $ $

nuous and differentiable throughout , where it is also invertible, with inverse .‘ B œ C$
Even if  so, in a neighborhood of  the function (explicit) exists,0 !ß ! œ ! C œ !w

B 
confirming the fact that condition  (or ) is only sufficient and not necessary.0 Á ! 0 Á !w w

C B

Geometrically, the function  has at  an horizontal tangent line, but this happensC œ B B œ !$

at an inflection point, and not at a minimum point, as in the previous example, and this allows
the existence of the function .B œ B C 
Implicit Function  First order derivative‘ ‘Ä :
If  and if we define implicitly  as , we get this functions composition:0 Bß C œ 5 C C œ C B   
‘ ‘ ‘Ä Ä B Ä Bß C B Ä A œ 0 Bß C œ 5

0 0# , . We can then calculate:    
d d d
d d d

,
A ` 0 ` Bß C B C

B ` Bß C ` B B B
œ † œ f0 Bß C † ß œ 0 † "  0 † C B œ !

            w w w
B C

as  is a constant, and then we get:0

C B œ œ 
C 0

B 0
w

w
B
w
C

  d
d

.

If we had implicitly defined  we would instead have:B œ B C 
‘ ‘ ‘Ä Ä C Ä B C ß C Ä A œ 0 Bß C œ 5

0 0# , , and from this:    
d d d
d d d

,
A ` 0 ` Bß C B C

C ` Bß C ` C C C
œ † œ f0 Bß C † ß œ 0 † B C  0 † " œ !

            w w w
B C

and so: .
d
d

B C œ œ 
B

C 0

0
w

w
C

w
B

 
As  is the reciprocal of , we find again the inverse function derivative rule:

0

0 0

0w
C

w w
B C

w
B

C B œ 0 Á ! 0 Á !
"

B C
w w w

w B C    , if  and .

Implicit Function  Tangent line equation‘ ‘Ä :
From , assuming it is defined , we can write the equation of the tangent0 Bß C œ 5 C œ C B   
line to the curve  at , which will be: , and so:C œ C B B C  C B œ C B B  B       ! ! ! !

w

C  C œ  † B  B
0 B ß C

0 B ß C
! !

w
B ! !

w
C ! !

     ,

which can also be written as:  or:0 B ß C B  B  0 B ß C C  C œ !w w
B C! ! ! ! ! !       

f0 B ß C † B  B ß C  C œ !   ! ! ! ! , that is, we find again the orthogonality between the gra-
dient of  and the tangent vector to the level curve.0

Example 46 Let us consider the equation .À 0 Bß C œ B /  B C œ "  C # #

It is ; and also  while . So, as 0 "ß ! œ " 0 œ /  #B C 0 œ B /  #B C 0 "ß ! œ "   w C # w C # w
B C B

and , it exists, in a neighborhood of the point , the implicit function0 "ß ! œ " Á ! B œ "w
C  

C œ C B C " œ  œ  "
0 "ß !

0 "ß !
       and the result is: .w

w
B
w
C

We get also, in the same neighborhood of : .B œ " C B œ 
/  #B C

B /  #B C
w

C #

C #
 

For the equation of the tangent line to  at , as , we get:C œ C B B œ " C " œ C œ !    !

C œ  " † B  " œ "  B  .

Implicit Function  Second order derivative; Taylor's polynomial‘ ‘Ä :
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If  and , assuming that  is twice differentiable with conti-A œ 0 Bß C œ 5 0 B ß C œ 5 0   ! !

nuous derivatives, we calculate the second order derivative of the implicit function ,C œ C B 
if . We can follow two different ways.0 B ß C Á !w

C ! ! 
From , we derive again with respect to ; for composite functions de-

d
d
A

B
œ 0  0 † C œ ! Bw w w

B C

rivative (chain) rule we obtain, if :
d
d
C

B
œ Cw

d d d d d d d
d d d d d d d

#

#
w w w w w w w w
B C B C C

A A

B B B B B B B
œ œ 0  0 C œ 0  0 † C  0 † C œ        

œ 0 †  0 †  0 †  0 † † C  0 † C œ
` B ` C ` B ` C

`B B `C B `B B `C B B
         w w w w w w w

B B C C C

d d d d d
d d d d d

œ 0  0 † C  0  0 † C † C  0 † C œww ww w ww ww w w w ww
BB BC CB CC C

 
œ 0  #0 † C  0 † C  0 † C œ !ww ww w ww w w ww

BB BC CC C
#  ,

as,  being constant, its second order derivative is zero, and . Solving for  weA 0 œ 0 Cww ww
BC CB

ww

get:

C œ  C œ 
0  #0 C  0 C

0 0

0ww w
ww ww w ww w
BB BC CC

#

w w
C C

w
B 

 from which, replacing , finally we get:

C œ  Þ
0 0  #0 0 0  0 0

0

ww
ww w ww w w ww w
BB C BC B C CC B

# #

w
C

$

   
 

We can also apply Theorem 18, for  withB Ä Bß C Ä A œ 0 Bß C œ 5   
— — — —œ B œ Bß C B œ "ß C B œ !ß C           , from which  and  and so:w w ww ww

A œ B † 0 B † B  f0 B † B œ !ww w w ww— ‡ — — — —                T  and:

             " C † †  0 ß 0 † !ß C œ !
0 0

0 0 C
"w

ww ww
BB BC

BC CC
ww ww w

w w ww
B C  so finally we obtain:

C œ  C œ 
0  #0 C  0 C

0 0

0ww w
ww ww w ww w
BB BC CC

#

w w
C C

w
B 

, and then we substitute .

Having the second derivative  we can then determine, for the implicit functionC Bww
! 

C œ C B B œ B  , the expression of Taylor's polynomial of second degree at , which will be:!

P ,# ! ! ! ! !

w
B ! !

w
C ! !

ww #         Bß B œ C  B  B  C B B  B
0 B ß C "

0 B ß C #

where  must be computed using the previous formula.C Bww
! 

Example 47 Let us compute  from .À C " 0 Bß C œ B /  B C œ "ww C # #   
As  and , we get:0 œ /  #B C 0 œ B /  #B Cw C # w C #

B C

0 œ #C 0 œ 0 œ /  %B C 0 œ B /  #Bww # ww ww C ww C #
BB BC CB CC, , , from which we obtain:

0 "ß ! œ ! 0 "ß ! œ " 0 "ß ! œ $ 0 "ß ! œ " 0 "ß ! œ "ww ww ww w w
BB BC CC B C         , , , and so, as  and , we

get: .C " œ  œ  "
! † "  # † " † " † "  $ † "

"
ww

$
 

Then we can write the expression of Taylor's polynomial of second degree at , whichB œ "
will be:

P .#
w ww # #               Bß " œ C "  C " B  "  C " B  " œ !  B  "  B  "

" "

# #

II case: Equation Implicit Function 0 B ß B ß C œ 5 Ä " #
#: ‘ ‘

Now let us suppose that we have an equation in three variables , , and0 B ß B ß C œ 5 5 − " # ‘
that the point  satisfies it: ;  is differentiable with continuous   B ß B ß C 0 B ß B ß C œ 5 0" #

! !
! !" #

! !
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derivatives. A single equation allows us to define implicitly (or explicitly) a variable, say , asC
a function of the other two: , thus obtaining an implicit function .C œ C B ß B Ä " #

#‘ ‘
Dini's theorem here applied tells us that we will obtain an implicit continuous and
differentiable function if .0 B ß B ß C Á !w ! !

C " # ! 
Implicit Function  First order derivatives‘ ‘# Ä :
If  and , we have the following functions composi-A œ 0 B ß B ß C œ 5 l C œ B ß B ß C     " # " #—
tion:

‘ ‘ ‘ — — —# $Ä Ä Ä l C Ä A œ 0 l C œ 5 Þ
0 0

,    
If , we can then compute:C œ C ß 0 œ 0w w w w

B 3 B 33 3

` A ` A ` l C `B `B

` B ß B ` l C ` B ß B `B `B
œ † œ ! 0 œ " œ !

          " # " # 3 4

3 3

—

—
 as  is constant, and as , while , as

variables  and  are mutually independent, we get:B B" #

    
      
      

`A `A

`B `B
œ f0 l C † œ

" !
! "
C C" # w w
" #

—   or:


   
   

`A

`B
œ 0 ß 0 ß 0 † "ß !ß C œ 0  0 † C œ !

`A

`B
œ 0 ß 0 ß 0 † !ß "ß C œ 0  0 † C œ !

"

w w w w w w w
" # C " " C "

#

w w w w w w w
" # C # # C #

,

from which we obtain:  and so:   C ß C œ  ß 
0 0

0 0
w w
" #

w w
" #
w w
C C

fC B ß B œ  ß  Þ
0 B ß B ß C 0 B ß B ß C

0 B ß B ß C 0 B ß B ß C
         " #

! !
w ! ! w ! !
" #" # " #! !

w w
C C" # " #

! ! ! !
! !

Implicit Function  Tangent plane equation‘ ‘# Ä :
We can write the equation of the tangent plane to the surface  at , withC œ C B ß B B ß B   " # " #

! !

C B ß B œ C 
" #
! !

! :

C  C œ  † B  B  † B  B
0 B ß B ß C 0 B ß B ß C

0 B ß B ß C 0 B ß B ß C
! " #

w ! ! w ! !
" #" # " #! !

w w
C C" # " #

! ! ! !
! !

" #
! !          ,

which can also be written, as , as:0 B ß B ß C Á !w ! !
C " # ! 

0 B ß B ß C B  B  0 B ß B ß C B  B  0 B ß B ß C C  C œ !w ! ! ! w ! ! ! w ! !
" " # " # " # # C " #! " ! # ! !            ,

or .f0 B ß B ß C † B  B ß B  B ß C  C œ !   
" # " #
! ! ! !

! " # !

Enlarging the dimension of the problem, now the gradient vector is orthogonal to the tangent
plane to the level surface.

Implicit Function  Second order derivatives‘ ‘# Ä :

From: : , applying Theorem 18, if:‘ ‘ ‘ — — —# $Ä Ä Ä l C Ä A œ 0 l C œ 5
0 0   

C œ C 0 œ 0 l C œ B ß B ß Cww ww ww ww
B B 34 B B 34 " #3 4 3 4

,  as , from which:   —

` l C ` l C

`B `B
œ "ß !ß C œ !ß "ß C

      — —

" #

w w
" # and , we get also:

` l C ` l C ` l C ` l C

`B `B
œ !ß !ß C œ œ !ß !ß C œ !ß !ß C

`B `B `B `B

# # # #

" #
# #

ww ww ww
"" "# ##

" # # "

            — — — —
,  and ,

  

and so: 
` A

`B
œ † † " ! C

0 0 0

0 0 0

0 0 0

"
!
C

#

"
#

w
"

ww ww ww
"" "# "C
ww ww ww
"# ## #C
ww ww ww
"C #C CC

w
"

  
                  
                    0 ß 0 ß 0 † !ß !ß C œ !w w w ww

" # C ""  ,
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from which:

C œ 
0  #0 C  0 C

0
ww
""

ww ww w ww w
"" "C " CC "

#

w
C

 
;

` A

`B `B
œ † †  0 ß 0" ! C

0 0 0

0 0 0

0 0 0

!
"
C

#

" # w

w
"

ww ww ww
"" "# "C
ww ww ww
"# ## #C
ww ww ww
"C #C CC #

w
" 

  
                  
                    w w ww

# C "#ß 0 † !ß !ß C œ !  , or:

C œ 
0  0 C  0 C  0 C C

0
ww
"#

ww ww w ww w ww w w
"# "C #C# " CC " #

w
C

;

` A

`B
œ † †  0 ß 0 ß! " C

0 0 0

0 0 0

0 0 0

!
"
C

#

#
#

w
#

ww ww ww
"" "# "C
ww ww ww
"# ## #C
ww ww ww
"C #C CC

w
#

w w
" #  

                  
                    0 † !ß !ß C œ !w ww

C ##  , or:

C œ 
0  #0 C  0 C

0
ww
##

ww ww w ww w
## #C # CC #

#

w
C

 
.

Implicit Function  I and II order total differentials; Taylor's polynomial‘ ‘# Ä :
Since we have now a function of several variables, to search its maximum and minimum
points, as we shall see below, first and second order total differentials are more useful. Let us
see how to compute, starting from the equation , the first and second order0 B ß B ß C œ 5 " #

total differentials of an implicit function .C œ C B ß B " #

As  and , replacing we have:C œ  C œ 
0 0

0 0
w w
" #

w w
" #
w w
C C

d d d d d , which could also be computed differentiating:C œ C B  C B œ  B  B
0 0

0 0
w w
" #" # " #

w w
" #
w w
C C

d d d d , and from this we deduce d d d , ifA œ 0 B  0 B  0 C œ ! C œ  B  B
0 0

0 0
w w w
" # C" # " #

w w
" #
w w
C C

0 Á ! Þw
C

To get d  we differentiate again d d d d , bearing in mind that# w w w
" # C" #C A œ 0 B  0 B  0 C œ !

0 0 0 B B C C B Bw w w
" # C " # " #,  and  depend on ,  and , but now also d  depends on  and ; so we get:

d d d d d d d d d d     A œ ! œ 0 B  0 B  0 C œ 0 B  0 B  0 C B 
`

`B
w w w w w w
" # C " # C" # " # "

"

 0 B  0 B  0 C B  0 B  0 B  0 C C œ
` `

`B `C#

w w w w w w
" # C " # C" # # " #   d d d d d d d d

œ 0 B  0 B  0 C  0 C B 
`

`B
  ww ww ww w

"" #" C" C" # "
"

d d d d d

 0 B  0 B  0 C  0 C B 
`

`B
  ww ww ww w

"# ## C# C" # #
#

d d d d d

 0 B  0 B  0 C  0 C C œ !
`

`C
  ww ww ww w

"C #C CC C" #d d d d d . But

   0 B  0 B  0 C B  0 B  0 B  0 C B ww ww ww ww ww ww
"" #" C" "# ## C#" # " " # #d d d d d d d d

 0 B  0 B  0 C C œ 0 l C   ww ww ww #
"C #C CC" #d d d d d  while—

0 † C B  0 † C B  0 † C C œ 0 C œ 0 C
` ` `

`B `B `C
w w w w w #
C C C C C

" #
" #       d d d d d d d d d , and so we ha-

ve: d d , from which we finally get:# w #
C0 l C  0 C œ ! —

d .
d d#
# #

" #

w w
C C

C œ  œ 
0 B ß B ß C 0 l C

0 0

   —
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We use the expressions just found for d  and d  to write the expression of second degreeC C#

Taylor's polynomial of the implicit function  which will be:C œ C B ß B " #

P d d d d .
d

# " # ! ! " #
#

w w #
" #
w w w
C C C

   
B ß B œ C  C  C œ C  B  B 

" 0 0 " 0 l C

# 0 0 # 0

—

Example 48 Given , it is . As:À 0 Bß Cß D œ B /  C  D œ ! 0 !ß !ß ! œ !   B CD 
0 œ /  B / C  D Ê 0 !ß !ß ! œ " Á !w B CD B CD w
B B

        ;
0 œ B /  " Ê 0 !ß !ß ! œ " Á !w # B CD w
C C

    ,

0 œ  B /  " Ê 0 !ß !ß ! œ  " Á !w # B CD w
D D

    ,
we have three possible choices to define an implicit function: ,  orB œ B Cß D C œ C Bß D   
D œ D Bß C  . We choose the third option and we get:
`D !ß ! 0 !ß !ß ! " `D !ß ! "

`B 0 !ß !ß !  " `C 0 !ß !ß !  "
œ  œ  œ " œ  œ  œ "

0 !ß !ß !         w
B
w w
D D

w
C, 

from which:
d d d d d . Since then:D !ß ! œ " † B  " † C œ B  C 
0 œ # C  D /  B / C  D Ê 0 !ß !ß ! œ !ww B CD B CD ww
BB BB

#         ,
0 œ B / Ê 0 !ß !ß ! œ !ww $ B CD ww
CC CC

    ,

0 œ B / Ê 0 !ß !ß ! œ !ww $ B CD ww
DD DD

    ,
0 œ 0 œ #B /  B / C  D Ê 0 !ß !ß ! œ !ww ww B CD # B CD ww
BC CB BC

        ,

0 œ 0 œ  #B /  B / C  D Ê 0 !ß !ß ! œ !ww ww B CD # B CD ww
BD DB BD

        ,
0 œ 0 œ  B / Ê 0 !ß !ß ! œ !ww ww $ B CD ww
CD DC CD

    ,

from which we get: d , and so:
d#
#

w
D

D œ  œ  œ !
0 !

0  "

P d d d d d d ; as:# !
# Bß Cß !ß ! œ D  D  D œ !  B  C  ! œ B  C

"

#
d  and d , finally, we have P .B œ B  ! œ B C œ C  ! œ C Bß Cß !ß ! œ B  C# 
Now we use the equation . It is .0 Bß Cß D œ B /  C  D œ " 0 "ß !ß ! œ !   B CD 
Moreover, since first and second derivatives of the function do not change, we have:
0 "ß !ß ! œ " Á ! 0 "ß !ß ! œ # Á ! 0 "ß !ß ! œ  # Á !w w w
B C D     ;  and , the same three possibili-

ties for implicit function remain valid; we choose again , and so:D œ D Bß C 
d d d d d . Then:D œ  B  C œ B  C

0 "ß !ß ! "

0 "ß !ß ! 0 "ß !ß ! #

0 "ß !ß !w
B
w w
D D

w
C     

0 "ß !ß ! œ ! 0 "ß !ß ! œ " 0 "ß !ß ! œ " 0 "ß !ß ! œ # 0 "ß !ß ! œ  #ww ww ww ww ww
BB CC DD BC BD         , , , , ,

0 "ß !ß ! œ  "ww
CD  , and so:

d d d d d d d d d , from which we get:# # #0 "ß !ß ! œ C  D  % B C  % B D  # C D     
d ;

d d d d d d d d d#
#

w
D

# #

D "ß !ß ! œ  œ 
0 "ß !ß ! C  D  % B C  % B D  # C D

0 "ß !ß !  #
        

as d d d , and replacing, we obtain:D œ B  C
"

#

d d d d d d d d d d d d# #
#

D œ C  B  C  % B C  % B B  C  # C B  C
" " " "

# # # #        
and so d d , wherefore Taylor's second degree polynomial will be:# #D "ß !ß ! œ  B

(

)
   

P d d d d d ; as:# !
# #   Bß Cß !ß ! œ D  D  D œ !  B  C  B

" " (

# # "'
d  and d , we finally get:B œ B  " C œ C  ! œ C
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P#
#     Bß Cß !ß ! œ B  "  C  B  " Þ

" (

# "'

III Case: Equation Implicit Function 0 B ß B ß ß B ß C œ 5 Ä " # 8
8... : ‘ ‘

Generalizing the two cases above, let us suppose that we have a single equation in 8  "
variables : ... , , and  differentiable function with0 B ß B ß ß B ß C œ 5 5 − 0 À Ä " # 8

8"‘ ‘ ‘
continuous derivatives. If ...  and ... , let— —œ B ß B ß ß B l C œ B ß B ß ß B ß C     " # 8 " # 8

0 l C œ 5 0 l C Á ! C œ C B ß B ß ß B     — —! ! ! ! " # 8
w
C and . Then the implicit function ...  exists in

a neighborhood , with , and we have the following functions composition:½ — —   ! ! !C œ C

‘ ‘ ‘ — — —8 8"Ä Ä Ä l C Ä A œ 0 l C œ 5 Þ
0 0

,    
Implicit Function  First order derivatives‘ ‘8 Ä :

From , deriving with respect to the variable  we get:— — —Ä lC Ä A œ 0 l C œ 5 B
0    3

`A ` A ` l C ` l C `0 `0 `C `C

`B ` l C `B `B `B `C `B `B
œ † œ f0 l C † œ  † œ 0  0 † œ !

