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COMPLEX NUMBERS

Complex numbers arise historically to provide solutions to problems without a solution in a
real environment. We begin with the following:
Definition 1 The imaginary unit, denoted by the letter , is the number (not real) such thatÀ 3
3 œ  "# .
We can obtain the same definition supposing that there are numbers for which opposite and

reciprocal coincide: , from which we obtain , and so, algebraically B œ B œ  "
"

B
#

solving, we obtain  Since, by definition, ,  and  are the solutionsB œ „  " Þ 3 œ  " 3  3 #

of such equation, therefore we obtain .
"

3
œ  3

With regard to the powers of the imaginary unit we have:3
3 œ " 3 œ 3à 3 œ  " 3 œ 3 † 3 œ  3à 3 œ 3 † 3 œ " œ 3! " # $ # % # # !; ; ,
that is these are repeated with periodicity equal to 4. This allows a very quick calculation for
such powers.

Example 1 .À 3 œ 3 œ 3 † 3 œ " † 3 œ 3(#& ")"†%" % " ")"")" 
3 œ 3 œ 3 † 3 œ " † œ  3

"

3
$#"  )!†% " % " )!)!    .

Definition 2 Numbers of the form , are called imaginary (pure) numbers.À 5 3ß 5 − ‘
From imaginary numbers we define complex numbers:
Definition 3 A complex number is a number of the form , with , i.e. the sumÀ +  ,3 +ß , − ‘
of a real number with an imaginary number.
Number  is called the real part of the complex number , while  is called the+ +  ,3 ,3
imaginary part, and  is called the coefficient of the imaginary.,
A number  is called a complex number in algebraic form.+  ,3
If  is the set of complex numbers, we can easily see that ; in‚ ‘ ‘ ‚œ +  ,3ß +ß , − § 
fact real numbers are a subset of complex numbers, as ,  .+ œ +  ! 3 a + − ‘
Let us now consider the pair . It is easy to see that there is a bijection (one-to-one +ß , − ‘#

correspondence) between  and ; to each pair  one and only one complex number in‚ ‘#  +ß ,
algebraic form  corresponds, and vice versa. There is thus a correspondence between+  ,3
complex numbers and points of the plane ; the real part  is the abscissa, the coefficient of‘# +
the imaginary  is the ordinate.,
A Cartesian plane, at each point  of which the complex number  corresponds, is +ß , +  ,3
called complex (or Gauss) plane.
The horizontal axis is called the real axis, as on it numbers  are placed, i.e. numbers+  !3
which are real, while the vertical axis is called the imaginary axis, as on it numbers !  ,3
are placed, i.e. numbers which are imaginary.
The real number  corresponds to the couple , the real number  to the couple , the! !ß ! " "ß !   
imaginary unit  to the couple .3 !ß " 
OPERATIONS WITH COMPLEX NUMBERS
Definition 4 Given two complex numbers in algebraic form  andÀ D œ +  , 3" " "

D œ +  , 3# # # , we define their sum and their difference as:
D  D œ +  , 3  +  , 3 œ +  +  ,  , 3 à" # " " # # " # " #       
D  D œ +  , 3  +  , 3 œ +  +  ,  , 3" # " " # # " # " #        .
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That is the sum (difference) of two complex numbers is a complex number having as real part
the sum (difference) of the real parts and as imaginary part the sum (difference) of the imagi-
nary parts.
Instead, using pair notation, if  and , we define:D œ + ß , D œ + ß ," " " # # #        + ß ,  + ß , œ +  + ,  ," " # # " # " #; as the sum, and     + ß ,  + ß , œ +  + ,  ," " # # " # " #;  as the difference of the two complex numbers.
Note the analogy with the sum and the difference of vectors in .‘#

As for the product of two complex numbers in algebraic form, developing their product using
the customary rules of literal calculus, and recalling that , we obtain:3 œ  "#

D † D œ +  , 3 † +  , 3 œ + +  + , 3  + , 3  , , 3 œ" # " " # # " # " # # " " #
#   

œ + +  + , 3  + , 3  , , œ + +  , ,  + ,  + , 3" # " # # " " # " # " # " # # "    .
Instead with pair notation we write :     + ß , † + ß , œ + +  , , + ,  + ," " # # " # " # " # # "; .
It is easy to see that the neutral elements with respect to the sum and the product are still !
and , i.e. the pairs  and ." !ß ! "ß !   
Let us now calculate the reciprocal of a complex number  To do this let usD œ +  ,3 Þ
introduce the concept of complex conjugate:
Definition 5 Given the complex number , its complex conjugate is the complexÀ +  ,3
number , i.e. the complex number having the same real part and the opposite for the+  ,3
imaginary coefficient.
The complex conjugate of  is denoted by , so we have .D D D œ +  ,3
To calculate the reciprocal of  we multiply and divide by its conjugate , so we have:D D
" " " +  ,3 +  ,3 +  ,3 + ,

D +  ,3 +  ,3 +  ,3 +  , +  , +  ,
œ œ † œ œ œ  3 Þ

+  ,3# # # # # # # # 
Using pair notation we have: 

" + ,

+ß , +  , +  ,
œ +ß , œ à  Þ     "

# # # #

Every complex number  has a unique reciprocal. Remember that .D Á ! œ  3
"

3

Finally let us calculate the quotient , treating it as the product , and so we obtain:
D "

D D
D †

"

# #
"

D +  , 3 +  , 3 +  , 3 + +  + , 3  + , 3  , , 3

D +  , 3 +  , 3 +  , 3
œ œ † œ œ

+  ,
" " " " " # # " # # " " # " #

# # # # # # #

#

# #
# #

œ  3 Þ
+ +  , , + ,  + ,

+  , +  ,
" # " # # " " #

# # # #
# # # #  Using pair notation we have:

    + ß , + +  , , + ,  + ,

+ ß ,
œ à Þ

+  , +  ,
" " " # " # # " " #

# # # # # #
# # # #

Example 2 À $  #3  &  3 œ  #  $3 Þ      $  #3 † &  3 œ "&  $3  "!3  #3 œ "(  (3 Þ#

$  #3 $  #3 &  3 "&  $3  "!3  # "$  "$3 " "

&  3 &  3 &  3 #&  " #' # #
œ † œ œ œ  3 Þ

TRIGONOMETRIC (or POLAR) FORM FOR COMPLEX NUMBERS
Given a complex number , as shown in the figure below, the followingD œ +  ,3 Á !
equalities hold:
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   + œ
, œ

œ +  , œ D
3 α
3 α

3
cos
sin

, where  is the so called modulus of the complex number# #

D œ +  ,3 !ß ! +ß , while , the angle formed by the segment joining points  and  with theα    
positive real semiaxis, is said the argument of the complex number .D œ +  ,3

Then, substituting, we have:
D œ +  ,3 œ  3 œ  33 α 3 α 3 α αcos sin cos sin , 
which is called the trigonometric form of the complex number .+  ,3

We note that cos sin cos sin  α α α α 3 œ  œ " Þ# #

Then we have tg , from which we obtain arctg , .
sin
cos

, ,

+ + # #
œ œ œ  Ÿ Ÿ

3 α 1 1

3 α
α α α

The trigonometric form of a complex number is not unique because, if , we have:5 − ™
3 α α 3 α 1 α 1      cos sin cos sin , 3 œ  #5  3  #5
as trigonometric functions sinus and cosinus repeat over intervals of length .#1

Example 3 From , we obtain cos sin .À 3 œ !  " œ " À 3 œ " †  3
# #

    1 1

From , we obtain cos sin    " œ "  " œ " †  3 Þ1 1

From , we obtain        "  3 œ "  " œ # À  "  3 œ #   3 œ
" "

# #

œ #  3 D œ  "  3 œ # œ Þ
$ $ $

% % %
  cos sin ; so for  we obtain  and 1 1 3 α 1

From , we get    
# $  #3 œ "#  % œ % À # $  #3 œ %  3 œ

$ "

# #

œ %  3 D œ # $  #3 œ % œ Þ
' ' '

  cos sin ; so for  we get  and 
1 1 1

3 α

OPERATIONS ON COMPLEX NUMBERS USING THE TRIGONOMETRIC FORM
Trigonometric form of complex numbers is not particularly useful for calculating sums and
differences of complex numbers; for these operations it is more useful to work in algebraic
form.
This is not true with regard to product, reciprocal, quotient, exponentiation and root extracti-
on.
Given two complex numbers in trigonometric form:
D œ  3 D œ  3" " # #3 α α 3 " "   cos sin  and cos sin , computing the product we have:
D † D œ  3  3 œ" # " #3 3 α α " "   cos sin cos sin
œ  3  3  3 œ3 3 α " α " α " α "" #

# cos cos sin cos cos sin sin sin
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œ   3  œ3 3 α " α " α " α "" #   cos cos sin sin sin cos cos sin
œ   3 3 3 α " α "" #     cos sin . And so:

Theorem 1 To multiply two complex numbers in trigonometric form we multiply their mo-À
duli and we add their arguments.
It is easy to extend this rule to the product of as many complex numbers as one prefers.
Let us calculate, now, the reciprocal of a complex number ; we have:D Á !
" " "  3

D  3  3  3
œ œ œ
3 α α 3 α α α α

α α      
cos sin cos sin cos sin

cos sin

œ œ  3 œ   3 
"  3 " "

3 α α 3 3

α α
α α α α

         cos sin
cos sin

cos sin cos sin . And so:
# #

Theorem 2 The reciprocal of a complex number in trigonometric form is a complex numberÀ
having its modulus equal to the reciprocal of the modulus  and its argument equal to the op-3
posite of the argument .α
Finally, let us calculate the quotient of two complex numbers in trigonometric form as the
product of the first number by the reciprocal of the second. We have:
D " "

D D
œ D † œ  3 †   3  œ

"

# # #
" "3 α α " "

3
      cos sin cos sin

œ   3 
3

3
α " α "

"

#
    cos sin . And so:

Theorem 3 To divide two complex numbers in trigonometric form we divide their moduliÀ
and we subtract their arguments.
These formulas are also called De Moivre' formulas.

Example 4 Since cos sin  and cos sin , we obta-À 3 œ "  3 # $  #3 œ %  3
# # ' '

   1 1 1 1

in:
3 " " " $

# $  #3
œ   3  œ  3 œ  3

% # ' # ' % $ $ ) )        
cos sin cos sin .

1 1 1 1 1 1

Since cos sin  we obtain: "  3 œ #  3
$ $

% %
  1 1

" " $ $ " " "

 "  3 % %
œ   3  œ   3 œ

# # # #         cos sin
1 1

œ   3 Þ
" "

# #

POWERS OF COMPLEX NUMBERS USING TRIGONOMETRIC FORM
Using the product's formula, let us calculate the power of a complex number to a natural
exponent.
If cos sin  and if , we have:D œ  3 8 −3 α α  
D œ  3 œ † 8  3 88 88    3 α α 3 α αcos sin cos sin , since the modulus is given by the pro-
duct of  moduli all equal to , while the argument is given by the sum of  arguments all8 83
equal to . So:α
Theorem 4 To calculate the -th power ( ) of a complex number in trigonometricÀ 8 8 − 
form we take the -th power of its modulus  and we multiply its argument  by .8 83 α

Example 5 Since cos sin , we obtainÀ  "  3 œ #  3
$ $

% %
  1 1
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          "  3 œ # ) †  3 ) † œ "' '  3 ' œ "'
$ $

% %
)

)

cos sin cos sin .1 1 1 1

Let us consider now the powers of a complex number to an integer exponent . Since7 − ™
™  ™ œ 7 −, we need simply to define powers to negative exponent .
To this effect, let us suppose , .7 œ  8 8 − 

Since , we have simply to apply the rule found in the case of natural exponentsD œ D8 " 8 
to the number , the reciprocal of .D D"

So we obtain, if cos sin :D œ  33 α α 
D œ D œ D œ  3 œ   3  œ

"7 8 " 8 " 8
8            3 α α α α

3
cos sin cos sin

œ  8  3  8 œ 7  3 7
"

3
α α 3 α α

8
7      cos sin cos sin .