3 3 3 3 3 3

w w
3 C

        
—

— —
—

as  and  if , as the variables  are mutually independent, for which
`B

`B `B
œ " œ ! 3 Á 4 B

`B3

3 3

4
3

we obtain: , .
`C 0

`B 0
œ  " Ÿ 3 Ÿ 8

3

w
3
w
C

Implicit Function  Tangent hyperplane equation‘ ‘8 Ä :

It is  and the equation of the tangent hyperplane to the hy-fC œ  ß  ß ÞÞÞß 
0 0 0

0 0 0 w w w
" #
w w w
C C C

8

persurface ...  at ...  is:C œ C B ß B ß ß B B ß B ß ß B   " # 8 " #
! ! !

8

C  C œ  † B  B 0 † B  B  0 † C  C œ !
0

0
! 3 3 !

3À" 3À"

8 8w
3
w
C

3 3 3 C
! w ! w        , i.e. , or:

f0 B ß B ß ß B ß C † B  B ß B  B ß ß B  B ß C  C œ !   
" # 8 " # 8
! ! ! ! ! !

! " # 8 !... ... , that expresses the usual
relation of orthogonality between the gradient of the function  and, now, the tangent hyper-0
plane.

Implicit Function  Second order derivatives‘ ‘8 Ä :
From:

‘ ‘ ‘ — — —8 8"Ä Ä À Ä l C Ä A œ 0 l C œ 5
0 0    , deriving we get:

` l C

`B
œ !ß ÞÞß " ß ÞÞß !ß C

   —

3
3

w
3  and also:

` l C

`B `B
œ !ß ÞÞß !ß C

#

3 4

ww
34

   —
, and so, applying Teorema 18, we get:

` A ` l C ` l C

`B `B `B `B
œ † 0 l C †  0 ß ÞÞß 0 ß 0 † !ß ÞÞß !ß C œ !

#

3 4 3 4

w w w ww
" 8 C 34

           — —
‡ —

T

from which we get the second order partial derivatives:

C œ œ  † † 0 l C † " Ÿ 3ß 4 Ÿ 8
` C " ` l C ` l C

`B `B 0 `B `B
ww
34

#

3 4 3 4
w
C

       — —
‡ —

T

,  .

Implicit Function  I and II order total differentials; Taylor's polynomial‘ ‘8 Ä :
Operating in a similar manner to the case of implicit function , from the composition‘ ‘# Ä

— — —Ä lC Ä A œ 0 l C œ 5
0     we get:
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d d d d d , from which we get d , and differentiatingA œ 0 B  0 B  ÞÞ  0 B  0 C œ ! Cw w w w
" # B C" # 88

again, we get d d  and so d
d# w # #

C

#

w
C

0 l C  0 C œ ! C œ  Þ
0 l C

0
   
—

—

With these differentials we can write Taylor's polynomial.

We can summarize these cases, all with a single equation in two or more variables, saying
that it is possible to define an implicit function, with a single dependent variable, while all
others remain independent, if the gradient of the function (of the equation) at the considered
point is different from the null vector, i.e. if it has at least one component different from zero.
This derivation variable can then be taken as the dependent variable. Since the gradient is still
a Jacobian matrix, even if formed by a single line, we can say that this Jacobian should have
rank equal to , i.e. maximum, and this condition will be valid in the general case."

FUNCTIONS IMPLICITLY DEFINED BY A SYSTEM OF EQUATIONS

I Case: System Implicit Function    0 Bß C ß C œ 5
1 Bß C ß C œ 5

Ä" # "

" # #

#: ‘ ‘

We don't increase now the number of variables but the number of equations, having, as a mi-

nimum case, a system of two equations in three variables: ,    0 Bß C ß C œ 5
1 Bß C ß C œ 5

5 ß 5 − Þ" # "

" # #
" # ‘

Two equations can allow us to explain two variables, say  and , as a function of the re-C C" #

maining : , if the appropriate assumptions are met.B Ä ß B Ä C B ß C B‘ ‘#
" #    

The equations number tells us how many the dependent variables can be, the remaining varia-
bles will then have the role of independent ones. Let us see what we get as far as the derivati-
ves of a function  defined by such a system of equations.‘ ‘Ä ßB Ä C B ß C B#

" #    
Implicit Function  First order derivatives‘ ‘Ä # :

From  with , we have these two function com-       A œ 0 Bß C ß C œ 5
A œ 1 Bß C ß C œ 5

Bl œ Bß C ß C" " # "

# " # #
" #˜

positions:

‘ ‘ ‘ ˜ ˜Ä Ä ß B Ä Bl Ä A œ 0 Bl œ 5
0 0$

" " , and   
‘ ‘ ‘ ˜ ˜Ä Ä B Ä Bl Ä A œ 1 Bl œ 5

1 1$
# #, ,   

from which, differentiating with respect to , as  and  are constant, we getB A A" #

` A ßA ` 0ß 1 ` 0ß 1 ` Bl

` B ` B ` Bl ` B
œ œ † œ

              " #

˜

˜
 , i.e. the system:


   
   

d
d

d
d

 equivalent to:

A ` Bl

B `B
œ f0 Bl † œ !

A ` Bl

B `B
œ f1 Bl † œ !

"

#

˜
˜

˜
˜




`0 B `0 C `0 C

`B B `C B `C B
†  †  † œ !

`1 B `1 C `1 C

`B B `C B `C B
†  †  † œ !

Ê
0 † C  0 † C œ  0

1 † C  1 † C œ  1

d d d
d d d
d d d
d d d

 , wh" #

" #

" #

" #

w w w w w
C " C # B
w w w w w
C " C # B

" #

" #

ich is a li-

near system of two equations in two variables  and , and can be written in matrix formC Cw w
" #

as: , and also, using Jacobian matrices, as:          0 0

1 1 C 1
† œ 

C 0w w
C C
w w w w
C C # B

w w
" B" #

" #

` 0 ß 1 ` C ß C ` 0ß 1

` C ß C ` B ` B
† œ 

          " #

" # .
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From Cramer's theorem, if  the linear system has a unique so-       0 0

1 1
œ Á !

` 0ß 1

` C ß C

w w
C C
w w
C C " #

" #

" #

lution . `C `C

`B `B
ß

" #

Since the Jacobian matrix of functions  and  with respect to the dependent variables  and0 1 C"
C ## is not singular, (i.e. has maximum rank, in this case equal to ), this is the condition that al-
lows us to state the Dini's theorem for this case. In fact the following holds:

Theorem 20 Given the system , with  and , , differentiableÀ 0 1 Ä
0 Bß C ß C œ 5
1 Bß C ß C œ 5   " # "

" # #

$‘ ‘

functions with continuous derivatives, being  a point that satisfies the system, and B ß C ß C! " #
! !

then is . Then there exists a neighborhood  in which an impli-      ` 0ß 1 B ß C ß C

` C ß C
Á ! B

! " #
! !

" #
!½

cit function  is defined, which is continuous and differentiable‘ ‘Ä ßB Ä C B ß C B#
" #    

aB − B½ ! , whose derivatives are:

                        C 0
C 1 1 1

œ œ  † œ  †
` C ß C ` 0ß 1 ` 0ß 1

` B ` C ß C ` B

0 0w w
" B
w w w w
# C C B

" #

" #

" w w
C C

"
" #

" #

.

In addition to the global solution expressed using the inverse of the Jacobian matrix, there is
another process, practical consequence of Cramer's theorem on linear systems, which allows
us to calculate individually each unknown. Each of them is in fact given by a quotient, the de-
nominator of which is the determinant of the coefficient matrix of the unknowns (the Jaco-
bian) and the numerator is the determinant of the matrix obtained replacing in the Jacobian
matrix the column of the known terms to the column of the coefficients of the sought un-
known. Then we will get, in the case we are dealing with:

d d
d d
C C

B B
œ  à œ  Þ

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

" #

w w w w
B C C B
w w w w
B C C B

w w w w
C C C C
w w w w
C C C C

   
   

# "

# "

" # " #

" # " #

Example 49 Given the system ,
sin cos
sin cos

À
0 Bß C ß C œ B  C  C  C  B  C œ "
1 Bß C ß C œ B  C  B  C  C  C œ "           " # " " # #

" # " # # "

it is satisfied by the point P , and functions  and  are! " #œ Bß C ß C œ "ß "ß " 0 1   
differentiable with continuous derivatives throughout . Let us calculate the Jacobian‘#

matrix:
` 0ß 1

` Bß C ß C
œ

"  B  C C  C  " B  C  C  C
"  B  C "  C  C B  C  C  C

                   " #

# " # # " #

# # " # # "

sin cos sin cos
cos sin cos sin

.

Calculating the Jacobian at P we get , whose rank is ma-!
" #

` 0ß 1 "ß "ß "

` Bß C ß C
œ

" !  "
! " "

      
ximum and equal to  as , and then in a neighborhood of  an implicit# Á ! B œ "

!  "
" " 

function is defined , continuous and differentiable function,‘ ‘Ä ßB Ä C B ß C B#
" #    

whose derivatives are given by:

d
d

sin sin cos
cos cos sin

cos sin cos
sin cos s

C

B
œ 

"  B  C B  C  C  C
"  B  C B  C  C  C

C  C  " B  C  C  C
"  C  C B  C 

"

# # " #

# # # "

" # # " #

# " #

           
          in

;

 C  C# "



44

d
d

cos sin
sin cos

cos sin cos
sin cos sin

.
C

B
œ 

C  C  " "  B  C
"  C  C "  B  C

C  C  " B  C  C  C
"  C  C B  C  C  C

#

" # #

# " #

" # # " #

# " # # "

       
           

At  we have:  and .
d d

d d
B œ " œ  œ  " œ  œ "

C " C "

B B

"  " ! "
! " " !

!  " !  "
" " " "

" #      
   

Example 50 Given the system: , let's see it as À Þ
D œ 0 Bß C J Bß Cß D œ 0 Bß C  D
1 Bß C œ ! 1 Bß C œ !         

Let P  be a point satisfying the system, with  and  everywhere differentiable with continuo-! 0 1
us derivatives.

It will be  . If  , the
P` J ß 1 ` J ß 1

` Bß Cß D ` Cß D
œ œ œ 1 Á !

0 0  " 0  "

1 1 ! 1 !

             w w w
B C C
w w w
B C C

! w
C

hypotheses of Dini's theorem are satisfied and so the system defines an implicit function
‘ ‘Ä ßB Ä C B ß D B C B D B# w w         . To calculate the derivatives  and  we can proceed in
two ways:

" 1 Bß C œ ! B 1 † "  1 œ !
C

B
) from , differentiating with respect to , we get: , from

d
d

  w w
B C

which . Differentiating the first equation  with respect to  we
d
d
C 1

B 1
œ  0 Bß C  D œ ! B

w
B
w
C

 
get: , from which:  and so:

d d d
d d d

0 † "  0   " œ ! 0  0   œ !
C D 1 D

B B 1 B
w w w w
B C B C

w
B
w
C

   
d
d

.
D 1

B 1 1
œ 0  0 œ

0 1  0 1
w w
B C

w
B
w w
C C

w w w w
B C C B

# † œ 
0  "

1 ! 1

C

B
D

B

0
) using the Jacobian matrix, we have: , from which:

d
d
d
d

      
       
       

w
C
w w
C B

w
B

d d
d d

 and .
C 1 D

B 1 B 1
œ  œ  œ  œ

0  "
1 !

0  " 0  "

1 ! 1 !

0 0

1 1 0 1  0 1 
   

 w
B
w
B
w w
C C
w w
C C

w
B
w w
C C

w w
C B
w w w w w w
C B B C C B

Example 51 The system: , is the same as , theÀ
D œ 0 Bß C J Bß Cß D œ 0 Bß C  D
1 Bß Cß D œ ! 1 Bß Cß D œ !         

appropriate assumptions are met as in the previous example. Even now a variable, , is alrea-D
dy in explicit form, while the second equation allows us to get, even if only implicitly,
another variable, say .C

As:  , if at P  is , we have a function
` J ß 1

` Bß Cß D
œ Á !

0 0  " 0  "

1 1 1 1 1

       w w w
B C C
w w w w w
B C D C D

!

‘ ‘Ä ßB Ä C B ß D B#      , whose derivatives are given by:

      
       
       

0  "

1 1 1
† œ 

C

B
D

B

0w
C
w w w
C D B

w
B

d
d
d
d

, from which we obtain:
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d d
d d

, .
C 0 1  1 D

B 0 1  1 B 0 1  1
œ  œ  œ  œ 

0  "
1 1

0  " 0  "

1 1 1 1

0 0

1 1 0 1  0 1 
   

 w
B
w w
B D
w w
C C
w w w w
C D C D

w w w
B D B
w w w w w w
C D C C D C

w w
C B
w w w w w w
C B C B B C

The results, as we see, are different from those of the previous example, as the second equa-
tion is not constant with respect to , but it depends upon all the variables.D

II Case: System Implicit Function    0 B ß B ß C ß C œ 5
1 B ß B ß C ß C œ 5

Ä" # " # "

" # " # #

# #: ‘ ‘

Let us consider now a system of two equations in four variables: ,   0 B ß B ß C ß C œ 5
1 B ß B ß C ß C œ 5

" # " # "

" # " # #

5 ß 5 − Þ" # ‘
The system allows us, under suitable assumptions, to define a function:
‘ ‘# #

" # " " # # " #Ä ß B ß B Ä C B ß B ß C B ß B       .

Implicit Function  First order derivatives‘ ‘# #Ä :

If , and , we have these two function       A œ 0 B ß B ß C ß C œ 5
A œ 1 B ß B ß C ß C œ 5

l œ B ß B ß C ß C" " # " # "

# " # " # #
" # " #— ˜

compositions:

‘ ‘ ‘ — — ˜ — ˜# %
" "Ä Ä ß Ä l Ä A œ 0 l œ 5

0 0
 , and   

‘ ‘ ‘ — — ˜ — ˜# %
# #Ä Ä Ä l Ä A œ 1 l œ 5

1 1
,    

from which, differentiating with respect to  and ,  and  being constant, we obtain theB B A A" # " #

system:

   
   
   
   

`A ` l

`B `B
œ f0 l † œ !

`A ` l

`B `B
œ f1 l † œ !

`A ` l

`B `B
œ f0 l † œ !

`A ` l

`B `B
œ f1 l † œ !

"

" "

#

" "

"

# #

#

# #

— ˜
— ˜

— ˜
— ˜

— ˜
— ˜

— ˜
— ˜

.

As  and  we get the system in
` l `C `C ` l `C `C

`B `B `B `B `B `B
œ "ß !ß ß œ !ß "ß ß

      — ˜ — ˜

" " " # # #

" # " #

the unknowns , ,  and :
`C `C `C `C

`B `B `B `B
" # " #

" " # #

`0 `C `0 `C `0

`C `B `C `B `B
†  † œ 

`1 `C `1 `C `1

`C `B `C `B `B
†  † œ 

`0 `C `0 `C `0

`C `B `C `B `B
†  † œ 

`1 `C

`C
†

" " # " "

" #

" " # " "

" #

" # # # #

" #

"

"

`B `C `B `B
 † œ 

`1 `C `1

# # # #

#

, which in matrix form becomes:
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`0 `0

`C `C
! !

`1 `1

`C `C
! !

! !
`0 `0

`C `C

! !
`1 `1

`C `C

†

" #

" #

" #

" #    

                              

                                     

`C

`B
`C

`B
`C

`B
`C

`B

œ 

"

"

#

"

"

#

#

#



`0

`B
`1

`B
`0

`B
`1

`B

"

"

#

#

, which can be written as:

                                        

                         

`0 `0

`C `C
`1 `1 `C `C

`C `C `B `B

† œ 

`C `C

`B `B" #

" # " #

" "

" #

# #

       


`0 `0

`B `B
`1 `1

`B `B

" #

" #

 and, using Jacobian matrices, as:

` 0ß 1 ` C ß C ` 0ß 1

` C ß C ` B ß B ` B ß B
† œ 

          " # " # " #

" # .

If the point  satisfies the system, if  and  are differentiable with continuous B ß B ß C ß C 0 1" # " #
! ! ! !

derivatives, and if , i.e.  has maximum rank, Dini's        ` 0ß 1 B ß B ß C ß C ` 0ß 1

` C ß C ` C ß C
Á !" # " #

! ! ! !

" # " #

Theorem, in this case, assures the existence, in a neighborhood of the point  of the im- B ß B" #
! !

plicit function , whose derivatives are obtained‘ ‘# #
" # " " # # " #Ä ß B ß B Ä C B ß B ß C B ß B      

as , which is the general formula from which we
` C ß C ` 0ß 1 ` 0ß 1

` B ß B ` C ß C ` B ß B
œ  †

           " #

" # " # " #

"

obtain the derivatives of  and  with respect to  and .C C B B" # " #

There is also another method of calculus, arising from Cramer's theorem on linear systems,
from which we obtain:

`C `C

`B `B
œ  œ  à œ 

`0 `0

`B `C
`1 `1

`B `C

`0 `0

`C `C
`1 `1

`C `C

` 0ß 1

` B ß C

` 0ß 1

` C ß C

" "

" #

" #

" #

" #

" #

" #

" #

                     

   
   

   


        

   
   

`0 `0

`B `C
`1 `1

`B `C

`0 `0

`C `C
`1 `1

`C `C

œ 

` 0ß 1

` B ß C

` 0ß 1

` C ß C

# #

# #

" #

" #

# #

" #

`C `C

`B `B
œ  œ  à œ 

`0 `0

`C `B
`1 `1

`C `B

`0 `0

`C `C
`1 `1

`C `C

` 0ß 1

` C ß B

` 0ß 1

` C ß C

# #

" #

" "

" "

" #

" #

" "

" #

                     

   
   

   


        

   
   

`0 `0

`C `B
`1 `1

`C `B

`0 `0

`C `C
`1 `1

`C `C

œ 

` 0ß 1

` C ß B

` 0ß 1

` C ß C

" #

" #

" #

" #

" #

" #

Example 52 P  satisfies the system:À œ "ß "ß  "ß  "!  
           0 B ß B ß C ß C œ B  B /  C  C / œ !
1 B ß B ß C ß C œ #B  C /  B  C / œ "

" # " # " # # "
C C B B

" # " # # " " #
B C B C

# " " #

" # # "
.

Functions  and  are everywhere differentiable with continuous derivatives. Then:0 1
`0 `1

`B `B
œ /  C  C / œ #B  C /  /

" "

C C B B B C B C
# " # "

# " " # " # # "   ; ;
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`0 `1

`B `B
œ /  C  C / œ # /  B  C /

# #

C C B B B C B C
# " " #

# " " # " # # "   ; ;

`0 `1

`C `C
œ  B  B /  / œ  /  B  C /

" "
" # " #

C C B B B C B C   # " " # " # # "; ;

`0 `1

`C `C
œ B  B /  / œ #B  C /  /

# #
" # # "

C C B B B C B C   # " " # " # # "; .

We have , and since ,
` 0ß 1 "ß "ß  "ß  "

` B ß B ß C ß C
œ œ & Á !