So the rule is exactly the same as for powers to a natural exponent: its modulus is the -th7
power of the modulus  and its argument is the multiple of the argument  by .3 α 7
Note that the result found for the reciprocal corresponds, of course, with the one found  apply-
ing the exponent . "

Example 6 Since cos sin , we have also:À # $  #3 œ %  3
' '

  1 1

       # $  #3 œ %  "# †  3  "# † œ
' '

"#
"# cos sin

1 1

œ  #  3  # œ "  3 † ! œ
" " "

% % %"# "# "#
      cos sin .1 1

Let us study the powers to rational exponent, starting with the exponents like , ;
"

8
8 − ‡

that is, let us study the problem of extracting the -th root of a complex number.8

We want to define , with cos sin .D œ D D œ  3
"
8 8  3 α α

By setting ,  unknown, let cos sin ,  and  unknown.D œ D œ A A A œ B C  3 C B C
"
8 8  

Since , substituting we obtain: cos sin cos sin .D œ A  3 œ B 8C  3 8C8 83 α α   
The latter equality is satisfied if:






3
α 1

3

α 1
™

œ B
 #5 œ 8C

B œ

C œ  5 5 −
8 8

# Þ
8

, or if 
, 

8

The first equality has only one solution, that is the -th positive root of , while the second8 3
equality expresses the possibility that the arguments of the two complex numbers  and D A8

give rise to the same point in the complex plane, although differing by integer multiples of a
round.

The value  represents the -th part of the argument  of the radicand , while  repre-
α 1

α
8 8

8 D
#

sents the -th part of a whole round.8

If  we obtain , if  we obtain  and so on; if  we5 œ ! C œ 5 œ " C œ  5 œ 8  "
8 8 8

#α α 1

obtain , and finally, if  we obtain ,C œ  8  " 5 œ 8 C œ  8 † œ  #
8 8 8 8 8

# #α 1 α 1 α
1 

which in the complex plane represents the same point given by .C œ
8

α
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Having divided the round angle into  equal parts, starting from the position given by8

C œ 8
8

α
, after adding  of these parts we find ourselves again at the starting position. If

5 œ 8  " 5 œ 8  #,  and so on, we will meet the same points found earlier, and therefore
the same -th roots.8
So the following Theorem is valid:
Theorem 5 The -th roots of a complex number  are in number of  and are given by theÀ 8 D 8
general formula:

      8 8D œ  5  3  5 ! Ÿ 5 Ÿ 8  " 5 −
8 8 8 8

# #
3 

α 1 α 1
cos sin , , .

Every complex number  has exactly  -th roots; these have the same modulus ,D Á ! 8 8 8 3
so they belong to a circumference having its center at  and radius equal to .  !ß ! 8 3

Since their arguments differ by an angle equal to , the -th roots of a complex number 
#

8
8 D

1

form the vertices of a regular polygon of  sides, inscribed in the circle with center  and8 !ß ! 
radius equal to ; the first of these vertices has  as its argument .8 3 α

8
The following figure shows the six -th roots of cos sin .' D œ  33 α α 

Example 7 Let us compute . Since cos sin  it is:À 3 3 œ " †  3
# #

  % 1 1

      % %3 œ "  5  3  5 ! Ÿ 5 Ÿ $
) % ) %

# #
cos sin , , and so we obtain:

1 1 1 1

if : cos sin ;5 œ ! " †  3
) )

 1 1

if : cos sin cos sin ;5 œ " " †   3  œ  3
) # ) # ) )

& &      1 1 1 1 1 1

if : cos sin cos sin ;5 œ # " †   3  œ  3
) ) ) )

* *      1 1 1 1
1 1

if : cos sin cos sin .5 œ $ " †   3  œ  3
) # ) # ) )

$ $ "$ "$      1 1 1 1 1 1
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Using the bisection (or half-angle) formulae: ,
sin

cos

cos
cos





α
α

α
α

œ
"  #

#

œ
"  #

#

since: sin cos , we obtain:
1 1

% % #
œ œ

#

sin  and cos , from which finally:
1 1

) # ) #
œ œ

#  # #  #  

if  it is: ;5 œ !  3
#  # #  #

# #

  

if  it is: ;5 œ "   3
#  # #  #

# #

  

if  it is: ;5 œ #   3
#  # #  #

# #

  

if  it is: .5 œ $  3
#  # #  #

# #

  

Example 8 Let us compute . Since cos sin  we obtain:À " " œ " † !  3 !  8

      8 8" œ " †  5  3  5 ! Ÿ 5 Ÿ 8  " 5 −
! # ! #

8 8 8 8
cos sin , , , i.e.:

1 1


    8 " œ 5  3 5 ! Ÿ 5 Ÿ 8  "
# #

8 8
cos sin , .

1 1

From cos sin , , ,      8 8D œ  5  3  5 ! Ÿ 5 Ÿ 8  " 5 −
8 8 8 8

# #
3 

α 1 α 1

using the product of complex numbers in trigonometric form, we can write:

         8 8 8D œ † " †  3 5  3 5
8 8 8 8

# #
3

α α 1 1
cos sin cos sin ,

where cos sin  is the first -th root of the number , the one corresponding to  8 3
α α

8 8
 3 8 D

5 œ ! 5  3 5
# #

8 8
, while cos sin , as we have seen in Example 8, represents,    1 1

when , the -th roots of the unity . And so the following Theorem is valid:! Ÿ 5 Ÿ 8  " 8 "

Theorem 6 The -th roots of every complex number  can be obtained calculatingÀ 8 D Á !
only one root, that corresponding to , and then multiplying this by the  -roots of the5 œ ! 8 8
unity ."

Example 9 Let us compute  and then  . We obtain:À " 3 % %

           % %" œ " † 5  3 5 œ 5  3 5 ! Ÿ 5 Ÿ $
# #

% % # #
cos sin cos sin , ,

1 1 1 1

and so: if  it is cos sin ; if  we have cos sin5 œ ! !  3 ! œ " 5 œ "  3 œ 3 à
# #

1 1

if we have cos sin ; if  we have cos sin .5 œ #  3 œ  " 5 œ $  3 œ  3
$ $

# #
1 1

1 1
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Taking the first root found for , i.e., if : , multiplying it   
% 3 5 œ !  3

#  # #  #

# #
by , by  and by , we find the other -th roots of  we have just found. In fact:3  "  3 % 3

       #  # #  # #  # #  #

# # # #
 3 † 3 œ   3 5 œ ", the one for ;

        #  # #  # #  # #  #

# # # #
 3 †  " œ   3 5 œ #, the one for ;

        #  # #  # #  # #  #

# # # #
 3 †  3 œ  3 5 œ $, the one for .

Example 10 Let us compute . Since , it is:À  3  3 œ "
$ " $ "

# # # #

    #

    $ " "" ""

# # ' '
 3 œ  3cos sin , from which we obtain:1 1

     $ " "" ""

# # $ $
 3 œ  3 œ

#

cos sin1 1

œ  3 œ  3
& & " $

$ $ # #
cos sin .    

1 1

So cos sin , :     " $ & # & #

# # ' # ' #
 3 œ  5  3  5 ! Ÿ 5 Ÿ "1 1

1 1

if  we obtain: cos sin ;5 œ !  3 œ   3
& & $ "

' ' # #
    

1 1

if  we obtain: cos sin .5 œ "  3 œ  3
"" "" $ "

' ' # #
    

1 1

As it can be seen, therefore, it is incorrect to write .

  $ " $ "

# # # #
 3 œ  3

#

Example 11 Let us solve the equation .À B  B  " œ !#

We obtain .B œ œ
 "„ "  %  "„  $

# #

 
Since , we obtain , and then we have two complex   

 $ œ $ †  " B œ
 "„ $ 3

#

conjugate solutions:  and .B œ   3 B œ   3
" $ " $

# # # #
" #

 
Example 12 Let us solve the equation , having only one real solution:À B  " œ !$

B œ  " .

From , we obtain , and so we have to calculate the three -th roots ofB œ  " B œ  " $$ $
D œ " †  3 cos sin :1 1     $ " †  5  3  5 ! Ÿ 5 Ÿ #

$ $ $ $

# #
cos sin , , and so:

1 1 1 1
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if  we obtain: cos sin ;5 œ !  3 œ  3
$ $ # #

" $1 1 
if  we obtain: cos sin ;5 œ "  3 œ  "1 1

if  we obtain: cos sin .5 œ #  3 œ  3
& & " $

$ $ # #
    

1 1

Therefore we have found three solutions, whose number is equal to the degree of the polyno-
mial .B  "$

Let us finally deal with the powers to rational exponent, , ; let us suppose that D − 7
7

8

7
8 

and  are relatively prime numbers (two numbers are "relatively prime" if they have no8
common factors other than ), and ." 7 Á "

We put , and we operate accordingly to the above definitions.D œ D œ D
7
8

"
8 8  7 7

The power  gives only one result, and then we calculate the  -th roots of this number.D 8 87

THE COMPLEX EXPONENTIAL , / D −D ‚
Given a pure imaginary number , , let us state the followingD œ B 3 B − ‘
Definition 6 We define the complex exponential  as:À / B 3

/ œ B  3 BB 3 cos sin
which is also called Euler's formula.
Let us see a justification (certainly not a demonstration !) of this definition using the
MacLaurin' polynomials of the real functions , sin  and cos , although, more correctly, we/ B BB

should use their power series developments. We know that it is:

/ œ "  B      9 B œ B  9 B
B B B "

# x $ x 8 x 5 x
B 8 5 8

# $ 8

5œ!

8

....    .   
sin  ...B œ B       B  9 B

B B B B  "

$ x & x ( x * x #8  " x

$ & ( * 8
#8" #8"    

cos   ... .B œ "       B  9 B
B B B B  "

# x % x ' x ) x #8 x

# % ' ) 8
#8 #8    

Substituting, in a formal way, in these expressions the variable  to the variable , we obtain:B3 B

/ œ "  B 3       
B 3 B 3 B 3 B 3 B 3 B 3

# x $ x % x & x ' x ( x
B 3

# $ % & ' (             
....  and so:

/ œ "  B 3   3   3   3 
B B B B B B

# x $ x % x & x ' x ( x
B 3

# $ % & ' (

....  or:

/ œ "      3 B    
B B B B B B

# x % x ' x $ x & x ( x
B 3

# % ' $ & (   .... .... and finally:

/ œ B  3 BB 3 cos sin .