 " $  " $  " $
# !  $ %  $ %

        
" # " #

with such system an implicit function can be defined:
‘ ‘# #

" # " " # # " # " #Ä ß B ß B Ä C B ß B ß C B ß B B ß B œ "ß "           , in a neighborhood of .
For derivatives of this function, calculated in , from: "ß "

` C ß C ` 0ß 1 ` 0ß 1

` B ß B ` C ß C ` B ß B
œ  †

           " #

" # " # " #

"

 we get:        

        
   
          

`C "ß " `C "ß "

`B `B
`C "ß " `C "ß "  $ % # !

`B `B

œ  † œ
 " $  " $

" "

" #

# #

" #

"

œ  †

% $

& &


$ "

& &


 " $
# ! `C "ß " `C

`C "ß " `C "ß "

`B `B

`B

       
          

        

        
   
 , and so: 

" "

" #

# #

"

 
       
       "ß "

`B

œ
# 

"#

&

" 
*

&#

.

DINI'S THEOREM IN THE GENERAL CASE
Systems of  equations in variables Implicit Function 7 87 Ä : ‘ ‘8 7

We conclude treating the general case, namely that of a system of  equations in  va-7 7 8
riables. Stating Dini's theorem in this general case, we will find again, as particular cases, all
cases previously treated. The system is given:  

  0 B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C œ 5
0 B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C œ 5
ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ

0 B ß B ß ÞÞ

" " # 8 " # 7 "

# " # 8 " # 7 #

7 " # Þß B ß C ß C ß ÞÞÞß C œ 58 " # 7 7

.

Such a system allows us, with the appropriate assumptions, to define an implicit function:
‘ ‘8 7

" # 8 " # 7 3 3 " # 8Ä ß B ß B ß ÞÞÞß B Ä C ß C ß ÞÞÞß C C œ C B ß B ß ÞÞÞß B     , with .

We see that the number of equations corresponds to the number of dependent variables, and
therefore, simply by difference, we get the number of the independent variables:  equations7
imply  dependent variables, and so  is the number of the independent va-7 7 87 œ 8
riables.

Theorem 21  Let P  be a point satisfying the system:À œ B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C! " # 8 " # 7
! ! ! ! ! !   

  0 B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C œ 5
0 B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C œ 5
ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ

0 B ß B ß ÞÞ

" " # 8 " # 7 "

# " # 8 " # 7 #

7 " # Þß B ß C ß C ß ÞÞÞß C œ 58 " # 7 7

.

Let  be differentiable functions with continuous derivatives in a neighborhood of P , and let03 !

also be .
P    ` 0 ß 0 ß ÞÞß 0

` C ß C ß ÞÞÞß C
Á !

" # 7 !

" # 7

Then the system defines, in a neighborhood of , an implicit function, continuo- B ß B ß ÞÞÞß B" #
! ! !

8

us with continuous derivatives:
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‘ ‘8 7
" # 8 " # 7 3 3 " # 8Ä ß B ß B ß ÞÞÞß B Ä C ß C ß ÞÞÞß C C œ C B ß B ß ÞÞÞß B     , with , whose Jacobian

matrix is given by .
` C ß C ß ÞÞÞß C ` 0 ß 0 ß ÞÞß 0 ` 0 ß 0 ß ÞÞß 0

` B ß B ß ÞÞÞß B ` C ß C ß ÞÞÞß C ` B ß B ß ÞÞÞß B
œ  †

           " # 7 " # 7 " # 7

" # 8 " # 7 " # 8

"

Each derivative  can also be expressed, using Cramer's theorem, as a quotient:
`C

`B
3

5

`C

`B
œ 

`0 `0 `0 `0 `0

`C `C `B `C `C
ÞÞÞ ÞÞÞ

`0 `0 `0 `0 `0

`C `C `B `C `C
ÞÞÞ ÞÞÞ

ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ

3

5

" " " " "

" 3" 5 3" 7

# # # # #

" 3" 5 3" 7

              
ÞÞÞ ÞÞÞ ÞÞÞ

`0 `0 `0 `0 `0

`C `C `B `C `C
ÞÞÞ ÞÞÞ

`0 `0 `0 `0 `0

`C `C `C `C `C
ÞÞÞ ÞÞÞ

`0 `0

`C
ÞÞÞ

7 7 7 7 7

" 3" 5 3" 7

" " " " "

" 3" 3 3" 7

#

"

              

# # # #

3" 3 3" 7

7 7 7 7 7

" 3" 3 3" 7

`C `C `C `C

`0 `0 `0
ÞÞÞ

ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ
`0 `0 `0 `0 `0

`C `C `C `C `C
ÞÞÞ ÞÞÞ

œ

`C

`B
œ  Þ

` 0 ß 0 ß ÞÞß 0

` C ß ÞÞÞß C ß B ß C ß ÞÞÞß C

` 0 ß 0 ß ÞÞß 0

` C ß ÞÞÞß C ß C ß C ß ÞÞÞß C

3

5

" # 7

" 3" 5 3" 7

" # 7

" 3" 3 3" 7

   
   

That is, the derivative of  with respect to  is given by the opposite of a quotient betweenC B3 5

two Jacobian determinants: the denominator is the Jacobian of the equations with respect to
the dependent variables, the numerator is the Jacobian obtained replacing, in the previous one,
the -th column, that of the variable we want to derive, with the derivatives of the equations3
made with respect to , the variable respect to which we want to derive .B C5 3

Implicit Function  First order derivatives‘ ‘8 7Ä :
Let's see how we can justify this result concerning the derivatives of the implicit function.
From the composition of functions:

   B ß B ß ÞÞÞß B Ä B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C Ä A œ 5 œ ß " Ÿ 3 Ÿ 7
0

" # 8 " # 8 " # 7 3 3
3

cost.  we get:
` A ßA ß ÞÞÞß A ` A ßA ß ÞÞÞß A ` B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C

` B ß B ß ÞÞÞß B ` B ß B ß ÞÞÞß B ß C ß C ß ÞÞÞß C ` B ß B ß ÞÞÞß B
œ † œ

          " # 7 " # 7 " # 8 " # 7

" # 8 " # 8 " # 7 " # 8
 .

The second term can be written as:

        
          

          

  
` 0 ß 0 ß ÞÞß 0 ` 0 ß 0 ß ÞÞß 0

` B ß B ß ÞÞÞß B ` C ß C ß ÞÞÞß C
†

` B ß B ß ÞÞÞß B

` B ß B ß
" # 7 " # 7

" # 8 " # 7

" # 8

" # ÞÞÞß B
    
` C ß C ß ÞÞÞß C

` B ß B ß ÞÞÞß B

œ Þ
8

" # 7

" # 8

  


The matrix on the left is a  matrix, divided into two blocks, the first  and   7ß8 7 7ß8
the second ; the right matrix is a  matrix, divided into two blocks, the upper   7ß7 8 7ß8   8ß 8 7ß 8 and the lower . Working by block, from the equality we obtain:
` 0 ß 0 ß ÞÞß 0 ` 0 ß 0 ß ÞÞß 0 ` C ß C ß ÞÞÞß C

` B ß B ß ÞÞÞß B ` C ß C ß ÞÞÞß C ` B ß B ß ÞÞÞß B
†  † œ

          " # 7 " # 7 " # 7

" # 8 " # 7 " # 8
8ˆ   from which:
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` 0 ß 0 ß ÞÞß 0 ` C ß C ß ÞÞÞß C ` 0 ß 0 ß ÞÞß 0

` C ß C ß ÞÞÞß C ` B ß B ß ÞÞÞß B ` B ß B ß ÞÞÞß B
† œ 

          " # 7 " # 7 " # 7

" # 7 " # 8 " # 8
 and so:

` C ß C ß ÞÞÞß C ` 0 ß 0 ß ÞÞß 0 ` 0 ß 0 ß ÞÞß 0

` B ß B ß ÞÞÞß B ` C ß C ß ÞÞÞß C ` B ß B ß ÞÞÞß B
œ  † Þ

           " # 7 " # 7 " # 7

" # 8 " # 7 " # 8

"

In compact form the above equalities can be expressed as:
` ` ` l ` ` `

` ` l ` ` ` `
œ † œ †  † œ

                      – – — ˜ – – ˜

— — ˜ — — ˜ —
ˆ8 , or:

` ` `

` ` `
œ  †

           ˜ – –

— ˜ —

"

.

MAXIMA AND MINIMA FOR FUNCTIONS 0 À Ä‘ ‘8

Let us now study the problem of finding maximum and minimum points (also known as extre-
me points) for functions of several variables.
The definition of relative (local) maximum or minimum point for functions  is si-0 À Ä‘ ‘8

milar to that given for functions of one variable, and it has been stated in Definition 19.
As regards the existence of maximum and minimum absolute points Weierstrass's theorem 6
is valid.

FIRST ORDER CONDITIONS
For functions of one variable there is a theorem, known as Fermat's Theorem, which states
that if a function is differentiable at  and  is a relative maximum or minimum point, thenB B! !

0 B œ !w
!  .

For functions , similarly, we state the following:0 À Ä‘ ‘8

Theorem 22 If  is differentiable at , interior point of , and  is a relative maxi-À 0 H — — —! 0 !

mum or minimum point for , then , where  is the null vector.0 f0 œ —  !

Proof À 0 œ 0  > @ @If ,  unit vector, we have a composite function:   — —!

‘ ‘ ‘ — —Ä Ä > Ä  > @ Ä 0  > @
0 08

! !, ,   
that we see as , with .1 > œ 0  > @ 1 ! œ 0       — —! !

If  is a relative maximum (or minimum) point, it will also be:—!

0  > @ Ÿ 0 0  > @   0 a −          — — — — — ½ —! ! ! ! ! ,  , or:
1 > Ÿ 1 ! 1 >   1 ! ß a > − !            .½
So if  is a relative maximum (or minimum) point for ,  will be the same for .—! 0 > œ ! 1
Since  is differentiable, and since  is differentiable with respect to , it follows that0  > @ >—!

1 >  is differentiable, as a composition of differentiable functions, and then from Fermat's
Theorem it  must be . But1 ! œ !w 
1 ! œ œ œ 0 œ !

1 >  1 ! 0  > @  0

> >
w

>Ä! >Ä!

! !
@ !          

lim lim
— —

W — .

But , since  is differentiable, and then:W — —@ ! !0 œ f0 † @ 0   
a @ À f0 † @ œ ! Í f0 œ ñ .   — — ! !

The above condition  is necessary but not sufficient for a relative maximum orf0 œ — !

minimum point, and is a necessary condition only if the function is differentiable. These are
called the first-order conditions in the maximum and minimum points research.
Points where  are called stationary points, and are points at which the tangentf0 œ — !

plane (or hyperplane) to the graph of the function is horizontal (i.e. parallel to the plane (or
hyperplane) of the independent variables).
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To search for relative maximum and minimum points we must therefore satisfy the first-order
conditions, i.e. we must impose , and solve the system of  equations in  un-f0 œ 8 8 — 
knowns that arises from this. After all the solutions have been found, i.e. all points  for—!

which , we must check whether those points are really relative maximum or mi-f0 œ — !

nimum points, or if they are saddle points.

Saddle points are points where , but neither the definition of maximum pointf0 œ — !

nor the definition of minimum point are satisfied , as in every neighborhood of  there are—!

points where  and points where . Geometrically speaking, in a0  0 0  0       — — — —! !

stationary point of maximum (or minimum) the tangent plan (or hyperplane) is, in a
neighborhood of , all above (all below) the graph of the function. If  is, instead, a saddle— —! !

point, the tangent plane crosses the graph of the function, and then, in every neighborhood of
—!, there are points of the graph above and points of the graph below the tangent plane.
Therefore we need criteria and methodologies, called second-order conditions, whose purpose
is to establish the true nature of a stationary point. Meanwhile, let us see now with an
example how the analysis along particular directions, as seen for the limit operation, is not
generally valid to draw positive conclusions about the true nature of a maximum or minimum
point.

Example 53 Given , first of all we search for its stationaryÀ 0 Bß C œ C  B C  B     # %

points; we must put:

    0 œ  #B C  B  %B C  B œ 'B  #BC  %B C œ !

0 œ C  B  C  B œ #C  B  B œ ! #C œ B  B

w % $ # & $
B
w % # % # % #
C or 

;

substituting in the first equation we have:
#B  $B  B œ B #B  $B  " œ ! B œ !( & $ $ % #  , from which we obtain  and:

B œ
$„ *  )

%

B œ " B œ „"

B œ B œ „
#

#

# " "
# #

  and so:  . We have found five stationary points:
or 
or 

    B œ ! B œ " B œ  "
C œ ! C œ " C œ "

B œ B œ 

C œ C œ
; ; ; ; .

               

" "

# #
$ $
) )
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In this example let us study only the point . Is . Meanwhile, let us study the   !ß ! 0 !ß ! œ !
behavior of  along any line passing through the origin. Given , we get:0 Bß C C œ 7B 
0 Bß7B œ 7B B 7B  B œ B B 7B 7B7       # % # % $ # .
Studying the sign of , as ,  , for the "permanence of the sign0 Bß7B B  ! a B Á !  #

theorem", since  is  at , and since the function isB 7B 7B7 7  ! B œ !% $ # #

continuous,  is strictly positive in a neighborhood of the point 0 Bß7B B œ ! Þ 
So the point  is a minimum along each line passing through the origin; on the line !ß !
B œ ! 0 !ß C œ C !ß ! we have , and then also on this line the point  is a minimum point.   #

Although the analysis of all lines passing through the origin give the same answer,  is a !ß !
saddle point. In fact, if we study the sign of  we have:0 Bß C 
0 Bß C  !

C  B C  B

C  B C  B
    if  or if  .

# #

% %

In the figure the black area represents the points where . In every neighborhood0 Bß C  ! 
of  there are points where  and points where . As ,       !ß ! 0 Bß C  ! 0 Bß C  ! 0 !ß ! œ !
it follows that  is a saddle point, contrary to what could be deduced analyzing the !ß !
function along all the lines passing through the origin.
We will resume and complete the analysis of stationary points of this function when we have
the right tools.

SECOND ORDER CONDITIONS
Since for functions  we can not define an increasing or decreasing function, it0 À Ä‘ ‘8

therefore is of no use studying the sign of the first-order partial derivatives. To distinguish
between maximum or minimum points and saddle points, if any, we must instead use the
second-order conditions, which are sufficient conditions, and are connected to concavity and
convexity of  at . Indeed the following is valid:0 —!

Theorem 23 If  is a stationary point for  and if the function is differentiable andÀ 0—!

concave in a neighborhood of , then  is a relative (local) maximum point.— —! !

Proof À 0From Theorem 14, since  is concave:
0 Ÿ 0 f0        — — — — —! ! ! , as the graph of the function lies below the tangent (hy-
per) plane at . But , from which  in , and so  is a re-— —  — — ½ — —! ! ! ! !f0 œ 0 Ÿ 0       
lative (local) maximum point.ñ

Similarly, if  is a stationary point for  and if the function is differentiable and convex in a—! 0
neighborhood of , then  is a relative (local) minimum point.— —! !

Assuming now that the function is twice differentiable at , we have, using Taylor's polyno-—!

mial, if d :— — —œ  !
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0 œ 0 f0 †  † †  9
"

#
            — — — — — ‡ — — —! ! !

#d d d d ,T

and being  a stationary point ( ), we get:— — ! !f0 œ 
0  0 œ † †  9 œ 0  9

" "

# #
                — — — ‡ — — — — —! ! !

# ##d d d d d .T

So the sign of  is the same as that of d d d .0  0 † † œ 0         — — — ‡ — — —! ! !
#T

If d   is concave at , whereas if  d   is convex at .# #
! ! ! !0  ! 0 0  ! 0   — — — —

To check if the definition of maximum or minimum point is satisfied, we study, in a neighbo-
rhood of  , the sign of the difference , as:— — —! !0  0   
.) d  and so  is a maximum point;0  0 Í 0  0  ! Í 0  !         — — — — — —! ! ! !

#

.) d  and so  is a minimum point.0  0 Í 0  0  ! Í 0  !         — — — — — —! ! ! !
#

If the sign of the difference , i.e. the sign of d , is not constant in a0  0 0     — — —! !
#

neighborhood of , then  is certainly a saddle point.— —! !

The second-order total differential d  d d  is a quadratic form, i.e.
 

#
! 3 4

3ß4œ"

8 #
!

3 4
0 œ B B

` 0

`B `B
    
—

—

a polynomial in the  variables d , with all terms of the second degree, so now we need suf-8 B3

ficient criteria to establish the sign of a quadratic form..

QUADRATIC FORMS
Quadratic forms are homogeneous quadratic polynomials in  variables like:8

U œ U B ß B ß ÞÞÞß B œ + B B    — " # 8 3 4 3 4

3ß4œ"

8

 ,

i.e. polynomials in  variables having solely second-degree terms.8

Let's see how every quadratic form can be written in the form , whereU œ † † — —  —T

— ‘ − 88  and  is a square matrix of order .

Example 54 À U B ß B œ B B † † œ "B  #B B  %B B  &B œ
" # B
% & B

          " # " # " # " #
"

#
" #
# #

œ B  'B B  &B" #
# #

" # .

Example 55 À U B ß B ß B œ B B B † † œ
" # $ B
! $ " B
" $ % B

   
                  
                  " # $ " # $

"

#

$

œ B  $B  %B  #B B  %B B  %B B Þ" # $
# # #

" # " $ # $

But at once we see that every quadratic form can be generated by a symmetric matrix: starting

from matrix , the symmetric matrix  is built placing .  , œ
+  +

#
3 4

3 4 4 3

Example 56 Using the examples above, we can easily verify that:À

U B ß B œ B B † † œ B B † †
" # B " B
% & B & B

                   " # " # " #
" "

# #

3
3

 and that:

U B ß B ß B œ B B B † † œ B B B †
" # $ B " " #
! $ " B " $ #
" $ % B # # %

     
                              
                              " # $ " # $ " # $

"

#

$

† Þ
B
B
B

      
      

"

#

$
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Then we will consider every quadratic form as generated by a symmetric matrix, and this
symmetry is guaranteed when we have the quadratic form generated by the second-order total
differential of a twice differentiable function, as the matrix of this quadratic form is the
Hessian matrix  of . For our purposes, we will write a quadratic form always in the‡ — ! 0

form d d d , with d d d d , so as to represent it in theU œ † † œ B ß B ß ÞÞß B     — — ‡ — —T
" # 8

form of a second-order total differential.