Given now a complex number , , using the same properties as real powers,D − D œ B  C 3‚
we obtain:
/ œ / œ / † / œ / C  3 CD BC 3 B C 3 B  cos sin
i.e. we obtain a complex number having modulus equal to  and argument equal to the coef-/B

ficient of the imaginary . In fact: cos sin .C C  3 C œ " 
From this definition it follows immediately,  , that:a 5 − ™

/ œ / œ / † / œ / C  #5  3 C  #5 œD#5 3 BC 3#5 3 B C#5 3 B1 1 1      cos sin1 1
œ / C  3 C œ / D Ä /B D D cos sin , that is, the complex exponential function  is a periodic

function, having an immaginay period equal to .# 31
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Example 13 Let us compute . Being  we obtain:À / / œ /3 3 !"†3

/ œ / "  3 " œ "  3 "3 !  cos sin cos sin .
If we compute  we obtain instead cos sin ./ / œ / œ / #  3 # œ "# 3 # 3 !# 3 !1 1 1  1 1

LOGARITHMS OF COMPLEX NUMBERS log , D D − ‚
Now let us see how to define log , , . If log , we obtain D D − D Á ! D œ A D œ / Þ‚ A

If we set , being  and  unknown, and cos sin , being  and A œ B  C 3 B C D œ  33 α α 3 α 
known values, we obtain cos sin cos sin , which is/ œ / œ / C  3 C œ  3A BC 3 B    3 α α

satisfied when :  or if .
, , 

log / œ B œ
C œ  #5 5 − C œ  #5 5 −

B 3 3
α 1 ™ α 1 ™

We note that log  is always defined, since , a modulus, is always a real positive number; the3 3
second equality depends on the fact that a point in the complex plane can be represented in an
infinite number of ways, given the identity of representations at less than full rounds.
Substituting the equalities found we get: log log ,D œ A œ B  C 3 œ   #5 33 α 1 
5 − Þ™
With this equality we define the infinite logarithms of a complex number .D Á !
They have all the same real part, log , while the coefficient of their imaginary part varies, ad-3
ding multiples of .#1
The values of log  form a sequence of equally spaced points along a vertical line passingD
through the point log . 3 αß
The value corresponding to  is called the principal value.α œ !

Example 14 Let us compute log . Since cos sin , we obtain:À  "  " œ " †  3   1 1
log log , . From this we obtain also:      " œ "   #5 3 œ #5  " 3 5 −1 1 1 ™

/ œ #5  "  3 #5  " œ  " Þ #5" 31 cos sin      1 1

Example 15 Let us compute log . Since cos sin , we obtain:À 3 3 œ  3
# #

 1 1

log log , .3 œ "   #5 3 œ  #5 3 5 −
# #

   1 1
1 1 ™

Example 16 Let us compute log .À "  3 
Since cos sin , we obtain:"  3 œ #  3 œ #  3

" "

# # % %
     1 1

log log , .    "  3 œ #   #5 3 5 −
%

1
1 ™

POWERS TO A COMPLEX EXPONENT
If we want to raise a complex number to a complex number, i.e. if we want to define a power
such as , , , , we use the equality, valid for every real positive numberA A − D − A Á !D ‚ ‚

+ + œ / Þ: B B +log

Definition 7 We set , where both the exponential and the logarithm are theÀ A œ /D D Alog

complex ones.

Example 17 Let us compute . Since cos sin  and log , weÀ 3 3 œ  3 3 œ  #5 3
# # #

3 1 1 1
1 

obtain: , .3 œ / œ / œ / 5 −3 3 3 3 #5 3  #5log    1 1
# #1 1 ™

Then the power  takes infinite values, which are all still real.33
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Let us compute now . Since , we     "  3 œ / "  3 œ #  3
" "

# #

"3 "3 "3   log

have just seen (Example 16) that log log , and so, substituting,    "  3 œ #   #5 3
%

1
1

we obtain:

/ œ / œ / œ              "3 "3 # #5 33 # #5"3 # #5 3log log loglog 1 1 1
% % %

1 1 1

œ / † / œ / † / † / œlog loglog log     # #5 # #5#5  # 3 #5  # 31 11 1

% %% %1 11 1

œ #/  #5  #  3  #5  #
% %

      1
%#51 cos log sin log .

1 1
1 1

COMPLEX TRIGONOMETRIC FUNCTIONS
From the definition cos sin , substituting  with , we obtain the follo-/ œ B  3 B B3  B3B 3  
wing: cos sin cos sin ./ œ  B  3  B œ B  3 BB 3    
Adding and subtracting them from the two equalities  we obtain:

cos sin
cos sin / œ B  3 B

/ œ B  3 B

B 3

B 3




/  / œ # B

/  / œ # 3 B

B œ
/  /

#

B œ
/  /

#3

B 3 B 3

B 3 B 3

B 3 B 3

B 3 B 3

cos
sin

and then: .
cos

sin

Extending these equalities to , we obtain the definition of the sinus and the cosinus of aD − ‚

complex number: .
cos

sin


D œ

/  /

#

D œ
/  /

#3

D 3 D 3

D 3 D 3

From these we then also obtain tg .
sin
cos

D œ œ œ †
D /  / # " /  /

D #3 /  / 3 /  /

D 3 D 3 D 3 D 3

D 3 D 3 D 3 D 3

LINEAR ALGEBRA

VECTORS
Let  be the -dimension vector space, whose elements are -tuples ...  of real‘8

" # 88 8 B ß B ß ß B 
numbers, resulting from the Cartesian product of  by itself  times. Each -tuple is also‘ 8 8
known as a vector.
Each vector will be denoted by a capital letter or with the -tuple of its components:8
— ‘œ B ß B ß ß B − " # 8