The study of the sign of quadratic forms is based on the following definitions:
Definition 40 The quadratic form d d d  is called:À U œ † †   — — ‡ — T

positive definite if d , d ;U  ! a Á — — 
negative definite if d , d .U  ! a Á — — 

Definition 41 The quadratic form d d d  is called:À U œ † †   — — ‡ — T

positive semidefinite if d , d d d ;      U   ! a Á b Á À U œ !— —  —  —and
negative semidefinite if d , d d d .      U Ÿ ! a Á b Á À U œ !— —  —  —and
Definition 42 The quadratic form d d d  is called:À U œ † †   — — ‡ — T

indefinite if d d d d .      b À U  ! b À U  !— — — —" " # #and

Example 57  is a positive definiteÀ U B ß B œ B B † † œ B  $B
" ! B
! $ B

          " # " #
"

#
" #
# #

form as   while  if and only if B  $B   ! a B ß B B  $B œ ! B œ B œ ! Þ" # " #
# # # #

" # " # 
Example 58  is a positiveÀ U B ß B ß B œ B B B † † œ B  $B

" ! ! B
! $ ! B
! ! ! B

   
                  
                  " # $ " # $

"

#

$

" #
# #

semidefinite form as   while  if ,B  $B   ! a B ß B ß B B  $B œ ! B œ B œ !" # " #
# # # #

" # $ " # 
aB Á ! Þ$

Example 59  isÀ U B ß B œ B B † † œ B  #B B  B œ B  B
" " B
" " B

           " # " # " # " #
"

#
" #
# # #

a positive semidefinite form as ,  while  whenever     B  B   ! a B ß B B  B œ !" # " # " #
# #

B œ  B Þ" #

Example 60  is anÀ U B ß B ß B œ B B B † † œ B  B  B
" ! ! B
!  " ! B
! ! " B

   
                  
                  " # $ " # $

"

#

$

" # $
# # #

indefinite form as  if, for example, ,  but it is insteadB  B  B  ! B œ B œ ! aB Á !" # $
# # #

" # $

B  B  B  ! B œ B œ ! aB Á ! Þ" # $
# # #

" $ # if, for example, , 

Let us now expose sufficient criteria to ensure a definite or semidefinite quadratic form.
Let us study the sign of the second-order total differential for , and then generali-0 À Ä‘ ‘#

ze  the process to . Then the result is:0 À Ä‘ ‘8

0 Bß C  0 B ß C œ Bß C † B ß C † Bß C  9 Bß C  B ß C
"

#
               ! ! ! ! ! !

#d d d d ,‡ T

and we must study the sign of:
d d d d d .# ww ww ww

! ! ! ! ! ! ! !BB BC CC
# #0 B ß C œ 0 B ß C B  # 0 B ß C B C  0 B ß C C           

Writing in short form d d d d d , we get:# ww ww ww
BB BC CC

# #0 œ 0 B  # 0 B C  0 C   
d d d d d d d# ww ww ww

BB BC CC
# # # #BC BC

ww ww# #

BB BB
ww ww

0 œ 0 B  # 0 B C  C  C  0 C œ
0 0

0 0
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d d d d d d d# ww ww
BB CC

# # # #BC BC BC
ww ww ww

BB BB
ww ww

# #

BB
ww #

0 œ 0 B  # B C  C  C  0 C œ
0 0 0

0 00
           

 
d d d d .# ww

BB
BC BB CC BC
ww ww ww ww

BB BB
ww ww

# #

#0 œ 0 B  C  C
0 0 0  0

0 0
     

Similarly we can obtain also a second equality:

d d d d .# ww
CC

BC BB CC BC
ww ww ww ww

CC CC
ww ww

# #

#0 œ 0 C  B  B
0 0 0  0

0 0
     

In any case we have the sum of two terms, each of which is the product of a square (so always
positive) for another term, whose sign instead is variable:

0 0
0 0  0 0 0  0

0 0BB CC
ww wwBB CC BC BB CC BC

ww ww ww ww ww ww# #

BB CC
ww ww

 and   or  and .
   

If we consider the Hessian matrix , we will see that  and  are the so-called  0 0

0 0
0 0BB BC

ww ww

CB CC
ww ww BB CC

ww ww

first-order leading principal minors of the matrix, while  is the determinant0 0  0BB CC BC
ww ww ww # 

of the Hessian matrix, also called second-order leading principal minor.

We have then the following:
Definition 43 the principal minors of a matrix are minors having as elements of its main dia-À
gonal only elements belonging to the main diagonal of the given matrix.
Definition 44 the leading principal minors of a symmetric matrix are the  principal minors,À 8
whose order gradually increases from  to , starting from any element of the main diagonal." 8

Example 61 If , we have two first-order leading principal minors, whichÀ œ
+ +
+ +

‡   "" "#

#" ##

are  and , only one second-order leading principal minor:   + +"" ##

 + +
+ +

œ + +  + +"" "#

#" ##
"" ## "# #" .

So there are only two possible sequences of leading principal minors:

              ‡ ‡ ‡ ‡" "" # " ## #
"" "# "" "#

#" ## #" ##
œ + œ œ + œ

+ + + +
+ + + +

 and  or  and .

For a matrix of order , principal minors and leading principal minors are the same minors.#

Example 62 If  we have three first-order leading principal minors:À œ
+ + +
+ + +
+ + +

‡

      
"" "# "$

#" ## #$

$" $# $$

       + + +
+ +
+ +"" ## $$
"" "#

#" ##
,  e ; we have two second-order leading principal minors:  and

 
      

+ +
+ +

+ + +
+ + +
+ + +

## #$

$# $$

"" "# "$

#" ## #$

$" $# $$

, only one third-order leading principal minor: .

Minor  is a principal minor but not a leading principal minor. + +
+ +
"" "$

$" $$

So there are four possible sequences of leading principal minors:

1) ,  and ; or        
      ‡ ‡ ‡" "" # $

"" "#

#" ##

"" "# "$

#" ## #$

$" $# $$

œ + œ œ
+ +
+ +

+ + +
+ + +
+ + +
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2) ,  and ; or        
      ‡ ‡ ‡" ## # $

"" "#

#" ##

"" "# "$

#" ## #$

$" $# $$

œ + œ œ
+ +
+ +

+ + +
+ + +
+ + +

3) ,  and ; finally        
      ‡ ‡ ‡" ## # $

## #$

$# $$

"" "# "$

#" ## #$

$" $# $$

œ + œ œ
+ +
+ +

+ + +
+ + +
+ + +

4) ,  and .        
      ‡ ‡ ‡" $$ # $

## #$

$# $$

"" "# "$

#" ## #$

$" $# $$

œ + œ œ
+ +
+ +

+ + +
+ + +
+ + +

The first is called also the North-West leading principal minors sequence, the last is called the
South-East leading principal minors sequence.

The previously obtained second-order total differential for  can then be written0 À Ä‘ ‘#

as:

d ,# # #
" # "

#

"
0 œ U  U    ‡

‡

‡

where  or  but always .           ‡ ‡ ‡" "" " ## #
"" "#

#" ##
œ + œ + œ

+ +
+ +

The terms  and  represent, respectively, the square of a monomial and the square of a bi-U U" #
# #

nomial.

If d  or d  in a neighborhood of  means that the two previous# #
! !0  ! 0  ! B ß C 

expressions are negative or positive  d  and  d , i.e. their sign is independent of thea B a C
choice of d  and d . We can achieve this independence in only two cases:B C

M)  or d ,  d  and  
                                                0  !

0 0  0  !

0  !

0 0  0  !
Í 0  ! a B a

BB
ww

BB CC BC
ww ww ww #

CC
ww

BB CC BC
ww ww ww #

# dC

and then  is a maximum point; B ß C! !

m)  or d ,  d  and  
                                                0  !

0 0  0  !

0  !

0 0  0  !
Í 0  ! a B a

BB
ww

BB CC BC
ww ww ww #

CC
ww

BB CC BC
ww ww ww #

# dC

and then  is a minimum point. B ß C! !

If , d  is the sum of two terms of opposite sign, and therefore its sign0 0  0  ! 0BB CC BC
ww ww ww # # 

varies with d  and d ; so  is a sufficient condition to ensure thatB C 0 0  0  !BB CC BC
ww ww ww #  B ß C 0 0! ! BB CC

ww ww is a saddle point. We note that this always happens when  and  have different
sign.
So far, nothing can be concluded when .0 0  0 œ !BB CC BC

ww ww ww # 
This case will be treated later with semi-definite forms.

If now we study the d  for , with a similar procedure but with much more con-# $0 0 À Ä‘ ‘
sistent calculations, we obtain an expression like:

d , where ,  and  is any of the four possible# # # #
" " # $$ # "

# $

" #
0 œ U  U  U             ‡ ‡ ‡ ‡

‡ ‡

‡ ‡
sequences of leading principal minors seen in Example 62, and the terms ,  e  repre-U U U" # $

# # #

sent, respectively, the square of a monomial, a binomial, a trinomial.

Examining the general case of d  for , we have the expression:# 80 0 À Ä‘ ‘
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d , where , ,...,  is# # # # #
" " # 88 8" # "

# 8" 8

" 8# 8"
0 œ U  U  ÞÞÞ  U  U                 ‡ ‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡
any possible sequence of leading principal minors and , ,...,  are the square of a mo-U U U" #

# # #
8

nomial, a binomial, ..., an -omial.8

We can then formulate, similarly to what we have seen in the case of a function of two varia-
bles, the following criteria to determine whether a quadratic form in  variables is positive or8
negative definite. The following is valid:
Theorem 24 The quadratic form d d d  is:À U œ † †   — — ‡ — T

- positive definite if and only if ; ‡3  !ß a 3 À " Ÿ 3 Ÿ 8

- negative definite if and only if .    " †  !ß a 3 À " Ÿ 3 Ÿ 83
3‡

If the form d d d  is positive definite at , as all its leading principal mi-U œ † †   — — ‡ — —T
!

nors have positive sign, this is a sufficient (not necessary) condition to ensure that  is a mi-—!

nimum point. If the form d d d  is negative definite at , as all its leadingU œ † †   — — ‡ — —T
!

principal minors have alternating signs, those with odd index are negative and those with
even index are positive, this is a sufficient (not necessary) condition to ensure that  is a—!

maximum point.
Since the theorem is expressed in the form of a necessary and sufficient condition, we deduce
that any sequence of leading principal minors, whatever the starting element on the main dia-
gonal, always leads to the same conclusion: therefore there is not a better choice to determine
the first-order leading principal minor with which to start the sequence.

Any sequence that is not the  or the  says that the point  is     ÞÞÞ       ÞÞÞÞÞ —!

a saddle point. When even only one leading principal minor is zero the above considerations
are no longer valid, and we are in the field of semi-definite quadratic forms.
For the study of semi-definite quadratic forms there is a criterion similar to that given for the
definite forms. But now it is not enough to analyze any sequence of leading principal minors,
but we need to examine all the principal minors of the matrix.
Principal minors of a matrix are minors having as elements of its main diagonal only elements
belonging to the main diagonal of the given matrix.

Example 63 If  we have three first-order principal minors: ,À œ +
+ + +
+ + +
+ + +



        "" "# "$

#" ## #$

$" $# $$

""

   
      + +
+ + +
+ + +
+ + +

## $$

"" "# "$

#" ## #$

$" $# $$

 and , and a third-order principal minor: ; these are also leading

principal minors; there are instead three second-order principal minors: , + +
+ +
"" "#

#" ##

   + + + +
+ + + +
## #$ "" "$

$# $$ $" $$
 and . The last of these is not a leading principal minor.

To see if a quadratic form is semidefinite the following criteria apply, for which we denote by QT 33  any principal minor of order :
Theorem 25 The quadratic form d d d  is:À U œ † †   — — ‡ — T

- positive semidefinite if and only if ; QT   !ß a 3 À " Ÿ 3 Ÿ 83

- negative semidefinite if and only if .    " † QT   !ß a 3 À " Ÿ 3 Ÿ 83
3
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Signs sequences are the same as those relating to the definite forms, but now including the
possibility of the presence of zeros. Each sequence of signs that is not one of the two former
ones leads to the conclusion that the quadratic form is indefinite.

Pay attention to the fact that when we have a definite quadratic form at  we can imme-—!

diately deduce the nature of the stationary point; on the contrary, if we have a semidefinite
quadratic form at , there is no conclusion allowed, we can only exclude a possibility:—!

-if at  the form d d d  is positive semidefinite, then  cannot be a ma-— — — ‡ — —! !U œ † †   T

ximum point, and then  may be either a minimum or a saddle point;—!

-if at  the form d d d  is negative semidefinite, then  cannot be a mi-— — — ‡ — —! !U œ † †   T

nimum point, and then  may be either a maximum or a saddle point.—!

How to decide between the remaining two possibilities depends on the function we are stu-
dying, depending on which we can use different methodologies. The most common is to
study, with various tricks, the sign of the difference .0  0   — —!

Here are some examples.

Example 64 Let  be the matrix of the quadratic form d  First-orderÀ œ 0Þ
% # "
# " #
" # "

‡

      
      

#

principal minors are ,  and ; second-order principal minors are%  ! "  ! "  !

     % # % " " #
# " " " # "

œ ! œ $  ! œ  $  !, ; . The presence of an even order negative

minor immediately leads to the conclusion that the quadratic form is indefinite.

Example 65 Let  be the matrix of the quadratic form d  First-À œ 0Þ
 % # $
#  #  "
$  "  $

‡

      
      

#

order principal minors are ,  and ; second-order principal minors %  !  #  !  $  !

are , ; . Third-order      % #  % $  #  "
#  # $  $  "  $

œ %  ! œ $  ! œ &  !

principal minor is . The quadratic form is then negative defi-

      
 % # $
#  #  "
$  "  $

œ  #  !

nite. To reach this conclusion, however, it was enough to examine only the sequence of
leading principal minors:

      
      ‡ ‡ ‡" # $œ  %  !à œ œ %  ! œ œ  #  !

 % #
#  #

 % # $
#  #  "
$  "  $

 , .

Example 66 Let  be the matrix of the quadratic form d  First-orderÀ œ 0Þ
" # $
# % '
$ ' *

‡

      
      

#

principal minors are ,  and ; second-order principal minors are"  ! %  ! *  !

     " # % ' " $
# % ' * $ *

œ ! œ ! œ !, ; . Third-order principal minor is the determinant of

‡, obviously equal to zero. Then the quadratic form is positive semidefinite.

Let us see now with some examples how to apply these methods for the study of stationary
points of a function of several variables.
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Example 67 Let us consider the function  Since ,À 0 Bß C œ B  C Þ f0 œ #Bß %C     # % $—

the only stationary point is  Is , from which, substituting, we get    !ß ! Þ œ
# !

! "#C
‡ #

‡       !ß ! œ 0 !ß ! !ß !
# !
! !

. The quadratic form d  is positive semidefinite, so  it is not#

a maximum point. As  and being , , we0 !ß ! œ ! B  C  ! a Bß C Á !ß !     # %

immediately see that  is a minimum point, moreover, an absolute minimum point. !ß !

Example 68 Let us consider the function , as ,À 0 Bß C œ B  C f0 œ #Bß  %C     # % $—

the only stationary point is  It results , from which, substituting,    !ß ! Þ œ
# !

!  "#C
‡ #

we get . The quadratic form d  is positive semidefinite, so  it‡       !ß ! œ 0 !ß ! !ß !
# !
! !

#

is not a maximum point. As , and , we see0 !ß ! œ ! 0 Bß ! œ B  ! 0 !ß C œ  C  !     # %

that  is a saddle point. !ß !

We note therefore that, for the same Hessian matrix , the conclusion‡    !ß ! œ
# !
! !

changes depending on the function we are examining.

Example 69 Given , let us determineÀ 0 Bß C œ $B  C  $B C  $BC  $B  $B  $C  $ $ # # #

its possible maximum and minimum points. Imposing the first-order condition, ,f0 œ ! —
we have the system: . 0 œ *B  'BC  $C  'B  $ œ !

0 œ  $C  $B  'BC  $ œ !
B
w # #

C
w # #

 Adding the two equations we have the system:

   'B  'B œ !

#BC  C  B  " œ !

'B B  " œ !

#BC  C  B  " œ !

#

# # # #, or:  from which:

  B œ !

"  C œ !
Ê

B œ ! B œ !
C œ " C œ  "#  and , or:

    B œ "

#C  C œ !
Ê Ê

B œ " B œ " B œ "
C #  C œ ! C œ ! C œ ##  and .

There are four stationary points: P , , P , , P , , P , ." # $ %œ ! " œ !  " œ " ! œ " #       
Using second-order conditions, we have first: .‡ œ

")B  'C  '  'B  'C
 'B  'C  'C  'B  

Studying the Hessian in each of the four points we have:

‡       P ,"
BB
ww

BB CC BC
ww ww ww #œ Ê

 "# '
'  '

0 œ  "#  !

0 0  0 œ (#  $' œ $'  !

and so ,  is a maximum point; ! "

‡      P ,# BB CC BC
ww ww ww #

œ Ê 0 0  0 œ !  $' œ  $'  !
!  '
 ' '

and so ,  is a saddle point; !  "

‡       P ,$
BB
ww

BB CC BC
ww ww ww #œ Ê

"#  '
 ' '

0 œ "#  !

0 0  0 œ (#  $' œ $'  !

and so ,  is a minimum point; " !

‡      P ,% BB CC BC
ww ww ww #

œ Ê 0 0  0 œ !  $' œ  $'  !
! '
'  '

and so ,  is a saddle point. " #
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Example 70 Let us conclude the study of the function , whoseÀ 0 Bß C œ C  B C  B     # %

stationary points are ; ; ; ; . Using se-    B œ ! B œ " B œ  "
C œ ! C œ " C œ "

B œ B œ 

C œ C œ

" "

# #
$ $
) )

 

cond-order conditions, we have , and so:‡    Bß C œ
$!B  #C  "#B C  #B  %B

 #B  %B #

% # $

$

‡    !ß ! œ
! !
! #

 so the quadratic form is positive semidefinite, but we have already seen

that  is a saddle point; !ß !

‡
‡
‡

        "ß " œ
"'  ' œ "'  !
 ' # œ $#  $' œ  %  !

 and so ,"

#

and therefore  is a saddle point; "ß "

‡
‡
‡

         "ß " œ
"' ' œ "'  !
' # œ $#  $' œ  %  !

 and so ,"

#

and therefore  is a saddle point;  "ß "

‡
‡

‡ 
     
         " $

#
ß œ
)



 #

œ  !

œ *  ) œ "  !

* %
# #
%

#

"
*
#

#


  and so ,

and then  is a minimum point; " $

#
ß
)

‡
‡

‡ 
     
          ß œ

" $

# ) #

œ  !

œ *  ) œ "  !

* %
# #
%

#

"
*
#

#


  and so ,

and then  also is a minimum point  ß Þ
" $

# )

Example 71 Given , let us determine its possible maxi-À 0 Bß Cß D œ B  C  D  BC  # # # #

mum and minimum points. First-order conditions give rise to the system:
  0 œ #B  C œ !

0 œ #C  #B C œ #C "  B œ !

0 œ #D œ !

w #
B
w
C
w
D

 from which we get the solutions:

   
       B œ !

C œ !
D œ !

B œ "

C œ #
D œ !

B œ " B œ "

C œ # C œ  #
D œ ! D œ !

 or  from which  and .#

It follows that  from which we obtain:‡ 
      
      Bß Cß D œ

#  #C !
 #C #  #B !
! ! #

‡
‡
‡
‡

 
      
      




   !ß !ß ! œ
# ! ! œ #  !
! # ! œ %  !
! ! # œ )  !

 and so: 
"

#

$

and then  is a minimum point; !ß !ß !

‡
‡
‡
‡

         
      





   "ß #ß ! œ
#  # # ! œ #  !

 # # ! !
! ! #

œ  )  !
œ  "'  !

 and so: 
"

#

$

and then  is a saddle point; "ß #ß !
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‡
‡
‡
‡

         
      





   "ß  #ß ! œ
# # # ! œ #  !

# # ! !
! ! #

œ  )  !
œ  "'  !

 and so: 
"

#

$

and then  is a saddle point. "ß  #ß !

Example 72 Given , let us determine its possible re-À 0 Bß C œ B  "  C B  "  C     % # #

lative maximum and minimum points. First-order conditions give rise to the system:

               0 œ % B  "  #C B  " œ !

0 œ  B  "  #C œ !
Ê Ê

% B  "  B  " œ ! B  " œ !

#C œ B  " #C œ B  "
B
w $

C
w #

$ $ $

# #

3
,

so  is the only stationary point. Moreover:B œ "
C œ !