8... .
If  we also say that  has components or that it is an -dimension vector.— ‘ —− 8 88  
From a geometric point of view, every vector  identifies the straight line passing— ‘− 8

through the two points ...  and ... . —œ !ß !ß ß ! œ B ß B ß ß B   " # 8

The vector ...  is called the null vector. œ !ß !ß ß ! 
OPERATIONS WITH VECTORS
Let us consider two vectors: , ...  and ... , ha-— ˜ ‘ — ˜ß − œ B ß B ß ß B œ C ß C ß ß C8

" # 8 " # 8   
ving the same number of components.
Definition 8 We define vectors addition as:À
— ˜ ‘ œ B  C ß B  C ß ß B  C − " " # # 8 8

8... .
We easily extend this definition to the sum of any number of vectors.
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Example 18 If  and , then .À œ $ß  "ß ! œ &ß #ß  $  œ )ß "ß  $— ˜ — ˜     
Vector sum obeys to the following rules:
S ) Commutativity: "  œ — ˜ ˜ —
S ) Associativity: .#   œ  — ˜ ™ — ˜ ™   
S ) Identity element: there exists only one element , the null vector, such that$ − ‘8

—   — — — ‘ œ  œ ß a − 8 .

Given any two vectors,  and , let us consider the parallelogram spanned by— ‘ ˜ ‘− −8 8

these two vectors and its diagonal starting at the origin. This diagonal is the vector  that re-™
presents the sum of the two vectors: . This is the so-called parallelogram rule.™ — ˜œ 

Let us consider one vector: , ...  and a real number (scalar) .— ‘ — ‘− œ B ß B ß ß B 5 −8
" # 8 

Definition 9 We define scalar multiplication as:À
5 † œ 5 B ß 5 B ß ß 5 B −— ‘ " # 8

8... .

Example 19 If  and  we obtain .À œ $ß  "ß ! 5 œ &ß & † œ "&ß  &ß !— —   
Scalar multiplication obeys to the following rules:
If  and :5 ß 5 − ß −" #

8‘ — ˜ ‘
P ) Associativity: ;" 5 † 5 † œ 5 † 5 †   " # " #— —
P ) Commutativity: ;# 5 † 5 † œ 5 † 5 †" # # "   — —
P ) Scalar distributivity: ;$ 5  5 † œ 5 †  5 † " # " #— — —
P ) Vector distributivity: ;% 5 †  œ 5 †  5 † — ˜ — ˜
P ) Identity element: Multiplying by the scalar  does not change a vector: .& " " † œ— —

The scalar multiplication of a vector  by a real positive number  multiplies the magni-— 5  "
tude of the vector without changing its direction.
The scalar multiplication of a vector  by a real positive number  decreases the— !  5  "
magnitude of the vector without changing its direction.
The scalar multiplication of a vector  by a real negative number  multiplies the— 5   "
magnitude of the vector reversing its direction.
The scalar multiplication of a vector  by a real negative number  decreases the—  "  5  !
magnitude of the vector reversing its direction.

Definition 10 Given  vectors ...  and  scalars ... , we de-À : ß ß ß − : 5 ß 5 ß ß 5 −— — — ‘ ‘" # : " # :
8

fine the linear combination of these vectors with the coefficients  as the vector:53
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5  5   5 œ 5" " # # : : 3 3

3 "

:

— — — —    ...   ,
=

i.e. the sum of the  vectors , each multiplied by its scalar coefficient .: 5—3 3

Example 20 Given ,  and , if ,À œ $ß  "ß ! œ &ß #ß  $ œ  %ß #ß # 5 œ $— ˜ ™      "

5 œ  # 5 œ # $ †   # †  # † œ  *ß  $ß "!# $ and , we obtain:     .— ˜ ™   
Definition 11 Given any two vectors , the difference of  and  is given by theirÀ ß −— ˜ ‘ — ˜8

linear combination with coefficients  and :"  "
— ˜ — ˜ œ " †   " † œ B  C ß B  C ß ß B  C   " " # # 8 8... .

Multiplying a vector  by  we obtain its additive inverse element:—  "
 .— — — —   " œ  œ 
Also the difference between two vectors can be represented graphically.
If , then , and referring to the figure relative to the parallelogram™ — ˜ ˜ ™ —œ  œ 
rule, we see that the vector , which represents the difference, is the vector leading from the˜
point , the vector that is subtracted, to the point , the one from which we subtract.— ™

VECTOR SPACES AND SUBSPACES
The operations we have defined, when executed on vectors of , give always a vector of ‘ ‘8 8

as their result.
The scalar multiplication of a vector  by a scalar  results in a vector which belongs to the— 5
same straight line of , without changing its direction if , reversing its direction if— 5  !
5  ! .
Two vectors  belong to the same straight line if and only if ; in— ˜ ‘ — ˜ ‘ß − œ 5 † ß 5 −8

this case the two vectors are said to be parallel vectors.
Two vectors , that do not belong to the same straight line, identify a plan passing— ˜ ‘ß − 8

through ,  and , and any linear combination of these two vectors will result in a vector — ˜
that belongs to the same plane.

A set in which these two operations are defined, i.e. the sum and the scalar multiplication,
with the properties listed above, is said a vector space.

More precisely, we set the following
Definition 12 A set  is said to be a vector space if:À •
a 5 ß 5 − a ß − Ê 5 †  5 † −  and    ," # " #‘ — ˜ • — ˜ •
i.e. if every linear combination of its elements still belongs to the set.

The sets  (the real line),  (the real or Cartesian plane),  (the space of Euclidean‘ ‘ ‘# $

geometry) ...  are the main examples or real vector spaces, having dimensions respectivelyß ß‘8

"ß #ß $ß 8... . The null vector (or the point)  can be considered like the vector space having its
dimension equal to zero.

Example 21 The set of polynomials P ... ,À B œ + B  + B   + B  +  8 8" " !
8 8"

regardless of their degree, constitutes a vector space, since each linear combination of
polynomials is still a polynomial.
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Example 22 The set of continuous functions at a point  is a vector space since the linearÀ B!

combination of continuous functions at  is still a continuous function at . Similarly forB B! !

differentiable functions at .B!

With a similar definition, a subset  is said to be a vector subspace of  if: • •§
a 5 ß 5 − a ß − Ê 5 †  5 † −  and    ." # " #‘ — ˜  — ˜ 

For example, every line ( ) is a vector subspace in the plane , in , and in every ;‘ ‘ ‘ ‘# $ 8

every plane ( ) is a vector subspace in , in , and in every , and so on.‘ ‘ ‘ ‘# $ % 8

LINEARLY DEPENDENT OR INDEPENDENT VECTORS
Given  vectors ... ;: ß ß ß − ß : Ÿ 8— — — ‘" # :

8

Definition 13 The vectors ...  are said to be linearly dependent if there are  sca-À ß ß ß :— — —" # :

lars ... , not all equal to zero (that is, with at least one of them different from zero),5 ß 5 ß ß 5" # :

such that:
5 †  5 †   5 † œ" " # # : :— — — ... .
If the only way to obtain the null vector  as the result of the linear combination is to take all
the scalars  equal to zero, then the  vectors are said to be linearly independent.5 :3

If the  vectors are linearly dependent, each of the vectors having, in the linear combination:
that gives the null vector as its result, a coefficient different from zero, can be expressed as a
linear combination of the other vectors. In fact, if , from:5 Á !3

5 †  5 †   5 †   5 † œ" " # # 3 3 : :— — — —     ...   ...  , we obtain:
5 † œ  5 †  5 †   5 †  5 †   5 †3 3 " " # # 3" 3" 3" 3" : :— — — — — —    ...      ...  ,
and then

— — — — — —3 " # 3" 3" :
" # 3" 3" :

3 3 3 3 3
œ  †  †   †  †   †

5 5 5 5 5

5 5 5 5 5
  ...     ...  ,

or, if :2 œ 
5

5
4

4

3

— — — — — —3 " " # # 3" 3" 3" 3" : :œ 2 †  2 †   2 †  2 †   2 †  ...     ...  .
This would not be possible if the vectors were linearly independent.
The vectors ...  are linearly independent if none of them can be expressed as a li-— — —" # :ß ß ß
near combination of the remaining ones.

From a geometrical point of view, if we say that  vectors belonging to , with , are: : Ÿ 8‘8

linearly dependent, it means that they belong to a same vector subspace , whose dimension‘5

5 : is less than the number  of the vectors.

Example 23  vectors in  or  vectors in  can be linearly dependent if they are all onÀ % %‘ ‘& )

the same straight line ( ), or if they are all in the same plane ( ), or if they are all in the‘ ‘#

same  (  !).‘$ $  %

The simplest example of linearly dependent vectors is provided by two vectors , if— ˜ ‘ß − 8

they are on the same straight line, i.e. if they are parallel vectors, i.e. if .˜ — ‘œ 5 † ß 5 −

Given  vectors ... , if one of them is the null vector , then the vectors will: ß ß ß −— — — ‘ " # :
8

be anyhow linearly dependent; we give simply to each nonzero vector a coefficient equal to !
while to  we give any nonzero coefficient; such a linear combination will obviously have
the null vector  as its result.
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SPANNING SETS AND BASES OF A VECTOR SPACE
It can be shown, but we only state it here, that the maximum number of linearly independent
vectors in  is equal to the number  of their components, or that  vectors of  are at‘ ‘8 88 8
most linearly independent among them.
As a consequence, if we choose  linearly independent vectors ... , any8 ß ß ß −— — — ‘" # 8

8

other vector  can always be expressed by a suitable linear combination of some, even˜ ‘− 8

all, vectors ... .— — —" # 8ß ß ß

Let  be a vector subspace, , and ...  a set of vectors belonging• • ‘ – — — —© œ ß ß ß8
" # 7 

to .•
It’s interesting to consider the set of all linear combinations of these vectors. This set is called
the linear span of the vectors ... .— — —" # 7ß ß ß
We have the following
Definition 14  is said a spanning set for  if every  can be written as a linear com-À −– • ˜ •
bination of the vectors ... .— — —" # 7ß ß ß
And also we have the following
Definition 15 A set of vectors ...  is said a basis for  if these vectorsÀ œ ß ß ß– — — — • " # 7

are linearly independent and if they span .•
So, a basis is a linearly independent spanning set for a vector space.
A basis of  is then a set which consists of the minimum number of vectors that span .• •
Each vector  can always be expressed as a linear combination of the vectors of a basis˜ •−
of .•

The dimension of a vector space (or subspace) is the number of the elements of any of its ba-
ses, and it is equal to the maximum number of linearly independent vectors that can be deter-
mined in it.

Example 24 Since the dimension of  is equal to , we simply need a vector (except theÀ "‘
null one) to span the whole .‘
For example the vector  generates any number : we simply multiply  by ." 5 − " 5‘
We need two vectors, however, not on the same straight line, to generate any other vector of
‘#, the vector space whose dimension is equal to .#
For example: ,  .       Bß C œ B "ß !  C !ß " a Bß C − ‘2

The set of polynomials, that of continuous functions and that of differentiable functions at B!

are instead examples of infinite dimensional vector spaces.

The simplest example of a basis of  is the so-called standard (or canonical) basis, the one‘8

made up by vectors having one component equal to  and all the others equal to ." !