‡ ‡             Bß C œ "ß ! œ Þ
"# B  "  #C  # B  "

 # B  " #

! !
! #

#

 from which 

So d  is a positive semidefinite quadratic form, so that  cannot be a maximum#0 "ß ! "ß !   
point. As d 2 d , let us investigate in the direction d , or . We get# #0 "ß ! œ C C œ ! C œ !   
0 Bß ! œ B  " B œ " C œ !   % , which would indicate  (and ) as a minimum point.
Such a study, a one-dimensional study, does not allow us, however, to conclude affirmatively
that  is a minimum point; it could be used, although this is not the case, to exclude that "ß !   "ß ! "ß ! is a minimum point. But  is indeed a minimum point, just write:

0 Bß C œ B  "  C B  "  C œ B  "  #C  C  B  " œ
" B  " $

% # %
          % # % %# #

#

0 Bß C œ B  "  C  B  "  ! œ 0 "ß ! ß a Bß C Á "ß ! Þ
" $

# %
            # %

#

Example 73 Given , let us determine its possible rela-À 0 Bß C œ $C  'BC  B  *B  'C  # $

tive maximum and minimum points. First-order conditions give rise to the system:

    0 œ 'C  $B  * œ !
0 œ 'C  'B  ' œ !

Ê Ê Ê
# #B  B  $ œ !
C œ "  B

 B  " œ !
C œ "  B

B œ  "
C œ #

B
w #

C
w

# #

which is the only solution.

Moreover  from which , and so d‡ ‡           Bß C œ  "ß # œ 0  "ß #
 'B ' ' '
' ' ' '

#

is a positive semidefinite form.
So  cannot be a maximum point.  "ß #

As d d d , we get d  when d d .# ##0  "ß # œ ' B  C 0  "ß # œ ! B œ  C     
Looking at the function on the line , passing through  and parallel toC œ  B  "  "ß # 
C œ  B 0 Bß "  B œ  B  $B  $B  $ œ  $ B  ", we have:  and also:   $ # $

0 Bß "  B œ  * B  " aB Á  " Þw
B

#    , which is negative 
Then along this line the function is always decreasing, then the point  is not even a  "ß #
minimum point, and hence is a saddle point. This time analyzing in a particular direction
leads to a negative conclusion, that is, to exclude the minimum point and then it gives us the
certainty of the saddle point.

THE HESSIAN MATRIX EIGENVALUES METHOD
There is also another method to study quadratic forms, based on the eigenvalues of the sym-
metric matrix that generates such quadratic form. We know that a symmetric matrix  has only
real eigenvalues, and that it can always be diagonalized by an orthogonal matrix. That is, if ‡
is a symmetric matrix, there exists an orthogonal matrix  such that: , from ‡   ƒ† œ †
which , where  is the diagonal matrix having as elements of its ‡   ‡  ƒ ƒ" † † œ † † œT
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main diagonal the eigenvalues  of . The matrix  is the modal matrix of , i.e.- - - ‡  ‡" # 8ß ß ÞÞÞß
the matrix having as columns the normalized eigenvectors of , which, for the properties of‡
symmetric matrices, are orthogonal to each other.
In order for the quadratic form d d d  to be definite it must be d  or# #0 œ † † 0  !— ‡ — T

d , d . Let us consider d d , where  is the modal matrix of . As#0  ! a Á œ †—  — ˜   ‡T

  ˜ ˜  —Á ! Ä † œ, the linear application d d d  is a bijective correspondenceT

‘ ‘8 8Ä , so we get:

d d d d d d d d .— ‡ — ˜  ‡ ˜  ˜  ‡  ˜ ˜ ƒ ˜† † œ † † † † œ † † † † œ † †      T T TT T TT

If d d  or if d d , d , it is also d d  or˜ ƒ ˜ ˜ ƒ ˜ ˜  — ‡ —† †  ! † †  ! a Á † †  !     T T T

d d , d . But— ‡ — — † †  ! a Á T

d d d d d ,˜ ƒ ˜ - - -† † œ C  C  ÞÞÞ  C       T
" " # # 8 8

# # #

from which it immediately follows
Theorem 26 The quadratic form d d  is:À † †— ‡ — T

- positive definite if and only if , ;-3  ! a 3 À " Ÿ 3 Ÿ 8
- negative definite if and only if , ;-3  ! a 3 À " Ÿ 3 Ÿ 8
- positive semidefinite if and only if ,   ;- -3 5  ! a 3 À " Ÿ 3 Ÿ 8 b œ !and
- negative semidefinite if and only if ,   ;- -3 5Ÿ ! a 3 À " Ÿ 3 Ÿ 8 b œ !and
- indefinite if   b  ! b  ! Þ- -3 4and

Theorem 24 and Theorem 26 express necessary and sufficient conditions to get a definite qua-
dratic form, then the two methods (leading principal minors and eigenvalues) are not alterna-
tive but always lead to the same conclusion.

What we have seen so far about the second-order conditions for stationary points analysis  is
based on the analysis at , which verifies if d  is a definite positive or negative form,— —! !

#0 
or an indefinite one; if the form d  is semidefinite we can only exclude one of the three#

!0 —
possibilities, in order to decide, with a further analysis, between the two remaining, one of
which will always be that of the saddle point.
The situation is different if we can lead a global analysis. If d  is positive or negative#0 —
semi-definite, both at  than in the whole domain, then this is sufficient to guarantee that — —! !

is a, respectively, minimum or maximum point.

Example 74 Let us use again the function , with the stationary pointÀ 0 Bß C œ B  C  # %

      !ß ! Bß C œ
# !

! "#C
 and the Hessian matrix .‡ #

The result is d d d , d d . So the form d# # ## # #0 Bß C œ # B  "# C C   ! a Bß C − 0 Bß C         ‘
is positive semidefinite not only at  but throughout , and then, as already seen,    !ß ! !ß !‘#

it is a minimum point.

CONSTRAINED MAXIMA AND MINIMA

The search for maximum and minimum points, both relative and absolute, for what we have
seen so far, can be decomposed into three different problems. The first covers the search and
analysis of the stationary points of a function in all its existence field, whose solutions are
normally interior points of the domain. This type of research requires differentiable functions.
The second problem, we are not dealing with, concerns the analysis of the points where a
function is defined but is not differentiable. These too can be maximum or minimum points.
The third problem concerns the search for maximum and minimum points relative to some
appropriate subset of the existence field. Weierstrass's theorem gives a sufficient condition to
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guarantee the existence of maximum and minimum for continuous functions in a compact set.
There are two ways in which we can present this third type of problem.
The first is the so-called maxima and minima with equality constraints, which in the simplest

case is in the form , where u.c. means "under constraints". We do not
Max/min 
u.c. :    0 Bß C

1 Bß C œ !

look for extremes for  throughout the domain (these maximum or minimum points0 Bß C 
from now on will be called "free"), but only between points that satisfy the equation
1 Bß C œ !  .
As  is called the constraint,  is called the objective function.1 Bß C œ ! 0 Bß C   
If the function  satisfies suitable assumptions, related to those of Dini's theorem on im-1 Bß C 
plicit functions, we can consider one of the two variables as a function (explicit or implicit) of
the other, for example , and then we can draw a curve in the plane: ; thenC œ C B Bß C B    
the problem is reduced to finding maxima and minima of the function , i.e. of the0 Bß C B  
curve, projection on the surface  of the points of the curve defined by .0 Bß C 1 Bß C œ !   
Increasing the number of variables and equations we have geometric representations of the
problem with larger dimensions than the one just described.

Let us consider instead, as a second type of problem, with a constraint expressed in the form
of inequality: . Usually (but not necessarily) the points satisfying  are1 Bß C Ÿ ! 1 Bß C Ÿ !   
interior and boundary points of a region contained in the domain, and the problem then is to
find maximum and minimum points of the function  inside or on the boundary of the0 Bß C 
selected region: . The search for extremes at interior points of the defined

Max/min 
u.c. :    0 Bß C

1 Bß C Ÿ !

region is similar to that of free maxima and minima, the search in boundary points is similar
to that of maxima and minima with equality constraints.
These two problems are named maximization or minimization with equality or inequality con-
straints.

EXTREMES WITH EQUALITY CONSTRAINTS - FIRST ORDER CONDITIONS

We begin dealing with the first case described: . Let  be the set of
Max/min 
u.c. :    D œ 0 Bß C

1 Bß C œ !
X

points satisfying the constraint ; let us suppose that  and  are1 Bß C œ ! 0 Bß C 1 Bß C     
differentiable functions and that ,  This last condition allowsf1 Bß C Á !ß ! a Bß C − Þ      X
us to apply Dini's theorem at each point of , and then we can determine, explicitly orX
implicitly, a variable as a function of the other.
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This condition can also be formulated as Rank Max .  `1

` Bß C
œ " œ

If the rank of the Jacobian, i.e. the gradient of , is maximum, or equal to , the two derivati-1 "
ves  and  cannot be simultaneously equal to zero. Let us suppose it is defined ,1 1 C œ C Bw w

B C  
so we have two functions compositions:

‘ ‘ ‘Ä Ä B Ä Bß C B Ä 0 Bß C œ D
0# , , and    

‘ ‘ ‘Ä Ä B Ä Bß C B Ä 1 Bß C œ !
1# , .    

Deriving in the first the variable  with respect to  we get:D B
d d d
d d d
D `0 B `0 C

B `B B `C B
œ †  † œ 0  0 † C B Þw w w

B C  
From the constraint equation we get, using the derivative of the implicit function,  andC Bw 
so:

C B œ  œ 0  0 †
1 D 1

1 B 1
w w w

w w
B B
w w
C C

B C   with which, substituting, we obtain: .
d
d

Let us suppose, by assumption, that  is a solution, a maximum or a minimum point, to B ß C! !

the problem. Since the function is a composition of differentiable functions, it must be, for

Fermat's Theorem: , or  and so  and
d
d
D 1 1

B 1 1
œ 0  0 † œ ! 0 œ 0 † 0 † 1 œ 0 † 1w w w w w w w w

B C B C B C C B

w w
B B
w w
C C

finally:

     0 0

1 1
œ œ !

` 0ß 1

` Bß C

w w
B C
w w
B C

.

As ,  and  are linearly dependent vectors, and so ,     ` 0ß 1

` Bß C
œ œ ! f0 f1 f0 œ f1

f0
f1

-

- ‘ - - − f0  f1 œ f 0  1 œ Þ. But then  
So we have obtained a necessary condition for the point  to be a solution of the pro- B ß C! !

blem .
Max/min 
u.c. :    0 Bß C

1 Bß C œ !

Even now a gradient must be cancelled, not that of the objective function, as in the case of
free maxima and minima, but that of the function .0 Bß C  1 Bß C   -
The function  is called "Lagrangian function" while  isA - - -     Bß Cß œ 0 Bß C  1 Bß C
called "Lagrange's multiplier". So we have:
Theorem 27 If  and  are differentiable functions  and ; ifÀ 0 1 Ä f1 Bß C Á !ß !‘ ‘#    
     B ß C

0 Bß C
1 Bß C œ !! !  is a solution of the problem , given the Lagrangian function

Max/min 
u.c. : 

A - - - A -        Bß Cß œ 0 Bß C  1 Bß C f B ß C ß œ Þ, then there is a value  such that: ! ! ! !

First order conditions become , bearing in mind, however, that any solutionf Bß Cß œA -  
must satisfy the constraint, so we have to solve the system: .


  
A -
A -

w w w
B B B
w w w
C C C

œ 0  1 œ !
œ 0  1 œ !

1 Bß C œ !
But , so the latter system can be indeed be seen as , mea-A A - w

- œ  1 Bß C f Bß Cß œ   
ning, however,  as a function of variables ,  and , and so we solve the system:A - - Bß Cß B C
  
A -
A -

A

w w w
B B B
w w w
C C C
w

œ 0  1 œ !
œ 0  1 œ !

œ  1 Bß C œ !-

.
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Let us study the problem . We still have only one constraint, but
Max/min 
u.c. :    A œ 0 Bß Cß D

1 Bß Cß D œ !

independent variables now are three. If  has rank equal to  throughout , from
` 1

` Bß Cß D
"

   X

Dini's theorem we obtain (explicitly or implicitly) , obtaining the following func-D œ D Bß C 
tions composition: , , and then we‘ ‘ ‘# $Ä Ä Bß C Ä Bß Cß D Bß C Ä 0 Bß Cß D œ A

0       
must find maxima and minima of a function not of one but of two variables.
If  and  are differentiable functions, we now must put:0 1

`A `0 `B `0 `C `0 `D

`B `B `B `C `B `D `B
œ †  †  † œ 0  0 † !  0 † D

`A `0 `B `0 `C `0 `D

`C `B `C `C `C `D `C
œ †  †  † œ 0 † !  0  0 † D

w w w w
B C D B

w w w w
B C D C

.

But, from Dini's theorem, we obtain, from the constraint equation, as derivatives of the

implicit function,  and , i.e.  and , from which, substituting, weD D D œ  D œ 
1

1 1

1
w w
B C B C

w w
w
B
w w
D D

w
C

have: .



`A 1

`B 1
œ 0  0 †

`A

`C 1
œ 0  0 †

1

w w
B D

w
B
w
D

w w
C D

w
C

w
D

Suppose, by assumption, that  is a solution, a maximum or a minimum point, to the B ß C ß D! ! !

problem. It must be , or , from which it fol-
`A `A

`B `C
œ œ !

`A

`B
œ 0 † 1  0 † 1 œ !

`A

`C
œ 0 † 1  0 † 1 œ !


w w w w
B D D B

w w w w
C D D C

lows:  But then  has            0 0 f0
1 1 1 1 1 1 1

œ œ ! Þ œ œ
0 0 0 0 0 ` 0ß 1

` Bß Cß D f1

w w
B D
w w w w w w w
B D C D B C D

w w w w w
C D B C D

rank equal to , and so , from which we get again " f0 œ f1 f 0  1 œ f œ Þ- - A  
Increasing the number of independent variables does not lead to changes from an operational
point of view: at a constrained maximum or minimum point it is still necessary to cancel the
gradient of the Lagrangian function, but this time we get the system:  

A -
A -

A -
A

-

w w w
B B B
w w w
C C C
w w w
D D D
w

œ 0  1 œ !
œ 0  1 œ !

œ 0  1 œ !
œ  1 Bß Cß D œ !

B C D

-

, of four equations in four variables , ,  and .

With  the due changes, it can be stated for this case a theorem similar to Theorem 27.

The next generalization of the problem will involve constraints.

We study in fact the problem : , that has not one but two con-
Max/min 

u.c. : 




 
   

A œ 0 Bß Cß D

1 Bß Cß D œ !
2 Bß Cß D œ !

straints, in three variables ,  and .B C D

Let us take the hypothesis that  has rank equal to , i.e. maximum, at every point of
` 1ß 2

` Bß Cß D
#

  
the set  in which the two constraints are simultaneously satisfied. From Dini's theorem thisX
guarantees the existence of a function , for example , that genera-‘ ‘Ä B Ä C B ß D B#     
tes the following functions composition:
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‘ ‘ ‘Ä Ä B Ä Bß C B ß D B Ä 0 Bß Cß D œ A
0$ , , and then we are led to find the extre-      

mes of a function of one variable. Suppose, by assumption, that  is a solution, a B ß C ß D! ! !

maximum or a minimum point, to the problem. It must be:
d d d d
d d d d

, or .
A `0 B `0 C `0 D

B `B B `C B `D B
œ †  †  † œ ! 0  0 † C B  0 † D B œ !w w w w w

B C D   
From the system , from Dini's theorem we obtain, since by hypothesis   1 Bß Cß D œ !

2 Bß Cß D œ !

 1 1

2 2
Á !

w w
C D
w w
C D

:

C B œ  D B œ 

1 1
2 2

1 1 1 1

2 2 2 2

1 1

2 2
w w

w w
B D
w w
B D
w w w w
C D C D
w w w w
C D C D

w w
C B
w w
C B    

   
 

 and , from which, replacing, and changing the

order of the columns of the numerator of , we get, computing common denominator:D Bw 
0 †  0 †  0 † œ !

1 1 1 1

2 2 2 2 2 2
1 1w w w

B C D

w w w w
C D B C
w w w w w w
C D B D B C

w w
B D      , or                  

0 0 0

1 1 1

2 2 2

œ œ !
f0
f1
f2

w w w
B C D
w w w
B C D
w w w
B C D

.

The three rows, or gradients, are then linearly dependent, and then we have:
f0 œ f1  f2 f 0  1  2 œ !- - - -" # " #, or . 
From a practical point of view increasing the constraints implies that the Lagrangian function
is expressed as a difference between the objective function and a linear combination of the
constraints, each one with its multiplier.
Increasing the number of the constraints does not lead to changes from a practical point of
view: at a constrained maximum or minimum point it is still necessary to cancel the gradient

of the Lagrangian function, but now we have the system: 



A - -
A - -

A - -

w w w w
B B B B" #
w w w w
C C C C" #
w w w w
D D D D" #

œ 0  1  2 œ !
œ 0  1  2 œ !

œ 0  1  2 œ !
œ  1 Bß Cß D œ !

œ  2 Bß Cß D œ !

A

A

w

w
-

-

"

#

  
,

of five equations in five variables , , ,  and .B C D - -" #

Using these three introductory problems, let us formulate first order conditions in the general
case of a maxima or minima problem with equality constraints.

Let  be the set of points that satisfy the system X

  
  1 B ß B ß ÞÞÞß B œ !

1 B ß B ß ÞÞÞß B œ !
ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ

1 B ß B

" " # 8

# " # 8

7 " # 8ß ÞÞÞß B œ !

.

We have the following:
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Theorem 28 Let  and , , , be differentiable functions throu-À 0 1 " Ÿ 3 Ÿ 7  8 Ä3
8‘ ‘

ghout , with Rank , and  is a solution of theX ‘§ œ 7 B ß B ß ÞÞÞß B
` 1 ß 1 ß ÞÞÞß 1

` B ß B ß ÞÞÞß B
8 " # 7

" # 8

! ! !
" # 8     

problem 

Max/min 

u.c. 



   
  
0 B ß B ß ÞÞÞß B

1 B ß B ß ÞÞÞß B œ !
1 B ß B ß ÞÞÞß B œ !
ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ

1 B ß B ß ÞÞÞß B

" # 8

" " # 8

# " # 8

7 " # 8 œ !

.

Then, if , thereA - - - -     B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ 0 B ß B ß ÞÞÞß B  † 1 B ß B ß ÞÞÞß B" # 8 " # 7 " # 8 3 3 " # 8

3œ"

7

exists a vector  for which .   - - - A - - - ! ! !
" # 7 " # 8 " # 7

! ! ! ! ! !ß ß ÞÞÞß f B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ

So the point  must be a solution of the system of   B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ ß! ! ! ! ! !
" # 8 " # 7 ! !- - - — -

8 7 87

` `0

`B `B `B
œ  † œ ! " Ÿ 3 Ÿ 8

`1

`

`
œ  1 B ß B ß ÞÞÞß B œ ! " Ÿ 3 Ÿ 7

 equations in  unknowns: .




 
A

-

A

-

3 3 34œ"

7

4
4

3
3 " # 8

It's worth repeating that these first order conditions, like  for free maxima and mini-f0 œ 
ma, are necessary, and not sufficient to ensure the nature of extremes. Among stationary
points for the Lagrangian function there are, besides possible maxima and minima, also infle-
ction or saddle points. We have inflection points when , since the constraints7 œ 8 "
allow us to express  variables as functions of the only remaining one, and then the8  "
problem consists in finding the extremes for a function of one variable; we have instead
saddle points if , as the variables that remain independent are more than .8 7  " "

EXTREMES WITH EQUALITY CONSTRAINTS - SECOND ORDER CONDITIONS
Now we treat the simplest example for second order conditions for maxima and minima
subject to equality constraints; these will be sufficient and not necessary conditions. We shall
go again over the simplest cases to be able to justify (not to prove) the formulation of the
conditions in the general case.

Let us recall the problem . Let's see how to study the sign of the se-
Max/min 
u.c. :    D œ 0 Bß C

1 Bß C œ !

cond order total differential with the presence of a constraint.
As d d d , and if  from , the differential d  depends on D œ 0 B  0 C C œ C B 1 Bß C œ ! C Bw w

B C    
and , so:C

d d d d d d d
d d# ww ww w ww ww w

BB CB C CB CC CD œ 0 B  0 C  † 0 † B  0 B  0 C  † 0 † C œ
` C ` C

`B `C
      

d d d d d d d
d d# ww ww ww w

BB BC CC C
# #D œ 0 B  #0 B C  0 C  0 † † B  † C œ

` C ` C

`B `C
        

d d d d d d .# # w # w #
C CD œ 0  0 † C œ 0  0 † C 

From , if  is twice differentiable, similarly we get:D œ 1 Bß C œ ! 1 
d d d , as  is constant at the constraint points, hence we get:# # w #

CD œ 1  1 † C œ ! D

d d .# #
w
C

C œ  † 1
"

1

As , from which  and so , substituting we obtain:f0 œ f1 0 œ 1 œ
0

1
- - -w w

C C

w
C

w
C
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d d d d d d d d d .# # w # # # # # # #
C

w
C

w
C

D œ 0  0 † C œ 0  † 1 œ 0  † 1 œ 0  † 1 œ
0

1
- - A 

Just as first order conditions can be expressed by cancelling a gradient (of , not of ), alsoA 0
second order conditions can be expressed referring to the sign of a second order total differen-
tial, (once again of Lagrangian , not of ).A 0
However, not everything is equal to methods already described for free maxima and minima.
In fact:
d d d d d .# ww ww ww

BB BC CC
# #A A A A     Bß C œ B  # B C  C

From  we get d d , from which, substituting, we have:1 Bß C œ ! C œ  † B
1

1
  w

B
w
C

d d d d# ww ww ww
BB BC CC

# # #
w w
B B
w w
C C

#

A A A A        Bß C œ B  # † B  † B œ
1 1

1 1

d .
d# ww w ww w w ww w

BB C BC B C CC B
# #

#

w
C

#A A A A        Bß C œ 1  # 1 1  1 †
B

1

But it is easily seen that:

A A A A A

A A

ww w ww w w ww w
BB C BC B C CC B

# #

w w
B C

w ww ww
B BB BC
w ww ww
C BC CC

   
      1  # 1 1  1 œ 

! 1 1

1

1

 and also:

                      ! 1 1

1

1

œ œ Bß Cß

w w
B C B C

w ww ww ww ww ww
B BB BC BB BC
w ww ww ww ww ww
C BC CC BC CC

ww ww ww

B

C

A A A A A

A A A A A

A A A

‡ A -
-- - -

-

-

.

Matrix  is called "Bordered Hessian matrix"; there is one border row at the top and one bor-‡
der column at the left, which, excluding the initial zero, are the gradient of the constraint
1 Bß C .
The zero in the north-west corner corresponds to , while remaining elements of the borderAww

--

are the opposite of the second order derivatives of the Lagrangian made with respect to  and-
then with respect to  or ; for the determinant properties, changing the sign of two lines, theB C
determinant remains unchanged.
The sign of the differential d  is not to be studied on varying two independent increments#A

d  and d ; replacing d d  only d  remains independent, consistently with theB C C œ  † B B
1

1

w
B
w
C

fact that the presence of a constraint leaves only one independent variable among  and .B C
This fact can be geometrically interpreted saying that we should investigate d  using incre-#A
ments lying only on directions tangential to the constraint.

As d , we have the following:#A ‡ A -œ  Bß Cß   
Theorem 29  is a solution of the system . ThenÀ B ß C ß f Bß Cß œ !   ! ! !- A -
- d  is a constrained minimum point;      ‡ A - AB ß C ß  ! Í  ! Ê B ß C! ! ! ! !

#

- d  is a constrained maximum point.      ‡ A - AB ß C ß  ! Í  ! Ê B ß C! ! ! ! !
#

Nothing can be concluded if it is , as  may be a maximum, mi-     ‡ A -B ß C ß œ ! B ß C! ! ! ! !

nimum or inflection point.
We need in this case a different type of analysis to determine the nature of the point.

Observation 1) Although the bordered Hessian is a third order matrix, we must take into ac-
count only the leading minor of third order, i.e. the determinant of the matrix itself; it is not
necessary to examine the leading minor of first order, which is always zero, and is not
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necessary to examine the leading minor of the second order, as ,   ! 1
1

œ  1  !
w
B

w ww
B BB

w
B

#

A

therefore always negative.

Observation 2) Only North-West leading minors are to be examined ; there are no conditions
that can be expressed through other sequences of leading minors and there are no conditions
based on the eigenvalues of the Hessian bordered matrix.

If we study now the second-order conditions for the problem  we will
Max/min 
u.c. :    0 Bß Cß D

1 Bß Cß D œ !

still be brought to the study of d . From the constraint  we can, by hypothesis,#A 1 Bß Cß D œ ! 
get ; so we are looking for the extremes of a two variables function, and the studyD œ D Bß C 
of the sign of d  will depend on d  and d .#A B C
The developments of the calculus, which are omitted for brevity, leads to study the sign of a
quantity whose opposite can be related to the  bordered Hessian matrix:         

         
  

! 1 1 1

1

1

1

œ Bß Cß Dß

w w w
B C D

w ww ww ww
B BB BC BD
w ww ww ww
C BC CC CD
w ww ww ww
D BD CD DD

A A A

A A A

A A A

‡ A - .

Similarly to what we saw in the case of free extremes for a two variables function, we must
study the sign of two North-West leading minors.
As before, first order and second order leading minors are useless. We must study only the
sign of the leading minors   and , and we have the following:   ‡ ‡$ %

Theorem 30  is a solution of the system . ThenÀ B ß C ß D ß f Bß Cß Dß œ !   ! ! ! !- A -
-  e d  is a constrained minimum point;       ‡ ‡ A$ % ! ! !

# !  ! Í  ! Ê B ß C ß D

-  e d  is a constrained maximum point.       ‡ ‡ A$ % ! ! !
# !  ! Í  ! Ê B ß C ß D

If  and  or if  and  surely the point is a saddle point.          ‡ ‡ ‡ ‡$ % $ % !  !  !  !

Nothing can be concluded if it is  or , still respecting however the previ-   ‡ ‡$ %œ ! œ !

ous sequences of signs, as  may be a maximum, a minimum or a saddle point. B ß C ß D! ! !

We need in this case a different type of analysis to determine the nature of the point.

Finally, for the problem:  we will still be brought to the study of
Max/min 

u.c. : 




 
   

0 Bß Cß D

1 Bß Cß D œ !
2 Bß Cß D œ !

d , but from the constraints  we can, by hypothesis, obtain ;#A        1 Bß Cß D œ ! C œ C B
2 Bß Cß D œ ! D œ D B

so let us look for the extremes of a one variable function, and the study of the sign of d  will#A
be based only on d .B
With two (even number) constraints, there are no sign changes, so the sign of d  corre-#A
sponds to that of the determinant of the bordered Hessian matrix:           

           

! ! 1 1 1

! ! 2 2 2

1 2

1 2

1 2

w w w
B C D
w w w
B C D

w w ww ww ww
B B BB BC BD
w w ww ww ww
C C BC CC CD
w w ww ww ww
D D BD CD D

A A A

A A A

A A A D

" #œ Bß Cß Dß ß #ß #‡ A - -     . The  matrix in the North-West

corner is null because  , and so the four secondA - -œ 0 Bß Cß D  1 Bß Cß D  2 Bß Cß D     " #

order derivatives of the Lagrangian function with respect to the multipliers  and  are also- -" #

null. We can now see that in the leading minors sequence (always and only North-West se-
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quence) the first four (four is twice two, the number of constraints) are zero          ‡ ‡ ‡ ‡ A1 œ ! œ ! œ !  !, ,  or have constant sign , wherefore d  sign coin-# $ %
#

cides with that of , determinant of the bordered Hessian matrix. ‡&

We have the following:
Theorem 31  is a solution of the system . ThenÀ B ß C ß D ß ß f Bß Cß Dß ß œ !   ! ! ! " #" #

! !- - A - -

- d  is a constrained minimum      ‡ A - - A& ! ! ! ! ! !" #
! ! #B ß C ß D ß ß  ! Í  ! Ê B ß C ß D

point;
- d  is a constrained maximum      ‡ A - - A& ! ! ! ! ! !" #

! ! #B ß C ß D ß ß  ! Í  ! Ê B ß C ß D

point.
Nothing can be concluded if it is , as  may be ma-     ‡ A - -& ! ! ! ! ! !" #

! !B ß C ß D ß ß œ ! B ß C ß D

ximum, minimum or inflection point.
In this case too we need  a different type of analysis to determine the nature of the point.

From what we saw in the three treated examples, the following considerations arise:
- we need to build the bordered Hessian matrix, consisting of the second order derivatives of
the Lagrangian function made with respect both to variables and multipliers;
- we only need to study the signs of the North-West leading minors, subtracting an initial
number of such minors equal to twice the number of the constraints; the number of leading
minors whose sign is relevant is equal to the number of variables which remain independent;
- for the remaining leading minors, in order to find a minimum or a maximum point, two se-
quences of signs are valid, wich are the same as for free extremes if the number of constraints
is even; have opposite signs than the previous sequences for an odd number of constraints;
- each sequence different from the two described, even if for only one sign, leads to the con-
clusion that the point is an inflection or saddle point;
- if between the relevant leading minors there is at least one equal to zero, nothing can be con-
cluded about the nature of the point.

So let's look at the general case, i.e. the problem 

Max/min 

u.c. 



 
  
0 B ß B ß ÞÞÞß B

1 B ß B ß ÞÞÞß B œ !
1 B ß B ß ÞÞ

" # 8

" " # 8

# " # Þß B œ !
ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ

1 B ß B ß ÞÞÞß B œ !

8

7 " # 8 
.

The bordered Hessian matrix is a square matrix of order , and is equal to:7 8

‡ A - - -  
            

            
B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ

! ÞÞÞ ! 1 ÞÞÞ 1
ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ
! ÞÞÞ ! 1 ÞÞÞ 1

" # 8 " # 7

w w
"" "8

w w
7" 78

w w ww ww
"" 7" "" "8

w w ww ww
"8 78 8" 88

1 ÞÞÞ 1 ÞÞÞ
ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ ÞÞÞ
1 ÞÞÞ 1 ÞÞÞ

A A

A A

,

where, for brevity, we settle  and , and can be so represented:1 œ œ
`1 `

`B `B `B
w ww
34 34

3

4 3 4

#

A
A

‡ A - - -

  
         

         

  
   

B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ

` 1 ß 1 ß ÞÞÞß 1

` B ß B ß ÞÞÞß B

` 1 ß 1 ß ÞÞÞß 1

` B ß B ß ÞÞÞ

" # 8 " # 7

" # 7

" # 8

" # 7

" # ß B
B ß B ß ÞÞÞß B

8
" # 8

T

‡ A   .

As we see, bordered Hessian matrix can be split into four blocks.
The block in the upper left is an  null matrix, consisting of the second order7‚7
derivatives of the Lagrangian function done both times with respect to the multipliers, and
hence equal to zero.
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In the upper right and lower left block there are the derivatives of the Lagrangian obtained de-
riving once with respect to a multiplier and once with respect to a variable; these also form
the border, which is completed so by the Jacobian of the constraints, an  matrix, at the7‚ 8
top as rows and on the left, transposed, as columns.
The remaining  block, in the lower right, is the Hessian of the Lagrangian done with re-8 ‚ 8
spect to the variables .B3

Then the following applies:
Theorem 32  is a solution of the system:À B ß B ß ÞÞÞß B ß ß ß ÞÞÞß " # " #

! ! ! ! ! !
8 7- - -

f B ß B ß ÞÞÞß B ß ß ß ÞÞÞß œ !A - - - " # 8 " # 7 . Then

- d  is a constrained minimum point;         " †  !

#7 " Ÿ 3 Ÿ 7 8
Í  ! Ê B ß B ß ÞÞÞß B

7
3 # ! ! !

" # 8
‡ A

A

- d  is a constrained maximum         " †  !

#7 " Ÿ 3 Ÿ 7 8
Í  ! Ê B ß B ß ÞÞÞß B

73
3 # ! ! !

" # 8
‡ A

A

point.
Nothing can be concluded if some relevant leading minor is equal to zero.

If the constraints are in an even number (and also zero), an all positive signs sequence
indicates a minimum point, while an alternating signs sequence, starting from the negative,
indicates a maximum point.
If the constraints are in an odd number, an all negative signs sequence indicates a minimum
point, while an alternating signs sequence, starting from positive, indicates a maximum point.
Each sequence that does not meet one of those described indicates an inflection or a saddle
point.
The requirement  means that only North-West relevant leading minors#7 " Ÿ 3 Ÿ 7 8
should be considered, obtained discarding the first  leading minors (a number equal to#7
twice the number of constraints) so starting from the  order leading minor.#7 "
To change or not to change the signs of the sequence of the relevant leading minors is the role
of the factor .  " 7

As , we have  relevant leading minors; if , or if there7  8 7 8  #7 œ 8 7 7 œ " 
is only one constraint, we must consider the sign of  relevant leading minors; if instead8  "
7 œ 8  " , which is the maximum possible number of constraints, we will consider the sign
of only one relevant leading minor, which is the determinant of the bordered Hessian matrix.
Since each constraint, explicitly or implicitly, makes a variable a dependent one, the number
of relevant leading minors the sign of which must be studied coincides always with the
number of variables that remain independent.

It should be finally pointed out that there are no second order conditions based on eigenvalues
of the bordered Hessian matrix.

Example 75 We study the problem .
Max/min 
u.c. : 

À
0 Bß C œ #B  $C

1 Bß C œ B  C œ "
   

$

# #

0 Bß C 1 Bß C    and  are polynomials, and then infinitely differentiable functions. Then
f1 Bß C œ #Bß #C œ Í Bß C œ !ß ! !ß !          ; but  does not satisfy the constraint equa-
tion, and therefore hypotheses of Theorem 27 are satisfied. We form the Lagrangian and then
we have: ; imposing  we get:A - - A   Bß Cß œ #B  $C  B  C  " f œ !$ # #

  
     

  


A - -
A -

A

- - -

w #
B
w
C
w # #

$ $
# #

œ ! Ê 'B  # B œ #B $B  œ !
œ ! Ê $  # C œ !

œ ! Ê B  C œ "

Ê Ê

B œ !

œ
$

#C
C œ „"

B œ ! B œ !

œ œ 

C œ " C œ  "-

 and 
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or  so we have:

                      



  

B œ
$

C œ Ê Ê
$

#

* %
 œ "

*

B œ
$

C œ
$

#
%  )"  $'

$'
œ !

B œ
$

C œ
$

#
#  * œ !

-

-
-

-

-

-
- -

-

-

-
-

#

#

% #

#
# #

       
 

- -œ œ 

B œ B œ 

C œ C œ 

œ !ß "ß
$

#

$ $

# #
" "

# #
" "

# #

"

 
 
 

 e . Solving the system, we have four points: P ,

P , P  and P# $œ !ß  "ß  œ ß ß œ  ß  ß  Þ
$ " " $ " " $

# # # # # # #
          4

We apply the second-order conditions. We form the bordered Hessian to get:

‡ A - -
-

  
      
      Bß Cß œ
! #B #C
#B "#B  # !
#C !  #

 so we have:

   
      ‡ A P , so P  is a maximum point;" "œ œ # † ' œ "#  !
! ! #
!  $ !
# !  $

   
      ‡ A P , so P  is a minimum point;# #œ œ  # † ' œ  "#  !

! !  #
! $ !
 # ! $

   
                     

         ‡ A P , so we cannot decide$ œ œ œ !

! # # ! # #

# $ # ! ! $ # $ #

# !  $ # # !  $ #

anything;

   
                     

         ‡ A P , so we% œ œ œ !

!  #  # !  #  #

 #  $ # ! !  $ #  $ #

 # ! $ #  # ! $ #

cannot decide anything.

Since the constraint is the trigonometric circle, to solve the two remaining cases we try repla-

cing  to get: cos sin . Is:
cos
sin  B œ >

C œ >
0 > œ # >  $ >$

0 > œ ' > †  >  $ > œ $ > † "  # > > œ $ > † "  #>   !w #       cos sin cos cos sin cos cos sin
if cos  as sin 1 , .>   ! #> Ÿ a >

So  if  and if .0 >   ! ! Ÿ > Ÿ Ÿ > Ÿ #
# #

$w  1 1
1
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Point  corresponds to , while point  corresponds to      " " " "

# # # #
ß > œ  ß 

%

1

> œ
&

%

1
 and, as we see from the monotonicity analysis, they are both points of inflection and

no maximum or minimum points.
Since the circle points form a bounded and closed set, and since the function  is conti-0 Bß C 
nuous, points P  and P  are not only relative (local) but also absolute maximum and minimum" #

points.

Example 76 We study the problem .
Max/min 
u.c. : 

À
0 Bß Cß D œ B  C  #D

1 Bß Cß D œ B  C  D œ !    # #

0 Bß Cß D 1 Bß Cß D    and  are polynomials, and therefore infinitely differentiable functions.
Then  ; and therefore hypotheses of Theorem 27f1 Bß Cß D œ #Bß #Cß  " Á a Bß Cß D     
are satisfied. We form the Lagrangian and then we have:
A - - A   Bß Cß Dß œ B  C  #D  B  C  D f œ !# # ; imposing  we get:

     




A -
A -

A -

A

-

-
-

w
B
w
C
w
D
w # #

# # "
)

œ ! Ê "  # B œ !
œ ! Ê "  # C œ !

œ ! Ê  #  œ !

œ ! Ê D  B  C œ !

Ê

B œ œ
" "

# %

C œ œ
" "

# %
œ #

D œ B  C œ
-

. So there is only one stationary point

for the Lagrangian: P . Then:! œ ß ß ß #
" " "

% % )
 

‡ A ‡ A
-

-
   

        

        
 

         

         
œ œ

! #B #C  "
#B  # ! !
#C !  # !
 " ! ! !

!  "

 ! !
 and P

4
!

" "
# #

"
#
"
# !  !

 " ! ! !

4
.

We need to compute two leading minors:  and , and so we get:   ‡ ‡$ %

     
       

      ‡ A$ !

" "
# #

"
#
"
#

" "
# #

"
#

P , andœ œ œ † #  # œ #  !

!

 % !

!  %

!

!  % %

!  %

"

#

   
         

      ‡ A% !

" "
# #

"
#
"
#

" "
# #

P .
4

4
œ œ " † œ  "'  !

!  "

 ! !

!  !

 " ! ! !

 "

 % ! !
!  % !

As P  and P  it follows that P  is a maximum point.         ‡ A ‡ A$ ! % ! ! !  !

We could also get the same result in a faster way, as the constraint allows us, using the equa-
tion , to solve  as , so, substituting, we obtain:B  C  D œ ! D D œ B  C# # # #

0 Bß Cß B  C œ B  C  #B  #C # # # # . We can then look for free maxima and minima of
this two variables function. The constraint is satisfied as contained in the replacement.

We have so:  Then:


0 œ "  %B œ !
0 œ "  %C œ !

Ê Ê D œ B  C œ Þ
B œ

"

%

C œ
"

%

"

)

w
B
w
C

# #
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‡ ‡ ‡ ‡           0 œ œ 0 œ  %  ! œ "'  !
 % !
!  %

P  from which  e , so" #

P  is a maximum point for  and then P  is a con-œ ß 0 Bß Cß B  C œ ß ß
" " " " "

% % % % )
    # #

!

strained maximum point for .0 Bß Cß D 
Example 77 We study the problem 

Max/min 

u.c. : 
À Þ

0 Bß Cß D œ BC  D

1 Bß Cß D œ B  C œ "
2 Bß Cß D œ #B  #C  D œ !




 
   

# #

We solve this problem in three different ways, achieving, of course, the same results. We
begin using Lagrange's multipliers method, constructing the Lagrangian function after
checking that all assumptions are satisfied.
Objective function and constraints are differentiable functions.

Then . The Jacobian rank is equal to  only if ,
` 1ß 2

` Bß Cß D
œ " B œ C œ !

#B #C !
#  #  "

     
but this point does not satisfy the first constraint, and then all the hypotheses are satisfied.
It is .A - - - -    Bß Cß Dß ß œ BC  D  B  C  "  #B  #C  D" # " #

# #

Imposing  we get: .f œ !

œ ! Ê C  # B  # œ !
œ ! Ê B # C  # œ !

œ ! Ê  "  œ !

œ ! Ê B  C œ "

œ ! Ê #B  #C  D œ !

A

A - -
A - -

A -

A

A



w
B " #
w
C " #
w
D #
w # #

w
-

-

"

#

Summing first and second equation we get the system:  and then the



  C  B "  # œ !
B  # C  # œ !

œ "

B  C œ "
#B  #C  D œ !

-
- -

-

"

" #

#
# #

two systems:  and .

           

 C  B œ ! "  # œ !
B  # C  # œ ! B  # C  # œ !

œ " œ "

B  C œ " B  C œ "
#B  #C  D œ ! #B  #C  D œ !

- - - -
- -

-

" # " #

# #
# # # #

"

For the first we have:                              

 



B œ  C

œ
#  C

#C
œ "

C œ

D œ  %C

Ê

B œ  B œ

œ #  œ  # 

œ " œ "

C œ C œ 

D œ  # #

-

-

- -

- -
"

#
# "

#

" "

# #

" "
" "
# #

# #
" "

#

 


 and 

#

D œ # #
. For the second:

             

-

-

-

-

"
"
#

#
# #

"
"
#

#

# #

œ

B  C  # œ !
œ "

B  C œ "
D œ #B  #C

Ê

œ

C œ B  #
œ "

B  B  # œ "
D œ #B  #C

. The fourth equation, however, has no real solu-

tions. So there are only two stationary points for the Lagrangian:

P  and" œ  ß ß  # #ß #  ß "
" " "

# # #    
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P .# œ ß  ß # #ß  #  ß "
" " "

# # #    

We construct the bordered Hessian: .‡ A -
-

 
          

          
œ

! ! #B #C !
! ! #  #  "
#B #  # " !
#C  # "  # !
!  " ! ! !

"

"

Having two constraints, the first four North-West leading minors are useless, and so it is
enough to calculate the determinant of the matrix: . We have:  ‡ A

   
           

 
  ‡ A P" œ œ

! !  # # !
! ! #  #  "

 # # "  # # " !

#  # " "  # # !
!  " ! ! !

œ " †  " † œ  œ

!  # # !  # #

 # "  # # " ! #  # # #  # #

# " "  # # # " "  # #

 
                     

         
œ  # †  # # #  # # œ ) "  #  !        , so P  is a maximum point;"

   
           

 
  ‡ A P# œ œ

! ! #  # !
! ! #  #  "

# # "  # # " !

 #  # " "  # # !
!  " ! ! !

œ " †  " † œ  œ

! #  # ! #  #

# "  # # " ! #  # # #  # #

 # " "  # #  # " "  # #

 
                     

         
œ # † # # #  # # œ ) "  #  !        , so P  is a minimum point.#

This problem can be solved in a second way. From the constraint  we solve#B  #C  D œ !
the variable  and then substituting in the expression of the objective functionD À D œ #B  #C
we get:
0 Bß Cß D œ 0 Bß Cß #B  #C œ BC  #B  #C    .

We can now solve the problem , which is still the search
Max/min 
s.v. :    0 Bß C œ BC  #B  #C

1 Bß C œ B  C œ "# #

of the extremes for a function of a single variable.
We form the Lagrangian and we have: ; impo-A - -   Bß Cß œ BC  #B  #C  B  C  "# #

sing , summing the first with the second equation, we get:f œ !A 
  

  A -
A -

A

-
-

w
B
w
C
w # # # #

œ ! Ê C  #  # B œ !
œ ! Ê B #  # C œ !

œ ! Ê B  C œ "

Ê
C  B "  # œ !
B  #  # C œ !

B  C œ "-

 which gives two systems:

              
 

B œ  C

œ
#  C

#C
#C œ "

Ê

B œ  B œ

œ #  œ  # 

C œ C œ 

- - -

#

" "

# #

" "
# #

" "

# #

 

 
 and  or
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- -œ œ

B  #  C œ ! B œ C  #

B  C œ " C  %  %C  C œ "

Ê

" "
# #

# # # #

 which has no solutions.

So we have two stationary points:

P  and P ." #œ  ß ß #  œ ß  ß  # 
" " " " " "

# # # ## #       
We compute the bordered Hessian and we have: .‡ A - -

-
  

      
      Bß Cß œ
! #B #C
#B  # "
#C "  #

By substituting the points found, we have:

   
                     

         ‡ A P" œ œ œ

!  # # !  # #

 # "  # # " ! #  # # #  # #

# " "  # # # " "  # #

œ # † )  % #  ! D œ  # #    , so P  is a maximum point; then we get ;"

   
                     

         ‡ A P# œ œ œ

! #  # ! #  #

# "  # # " ! #  # # #  # #

 # " "  # #  # " "  # #

œ  # † )  % #  ! D œ # #    , so P  is a minimum point; then we get .#

Obviously, results are the same as those previously found.

Finally we solve the problem in a third way.

After having explicited , we resume the problem , and,
Max/min 
u.c. : 

D
0 Bß C œ BC  #B  #C

1 Bß C œ B  C œ "    # #

since the constraint is the trigonometric circle, we put , from which we obtain:
cos
sinB œ >

C œ >

0 B > ß C > ß D B > ß C > œ J > œ > >  # >  # >            sin cos cos sin . So:
J > œ >  >  # >  # > œ >  > >  >  # Þw # #    cos sin sin cos sin cos cos sin
As cos sin , , it is  if cos sin , which is verified if>  >  #  ! a > J >   ! >    >w 
! Ÿ > Ÿ Ÿ > Ÿ # > œ > œ

$ ( $ (

% % % %
1 1 1 1 1  and if . So  is a maximum point, while  is a mini-

mum point. If  we get , while if  we get

cos

sin
> œ > œ

$ (

% %

B œ œ 
$ "

% #

C œ œ
$ "

% #

1 1

1

1








B œ œ

( "

% #

C œ œ 
( "

% #

D

cos

sin
. Then  is obtained as before.

1

1

EXTREMES WITH INEQUALITY CONSTRAINTS

Let us finally treat problems such as .
Max/min 
u.c. :    0 B ß B ß ÞÞÞß B

1 B ß B ß ÞÞÞß B Ÿ !ß " Ÿ 3 Ÿ 7
" # 8

3 " # 8

If ,  is the set in which the  inequalities are simulta-— X ‘ —œ B ß B ß ÞÞÞß B § 7 1 Ÿ !   " # 8 3
8

neously satisfied;  is called the feasible region and is a closed (limited or unlimited) subsetX
of . To search maxima and minima for  in  means then to search for extremes that‘ — X8 0 
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are at interior points of   and those who are at boundary points of X — X  a 3 À 1  !3  b 3 À 1 œ !3 — .
Searching points in the interior corresponds to the problem of free extremes, searching in
boundary points corresponds to the problem of extremes with equality constraints, namely the
two problems that have already been treated.
To describe the  region with inequality constraints we may have more constraints than theX
variables of the objective function, thus the rule  does no more apply.7  8
Definition 45 At the point   the constraint  is said:À − 1— X —! 3 
- satisfied, if ;1 Ÿ !3 ! —
- active, if 1 œ ! Þ3 ! —
At a point  all constraints must be satisfied, someone may be active.— X! −
Let us then begin to build what are commonly called the Kuhn-Tucker's conditions, which re-
present the most general form of first order conditions, and are therefore necessary conditions,
to search the extremes. To get the general statement we need to make two choices: first we
choose to search for maximum points.  Minimum points are related to maximum ones, once it
has been noted that min max .      0 B œ   0 B
Then we choose to represent the constraints, as before, in the form ; writing them in1 Ÿ ! —
the form  leads to determine the same set , but with a different formu-2 œ  1   !   — — X
lation of Kuhn-Tucker's conditions.
As seen above, to determine extremes with equality constraints leads to impose first order
conditions not on the objective function but on the Lagrangian function:

A — - - — - —     ß ß ÞÞÞß œ 0  1 Þ" 7 3 3

3œ"

7

We use the same function, and we observe that, if the point , an hypothetical solution— X! −
for the problem, is an interior point with respect to the constraint , i.e. if ,1 1  !5 5 !   — —
with respect to this constraint it is as if we were searching for free extremes, and then it is
enough to take .-5 œ !
If, on the contrary, the constraint is active at , i.e. if , then it is like dealing— —! 5 !1 œ ! 
with a problem of extremes with equality constraints.
Thus the expression of the Lagrangian function allows us to search the extremes both in the
interior and on the boundary of , just vanishing (or not) the appropriate multipliers, simplyX
seeing which constraints are active at .—!

So the first condition to be imposed is , if  is a maximum point, under the assum-f œA  —!

ption that the functions  and , , are differentiable throughout .0 1 " Ÿ 3 Ÿ 7   — — X3

In the first order conditions also the constraints must be respected, which can be obtained as
derivatives of the Lagrangian with respect to the multipliers.

As , we need  to get the constraint satisfied.
` `

` `
œ  1 œ  1   !

A A

- -
— —

3 3
3 3   

The request for differentiability of  and  does not exhaust the assumptions, which0 1   — —3

will be completed later. We state for the moment the following:
Theorem 33 (Kuhn-Tucker's conditions)  is a solution of the problemÀ À—!

   Max 
u.c. : 

,
0 B ß B ß ÞÞÞß B
1 B ß B ß ÞÞÞß B Ÿ !

" # 8

3 " # 8

i.e is a maximum point for  subject to constraints , .  and0 1 Ÿ ! " Ÿ 3 Ÿ 7 0     — — —3

13 ! — X — are differentiable throughout , and at  constraints are qualified.
Then there exists a vector  such that:- - - -œ ß ß ÞÞÞß " # 7
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` `0

`B `B `B
œ  œ ! " Ÿ 3 Ÿ 8 À

`1

`

`
œ  1   ! " Ÿ 3 Ÿ 7 À

† 1 œ ! " Ÿ 3 Ÿ

A — —
-

—

A

-
—

- —

! !

3 3 34œ"

7

4
4 !

3
3 !

3 3 !

Stationarity

Primal feasibility

7 À
  ! " Ÿ 3 Ÿ 7 À

Complementary slackness
Dual feasibility

.

-3

The meaning of "qualified constraints at " will be explained later, when we complete the—!

hypotheses of Theorem 33.

The first conditions:  follow the case of equality constraints, while the second
`

`B
œ !

A — !
3

ones:  reaffirm the need for constraints satisfaction.
`

`
œ  1   !

A

-
—

3
3 ! 

Let's examine the third condition: .- —3 3 !† 1 œ ! 
In order to vanish a product, the first or the second factor must be zero. If it were ,-3 Á !
then it must be , i.e. the constraint  is active at  and it is like searching extre-1 œ ! 13 ! 3 ! — —
mes with equality constraints.
If it were , then it must be , i.e. the point  is an interior point with re-1 Á ! œ !3 ! 3 ! — - —
spect to the constraint , and with respect to that constraint it is like searching free extremes,13
then this constraint does not appear in the Lagrangian, and then .-3 œ !
At  it could also be , and this is because a constrained extreme may coin-— - —! 3 3 !œ 1 œ ! 
cide with a free one, which happens when the coordinates of the free extreme satisfy also the
constraint.
The third condition therefore means that the research is done both at interior points and at
boundary ones, then throughout the whole .X
From a practical point of view, the third condition shows how to set up calculations, i.e. we

must impose equations  and  for each of the  possible combina-
` `

`B `
œ ! œ ! #

A — A —

-

   
3 4

7

tions obtained by requiring each of the multipliers  equal or different from zero.-3

If, for example, we had two constraints and then two multipliers,  and , we need four- -" #

systems, those corresponding to the four cases:       - - - - - - - -" # " # " # " #œ ! œ ! Á ! œ ! œ ! Á ! Á ! Á ! and ,  and ,  and  and  and .
With three constraints the cases become eight and so on ...
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Let us examine the fourth and final condition, wich depends on the sign of the constraints (we
chose the negative one) and on the type of extreme we are looking for (we have chosen to lo-
ok for maximum points).
Starting from  we have seen that  is orthogonal to the vector tangent to the1 œ ! f13 3 !   — —
constraint at .—!

Since the gradient expresses the direction of maximum growth, and being  characterized byX
negative values for the constraint , outside  we have positive values for , from1 13 3   — X —
which it follows that the gradient  must be oriented outside , as shown in the figure,f13 ! — X
which is based, as a particular case, on a single constraint.
Suppose that  is a maximum point and that the constraint  is active at :— — —! 3 !1  
1 œ !3 ! — .
We have seen that  is directed outwards .f13 ! — X
Also the gradient  of the function at the point , that in the figure, for easy reading,f0 — —! !

has been shifted on the surface, must be directed outwards , as it indicates the direction ofX
maximum growth; if it goes to the inside, starting from the maximum point, it would indicate
a decrease in the values of the function.
From the theory of the extremes with equality constraints we know that, at a point which is
the solution of a problem of extremes, the gradient of the objective function must be a linear
combination of the gradients of the constraints: .f0 œ f1   — - —! 3 3 !

We have also seen that  and  must go towards the same direction: these twof0 f1   — —! 3 !

requests are both satisfied if .-3  !
There is a theorem (Farkas) which extends this property to the case where more than one con-

straint is active at : .— — - —! ! 3 3 !

3À"

7

f0 œ f1   
Each  must be non-negative so that  is directed outwards, like the gradients- —3 !f0 
f13 ! — .

If, while maintaining the constraints in the form , we had looked for the minimum1 Ÿ !3 —
point at which the constraint is active: , as shown in the figure, the gradient1 œ !3 ! —
f0 —!  must now move towards the interior, where the function takes values greater than the
minimum. But then it must be , as  and  are not oriented towards the- — —3 ! 3 !Ÿ ! f0 f1   
same direction, since the first goes to the inside while the second goes to the outside. The
search for minimum points requires non-positive multipliers, leaving unchanged the first three
conditions of Theorem 33.
If the constraints were expressed in the form , the previous requests on multipliers'1   !3 —
sign for a maximum point and a minimum point would have been reversed. The sign (not ne-
gative) of multipliers for a maximum at points with constraints  is therefore the1 Ÿ !3 —
same as that for a minimum at points with constraints .1   !3 —
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CONSTRAINTS QUALIFICATION
Finally, let us complete the last part concerning the assumptions for the validity of Kuhn-Tuc-
ker's conditions: that is qualified constraints at .—!

Studying the sign of the multipliers  in order to clarify the nature of the point we are exami--3

ning, we need to establish clearly the  direction with respect to the directions of thef0 —!

constraints gradients.
This problem is called "constraint qualification" at .—!

To describe this concept, we need some definitions, the first of which is "feasible direction".
Definition 46 Vector  is a feasible direction at  for  if it exists a curve,À @ − ‘ — X8

!

> Ä < > −  ‘8 , such that:
1) ;< ! œ  —!

2) ;< ! œ @w 
3) , .b À < > − a > − !ß& X &   
So there exists at least one arc, however small, of a continuous curve starting from —!

entering in : the feasible direction  is the tangent line to such curve at .X —@ !

This definition strictly concerns boundary points of , i.e. points where at least one constraintX
is active. If  is an interior point of , every direction is feasible.— X!

Feasible directions at  for  are those which, starting from , go inside the feasible region— X —! !

X X, or, as a limiting case, are tangential to .

Definition 47 A cone is a set  such that: , .À © − Ê 5 † − a 5 − ‘ —  —  ‘8

A positive cone is a set  such that: , . ‘ —  —  ‘© − Ê 5 † − a 5 −8


Feasible directions at  for  form a positive cone: .— X I —! ! 
To establish the nature of point  we saw that it is necessary, in the chosen formulation, that—!

f0 f1   — X —! 3 ! heads to the outside of , on the same side as .
Then we need to study the directions  that we call "retroverted directions" with respect to@
f1 f1 † @ Ÿ !3 ! 3 !   — —, i.e. directions for which .

As cos , we get  if  .f1 † @ œ f1 † @ † f1 † @ Ÿ ! Ÿ Ÿ
#

3 ! 3 ! 3 !        — — α — α 1
1

The feasible directions at  for  and the retroverted directions with respect to  at— X —! 3 !f1  
— —! ! must be the same directions in order that the analysis of  is well made.f0 
Let us consider all the active constraints at .— —! 3 !À 1 œ ! 
I —
µ  !  is the cone of the retroverted directions with respect to the gradients of the active con-
straints  at , i.e.:f13 ! ! — —

I — ‘ — —
µ

œ @ − À f1 † @ Ÿ ! 1 œ !      ! 3 ! 3 !
8 ; .

In general, as we shall see in the examples, is .I — I —   ! !©
µ

We have the following:
Definition 48 Constraints are qualified at  if it is , i.e. feasibleÀ œ

µ
— I — I —! ! !   

directions and retroverted directions form the same cone.

This condition completes, with differentiability, Kuhn-Tucker's conditions for a maximum or
minimum point.

Example 78 Let us consider as feasible region  the one given by the constraints:À X

   1 Bß C œ B  C Ÿ !

1 Bß C œ C  #  B Ÿ !
"

#

#
# .

The two constraints are simultaneously active at  and . Let us compose .     "ß "  "ß " "ß "I
To this effect, let us find equation of the tangent lines to the curves  and1 À C œ B"

#

1 À C œ #  B Þ#
#
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For the first, , we get  while for the second, , .<> C œ #B  " <> C œ  #B  $" #

Let . To go from  to  we need , to move to the left;  must be in@ œ @ ß @ "ß " @ Ÿ ! @   " # " #X
the range between the two tangent lines, i.e.   !!  and so:#@ Ÿ @ Ÿ  #@ @ Ÿ !" # " " 
I ‘    "ß " œ @ ß @ − À @ Ÿ !ß #@ Ÿ @ Ÿ  #@ Þ" # " " # "

#

Then let us determine .I
µ

"ß " 
From  we get  and so .1 Bß C œ B  C f1 Bß C œ #Bß  " f1 "ß " œ #ß  "" " "

#         
From  we get  and so .1 Bß C œ C  #  B f1 Bß C œ #Bß " f1 "ß " œ #ß "# # #

#         
Now let us look for retroverted directions to both gradients. It will be:
f1 "ß " † @ ß @ œ #ß  " † @ ß @ œ #@  @ Ÿ ! @   #@" " # " # " # # "         for , while
f1 "ß " † @ ß @ œ #ß " † @ ß @ œ #@  @ Ÿ ! @ Ÿ  #@# " # " # " # # "         for , and so:
#@ Ÿ @ Ÿ  #@ @ Ÿ !" # " ", and this implies also .
So I ‘ I

µ
"ß " œ @ ß @ − À @ Ÿ !ß #@ Ÿ @ Ÿ  #@ œ "ß " Þ      " # " " # "

#

The constraints are then qualified at . We can see in a similar way that this happens also "ß "
at point , where:  "ß "

I ‘ I
µ

 "ß " œ @ ß @ − À @   !ß  #@ Ÿ @ Ÿ #@ œ  "ß "      " # " " # "
# .

Example 79 Let the feasible region  be that given by the two constraints:À X

   1 Bß C œ C  B Ÿ !
1 Bß C œ  C Ÿ !
"

$

#
.

At  both constraints are active. As  has at  as tangent line the -axis,   !Þ! 1 À C œ B !ß ! B"
$

the only feasible direction from  to  is the positive semi-axis of , so: !ß ! BX

I ‘ I      !ß ! œ @ ß @ − À @   !ß @ œ ! Þ !ß !
µ

" # " #
#  Then let us determine .

From  we get  and so .1 Bß C œ C  B f1 Bß C œ  $B ß " f1 !ß ! œ !ß "" " "
$ #        

From  we get  and so .1 Bß C œ  C f1 Bß C œ !ß  " f1 !ß ! œ !ß  "# # #         
Now let us find the retroverted directions to both gradients. It will be:
f1 !ß ! † @ ß @ œ !ß " † @ ß @ œ @ Ÿ !" " # " # #        , while
f1 !ß ! † @ ß @ œ !ß  " † @ ß @ œ  @ Ÿ ! @   ! @ œ !# " # " # # # #        , or  and so: .
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So , i.e. the whole -axis  In this exampleI ‘
µ

!ß ! œ @ ß @ − À @ œ !ß a @ B Þ    " # # "
#

therefore it is  and not , so at  the constraints areI I I I         !ß ! § !ß ! !ß ! œ !ß ! !ß !
µ µ

not qualified.

Example 80 Let the feasible region  be that given now by the three constraints:À X


   
1 Bß C œ C  B Ÿ !
1 Bß C œ  C Ÿ !
1 Bß C œ  B Ÿ !

"
$

#

$

.

The feasible region  is exactly the same as the previous example, even if characterized by aX
further constraint: . Also this is active at , so  remains1 Bß C œ  B !ß ! !ß !$     I

unchanged but we must redefine , since we have now an additional constraint.I
µ

!ß ! 
From  we get  and so . So:1 Bß C œ  B f1 Bß C œ  "ß ! f1 !ß ! œ  "ß !$ $ $         
f1 !ß ! † @ ß @ œ  "ß ! † @ ß @ œ  @ Ÿ ! @   !$ " # " # " "         for ,
and this, together with the two already found, gives:
I ‘ I      !ß ! œ @ ß @ − À @   !ß @ œ ! œ !ß !

µ
" # " #

# .
With the third constraint, the constraints are now qualified at . !ß !
Constraints qualification at a point depends not only on the shape of the region  but also onX
the constraints describing it. The same region described by different constraints may have
qualified constraints at a point while they were not so if described by other constraints.

There are some sufficient conditions to ensure constraints qualification at a given point.
The most important is the following:
Theorem 34 If , gradients of active constraints at , are linearly independent vec-À f13 ! ! — —
tors, then the constraints are qualified at .—!

This condition is however sufficient, and not necessary, for constraints qualification at .—!

Example 81 Let us resume the feasible region  that is given by the two constraints:À X

   1 Bß C œ B  C Ÿ !

1 Bß C œ C  #  B Ÿ !
"

#

#
# .

It is  and , as , so gradients aref1 "ß " œ #ß  " f1 "ß " œ #ß " œ % Á !
#  "
# "" #         

independent vectors and constraints are qualified.

Example 82 Let us consider the feasible region  that is given by the two constraints:À X

   1 Bß C œ B  C Ÿ !

1 Bß C œ C  B Ÿ !
"

$

#
# .

Region  is the darkened region represented in Figure:X
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The feasible directions at  for , both on the left and on the right, are the -axis, which !ß ! BX
is the tangent line at  for  and for . So we have: !ß ! 1 À C œ B 1 À C œ B" #

$ #

I ‘    !ß ! œ @ ß @ − À @ œ !ß a @" # # "
# .

From  we get  and so .1 Bß C œ B  C f1 Bß C œ $B ß  " f1 !ß ! œ !ß  "" " "
$ #        

From  we get 2  and so .1 Bß C œ C  B f1 Bß C œ  Bß " f1 !ß ! œ !ß "# # #
#         

Let us search the retroverted directions to both gradients. It is
f1 !ß ! † @ ß @ œ !ß  " † @ ß @ œ  @ Ÿ ! @   !" " # " # # #         for , while
f1 !ß ! † @ ß @ œ !ß " † @ ß @ œ @ Ÿ ! ! Ÿ @ Ÿ !# " # " # # #        , and so: , and this double inequa-
tion implies .@ œ !#

So . Constraints are qualified at I ‘ I
µ

!ß ! œ @ ß @ − À @ œ !ß a @ œ !ß ! !ß !        " # # "
#

even if  and  are linearly dependent vectors, confir-f1 !ß ! œ !ß  " f1 !ß ! œ !ß "" #       
ming that the independence condition is sufficient and not necessary for constraints qualifica-
tion.

Example 83 Let us study the problem 
Max/min 

u.c. : 
À Þ

0 Bß C œ "  B  C

1 Bß C œ B  C Ÿ !

1 Bß C œ C  B Ÿ !




 
   

# #

"
$

#
#

The feasible region  and the constraints qualification have been studied in Example 82 atX   !ß ! "ß ". At  we have:
1 Bß C œ B  C f1 Bß C œ $B ß  " f1 "ß " œ $ß  "" " "

$ #         from which  and so .
1 Bß C œ C  B f1 Bß C œ  Bß " f1 "ß " œ  #ß "# # #

#          from which 2  and so .

Such vectors are indipendent:  so at  constraints are qualified   $  "
 # "

œ " Á ! "ß " Þ

Finally, we must check the points where only one constraint is active; for linear
independence, the constraint gradient must not be the null vector. But the second components
of these gradients are constant and nonzero, so the constraints are always qualified.
Finally, we note that the feasible region is not a bounded set, so Weierstrass's theorem does
not apply.
Let us construct the Lagrangian function:
A - - - -     Bß Cß ß œ "  B  C  B  C  C  B" # " #

# # $ #  and study four cases.

I case:  : let us solve the system:- -" #œ !ß œ !       

A
A

A

A

- -

w
B
w
C
w $

w #

" #

œ ! Ê  #B œ !
œ ! Ê  #C œ !

  ! Ê B  C Ÿ !

  ! Ê C  B Ÿ !

Ê œ œ !

B œ !
C œ !
!  ! Ÿ ! À
!  ! Ÿ ! À

-

-

"

#

satisfied
satisfied

. As , we study the free

extremes of the function.

As , we get  and so  is a‡ ‡         Bß C œ œ !ß ! !ß !
 # !
!  #

0 œ  #  !

0 0  0 œ %  !

BB
ww

BB CC BC
ww ww ww #

maximum point, with .0 !ß ! œ " 
II case:  : let us solve the system:- -" #Á !ß œ !     




 A -

A -

A

A

-
-

w #
B "
w
C "

w $

w #

"

"
$

#

œ ! Ê  #B  $ B œ !
œ ! Ê  #C  œ !

œ ! Ê C œ B

  ! Ê C  B Ÿ !

Ê

 B #  $ B œ !
œ #C

C œ B

C Ÿ B
-

-

"

#

 which gives two systems:
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B œ !
œ !

C œ !
! Ÿ ! À

!ß !
-"

satisfied

, but  has already been studied, and



B œ 
#

$

C œ
#

# #(
œ  Ê œ 

) "'

#(

C Ÿ B

-
-

-

-
-

"

"

"

"
$ "

%

#

 which therefore has no solutions.

III case:  : let us solve the system:- -" #œ !ß Á !       
 A -

A -

A

A

-
-

w
B #
w
C #

w $

w #

#

#
$

#

œ ! Ê  #B  # B œ !
œ ! Ê  #C  œ !

  ! Ê B Ÿ C

œ ! Ê C œ B

Ê

#B  " œ !
œ  #C

B Ÿ C

C œ B
-

-

"

#

 which gives two systems:


 

B œ !
œ !

! Ÿ ! À
C œ !

!ß !
-#

satisfied
, but  has already been studied, and



-#

$

#

œ "

C œ 
"

#
B Ÿ C

B œ 
"

#

 which therefore has no solutions.

IV case:  : let us solve the system:- -" #Á !ß Á !          

 

 

A - -
A - -

A

A

- - - -
- -

w #
B " #
w
C " #

w $

w #

" # " #

" #
œ ! Ê  #B  $ B  # B œ !
œ ! Ê  #C   œ !

œ ! Ê B œ C

œ ! Ê C œ B

Ê

! œ !  #  $  # œ !
œ  #   œ !

B œ ! B œ
C œ !

-

-

"

#

 and 
"

C œ "

Ê

       
 #  $  #  % œ ! œ  '

œ  # œ  )
B œ " B œ "
C œ " C œ "

Ê

- - -
- - -

" " "

# " # .

Since both multipliers are negative, point  may be a minimum point. To solve the pro- "ß "
blem, we note that function , being a polynomial, is continuous throu-0 Bß C œ "  B  C  # #

ghout . The right side of  is a bounded and closed set, then by Weierstrass's theorem there‘ X#

are absolute minimum and maximum, which can be only at  and at , , as seen   !ß ! "ß "
above.
Maximum  is clearly an absolute one, while minimum  is only local, as,0 !ß ! œ " 0 !ß !   
analyzing for example the function on the negative -semi-axis, we getB

lim
BÄ∞

0 Bß ! œ ∞  , so the function can take indefinitely negative large values in , andX

therefore it can not have an absolute minimum.
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Example 84 Let us study the problem 
Max/min 

u.c. : 
À Þ

0 Bß C œ #B  C

1 Bß C œ C  B Ÿ !

1 Bß C œ B  C  # Ÿ !




 
   "

# %

#
# #

Region  is the darkened region represented in Figure:X

From  it follows , i.e. the part of the plan between the two parabolasC Ÿ B  B Ÿ C Ÿ B# % # #

C œ  B C œ B B  C œ # !ß !# # # # and , inside the circle , with center  and radius 
< œ # Þ
From  we get , and  so C  B œ !

C œ #  B
#  B  B œ ! B œ Ê

 "„ "  )

#

B œ  #

B œ "

# %

# #
# % #

#

#

B œ „" "ß " "ß  "  "ß "  "ß  ", so we have four intersections: , ,  and .       
From  we get ; from 1 Bß C œ C  B f1 Bß C œ  %B ß #C 1 Bß C œ B  C  #" " #

# % $ # #      
we get 2  and so:f1 Bß C œ Bß #C#   
f1 "ß " œ  %ß # f1 "ß " œ #ß #" #        and : indipendent vectors;
f1 "ß  " œ  %ß  # f1 "ß  " œ #ß  #" #        and : indipendent vectors;
f1  "ß " œ %ß # f1  "ß " œ  #ß #" #        and : indipendent vectors;
f1  "ß  " œ %ß  # f1  "ß  " œ  #ß  # Þ" #        and : indipendent vectors
At  it is , that does not allow constraints qualification.     !ß ! f1 !ß ! œ !ß !"

The part of : , described by two constraints ,X  B Ÿ C Ÿ B
2 Bß C œ  C  B Ÿ !

2 Bß C œ C  B Ÿ !
# # "

#

#
#   

gives  and , so we can determine:f2 !ß ! œ !ß  " f2 !ß ! œ !ß "" #       
I ‘ I
µ

!ß ! œ @ ß @ − À @ œ !ß a @ œ !ß !      " # # "
# .

So at  the constraints are qualified. !ß !

Where only one constraint is active, the constraint is always qualified. So let us construct the
Lagrangian:  and study fourA - - - -     Bß Cß ß œ #B  C  C  B  B  C  #" # " #

# % # #

cases.

I case:  : let us solve the system:- -" #œ !ß œ !

A
A

A

A

w
B
w
C
w # %

w # #

œ ! Ê # œ !
œ ! Ê  " œ !

  ! Ê C  B Ÿ !

  ! Ê B  C  # Ÿ !
-

-

"

#

. The system has no solutions.
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II case:  : let us solve the system:- -" #Á !ß œ !

       

  








A -
A -

A

A

-

-

- -

w $
B "
w
C "

w # %

w # #

"

"

"
#

"
%

# #

œ ! Ê #  % B œ !
œ ! Ê  "  # C œ !

œ ! Ê C œ B

  ! Ê B  C Ÿ #

Ê Ê

B œ 
"

#

C œ 
"

#

" "

%
œ

"'

B  C Ÿ #

-

-

"

#

$

$





 

B œ 
"

#

C œ 
"

#
"' %  " œ !

B  C Ÿ #

$

-

-
- -

"

"

" "
% #

# #

.

The solution  is not acceptable, so we have:-" œ !          

  

 

B œ 
"

#

C œ 
"

#
%  " œ !

B  C Ÿ #

Ê

B œ  " B œ "
C œ  " C œ "

œ œ 

"  " Ÿ # À "  " Ÿ # À

$

-

-
-

- -

"

"

"
#

# #

" "
" "
# #

 satisfied  satisfied

 and .

So  may be a maximum point , while  may be a minimum point      "ß  "  ! "ß "-" -"  ! .

III case:  : let us solve the system:- -" #œ !ß Á !

              

     

    

A -
A -

A

A

-

-

- -

w
B #
w
C #

w # %

w # #

#

#
# %

# #
# #

œ ! Ê #  # B œ !
œ ! Ê  "  # C œ !

  ! Ê C Ÿ B

œ ! Ê B  C œ #

Ê Ê

B œ
"

C œ 
"

#
C Ÿ B
" "

 œ #
%

-

-

"

# 

B œ
"

C œ 
"

#
C Ÿ B

œ
&

)

-

-

-

#

#
# %

#
#

which gives the two solutions:               

 
 
 

B œ # B œ  #

C œ  C œ

Ÿ À Ÿ À

œ œ 

# #
& &

# #
& &

# '% # '%
& #& & #&

# #
" & " &
# # # #

satisfied satisfied
and  .

- -

So  may be a maximum point , while  may be a mi-       # ß   !  # ß# # # #
& & & &#-

nimum point . -#  !

IV case:  : let us solve the system:- -" #Á !ß Á !

A - -
A - -

A

A

w $
B " #
w
C " #

w # %

w # #

œ ! Ê #  % B  # B œ !
œ ! Ê  "  # C  # C œ !

œ ! Ê C œ B

œ ! Ê B  C œ #
-

-

"

#

 from which we obtain four systems:
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#  %  # œ !
 "  #  # œ !
B œ "
C œ "

Ê "ß "

œ 

œ !
B œ "
C œ "

- -
- -

-

-
" #

" #

"
"
#

#   has already been studied: it may be a mini-

mum point ; - -" # !ß Ÿ !       
#  %  # œ !
 "  #  # œ !
B œ "
C œ  "

Ê

œ 

œ

B œ "
C œ  "

- -
- -

-

-
" #

" #

"
"
'

#
#
$  this point cannot be neither a maximum nor a mi-

nimum point since the multipliers have a different sign;       
#  %  # œ !
 "  #  # œ !
B œ  "
C œ "

Ê

œ

œ 

B œ  "
C œ "

- -
- -

-

-
" #

" #

"
"
'

#
#
$  this point cannot be neither a maximum nor a mi-

nimum point since the multipliers have a different sign;       
 

#  %  # œ !
 "  #  # œ !
B œ  "
C œ  "

Ê  "ß  "

œ

œ !
B œ  "
C œ  "

- -
- -

-

-
" #

" #

"
"
#

#   has already been studied: it may be a

maximum point . - -" # !ß   !

As  is a bounded and closed set and the function  is continuous throughoutX 0 Bß C œ #B  C 
‘#, there must be an absolute maximum and an absolute minimum, and also, perhaps, there
might be some relative ones. Then let us examine the behavior of  on the boundary of0 Bß C 
X.
On constraint   :1 À C œ B Ê C œ „ B"

# % #

0 Bß B œ #B  B Ê 0 B œ #  #B   ! B Ÿ "   # # w  if ;
0 Bß  B œ #B  B Ê 0 B œ #  #B   ! B    " Þ   # # w  if 

If with an arrow we indicate the direction in which the function increases, we have that on the
two parabolas the objective function increases from left to right, so it grows both in the path
from  to , and in the path from  to .        "ß " "ß "  "ß  " "ß  "

Finally, let us analyze the behavior on the circumference.

If  we get cos sin  and so:
cos

sin        B œ # >

C œ # >
0 B > ß C > œ # # >  # >

0 > œ #  # >  >   ! > Ÿ  # >w    sin cos  if cos sin . This inequality is verified:

if , with cos  and sin ;α " α αŸ > Ÿ œ œ  œ œ
B # C "

# #& &   
and if cos  and sin ." "œ œ œ œ 

B # C "

# #& &   
So, starting from  the function increases in both directions, and so7 œ  # ß

# #

& &  
this is a minimum point; on the contrary, we arrive at  alwaysQ œ # ß 

# #

& &  
increasing, both from above and from below, and so this is a maximum point. At  we "ß "
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arrive increasing on the parabola and we continue increasing on the circumference, so  is "ß "
not a minimum point. Similarly at , which therefore is not a maximum point.  "ß  "

So   and  are, respectively, ma-0 # ß  œ & 0  # ß œ  &
# # # # # #

& & & & & &        
ximum and minimum for  in .0 Bß C  X

KUHN-TUCKER'S CONDITIONS WITH NON NEGATIVE VARIABLES
In many problems, especially economic ones, the search for the extremes of a function is ac-
compained by the request of non-negative values for the independent variables; in this
context, we can have a slightly different formulation for Kuhn-Tucker's conditions.




 
    Max 

u.c. : 
. If  and:

0 B ß B ß ÞÞÞß B

1 B ß B ß ÞÞÞß B Ÿ !ß " Ÿ 3 Ÿ 7
B   ! Ê  B Ÿ !ß " Ÿ 3 Ÿ 8

œ B ß B ß ÞÞÞß B
" # 8

3 " # 8

3 3

" # 8—

A — - - . . — - — . A .
µ

ß ß ÞÞß ß ß ÞÞß œ 0  1   B œ  B         " 7 " 8 3 3 3 3 3 3

3À" 3À" 3À"

7 8 8

imposing Kuhn-Tucker's conditions for a maximum point to multipliers  and , we get:- .3 3
 

` ` `
µ

`B `B `B
œ  œ ! Ê œ 

` `
µ

` `
œ œ  1   !

`
µ

`
œ B   !

A A A
. .

A A

- -
—

A

.

3 3 3
3 3

3 3
3

3
3

.

Having then to impose , we rewrite the first condition as .
A

3
3

  ! Ÿ ! Þ
`

`B

We also impose other conditions: . As , the second condition is


 - —

.
-
.

.
A

3 3

3 3

3

3

3
3

† 1 œ !
† B œ !
  !
  !

œ 
`

`B

also expressed in the form: , like the fourth, which is equivalent to , al-
` `

`B `B
† B œ ! Ÿ !

A A

3 3
3

ready seen above. So Kuhn-Tucker's conditions for a maximum, subject to constraints
1 Ÿ !3 —  and under the nonnegativity condition of the independent variables, can be expres-
sed as:

 
 

`

`B
Ÿ !

1 Ÿ !
B   !

† 1 œ !
`

`B
† B œ !

  !

A

—

- —
A

-

3

3

3

3 3

3
3

3

.