Example e e 25 The standard basis of  is E : ; , the standard basisÀ œ "ß ! œ !ß "‘#
# " #    

of  is E : ; ; .‘$
$ " # $      e e eœ "ß !ß ! œ !ß "ß ! œ !ß !ß "

The following theorem is valid
Theorem 7 Given a basis of , the representation of any vector  by the vectors ofÀ −‘ ˜ ‘8 8

such basis is a unique one.
Proof: Let us proceed by contradiction, supposing that a vector  may have two repre-˜ ‘− 8

sentations using the basis ...  of , and so: — — — ‘" # 8
8ß ß ß

˜ α — α — α —œ †  †   †" " # # 8 8  ...   and also:
˜ " — " — " — α "œ †  †   † Á" " # # 8 8 3 3  ...  , with some .
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Subtracting member to member we obtain:     α " — α " — α " — " " " # # # 8 8 8 †   †    † œ  ...  .
If at least one of the differences  was different from zero, this would mean that the α "3 3
vectors ...  are linearly dependent, contrary to the hypothesis, and so , — — — α "" # 8 3 3ß ß ß œ a 3
and the representation of  is therefore unique. ˜ ñ

SCALAR (or DOT or INNER) PRODUCT, MODULUS, EUCLIDEAN DISTANCE
Definition 16 Given two vectors , we define their scalar (or dot or inner) pro-À ß −— ˜ ‘8

duct, denoted with , (or ) as the sum of the products of their components— ˜ — ˜†  ß 

with the same index:     ..    .— ˜† œ B C  B C   B C œ B C" " # # 8 8 3 3

3œ"

8
We note that  gives as a result a real number (a scalar) and not a vector and this— ˜†
explains the name of "scalar" product.

Example 26 If  and , we obtain:À œ $ß  "ß ! œ &ß #ß  $— ˜   
— ˜† œ $ † &   " † #  ! †  $ œ "$    .

Definition 17 We define the modulus (or length, sometimes norm)  of a vector  as theÀ  — —

square root of the scalar product of the vector  by itself:    .— — — —   œ † œ B
3œ"

8

3
#

A vector whose modulus (or length) is equal to  is called a unit vector (or versor or norma-"
lized vector).
Given a vector , to obtain its unit vector  codirectional with  we have simply to—  — —Á v

calculate — —
—

— —
v œ œ † Þ

"   
Example 27 If , since , to obtain itsÀ œ $ß  "ß ! œ $   "  ! œ "!— —      # ##

unit vector we calculate .
" $  "

"! "! "!
† œ ß ß !   —

All the unit vectors of  can be expressed in the form cos sin .‘ α α# @ œ ß 
Definition 18 Given two vectors ...  and ... , we defineÀ œ B ß B ß ß B œ C ß C ß ß C— ˜   " # 8 " # 8

their Euclidean distance as the real nonnegative number:

   — ˜ œ B  C
3œ"

8

3 3
#  .

The Euclidean distance is the length of the line segment connecting  and .— ˜
The modulus of a vector  is equal to the Euclidean distance between the vector  and the— —
null vector .

If ,     we find again the8 œ #  œ B  C œ B  C  B  C       
 — ˜

3œ"

#

3 3 " " # #
# # #

usual formula of the distance between the two points  and  in the real   B ß B C ß C" # " #

(cartesian) plane.

PROPERTIES OF THE SCALAR PRODUCT
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The Cauchy–Schwarz inequality states that for all vectors  the following— ˜ ‘ß − 8

inequality is valid: .     — ˜ — ˜† Ÿ †
Such inequality is closely linked to the following equality:
— ˜ — ˜ α α† œ † †    cos , where  is the angle between the two vectors.
This formula can be rearranged to determine the size of the angle between two nonzero vec-

tors, in fact we obtain: arccos .α
— ˜

— ˜
œ

†

†
    

If  the scalar product is equal to : , and we say that the two vectors are or-α — ˜
1

œ ! † œ !
#

thogonal (or perpendicular).

If  we obtain , while if  we obtain ; and so if the!   †  !   †  !
# #

α — ˜ α 1 — ˜
1 1

angle between the two vectors is acute their scalar product is positive, otherwise it is negative.
If , i.e. if the vectors are parallel and with the same direction, their scalar product givesα œ !
the maximum possible result, while, if , i.e. if the vectors are parallel but with oppositeα 1œ
directions, their scalar product gives the minimum possible result.

For vectors  another inequality is valid, the so-called:— ˜ ‘ß − 8

- triangle inequality: ,     — ˜ — ˜ Ÿ 
i.e. the modulus of a sum is less than or equal to the sum of the moduli.

MATRICES
The easiest way to introduce the concept of matrix is to define matrices as a rectangular array
of real numbers, arranged in rows and columns.
The individual items in a matrix are called its elements or entries.
Also the matrices will be denoted by capital letters, and, for example, we write:

7ß8

"" "# "$ "8

#" ## #$ #8

3" 3# 3$ 38
 

.... ....

.... ....
.... .... .... .... .... ....

.... ....
.... .... .... ..

œ

+ + + +
+ + + +

+ + + +

            .. .... ....
.... ....

.

+ + + +7" 7# 7$ 78

The entry in the -th row and the -th column of a matrix is typically denoted as .3 4 +34

The first of the two indices at the base of each entry is said the row index, the second is the
column index, and we will say that the matrix  is a matrix  if it is formed by  rows  7 † 8 7
and  columns.8
In fact a matrix can also be defined as an ordered set of vectors, horizontally the rows and
vertically the columns.
Writing , we denote the matrix consisting of  rows and  columns whose gene-7ß8 34œ + 7 8 
ric entry in the place  is . 3ß 4 +34

We will denote with R R ... R  its rows, each of which is a vector of , having a number" # 7
8ß ß ß ‘

of components equal to the number  of the columns of the matrix, and similarly we will de-8
note with C C ... C  its columns, which are vectors of , so having a number of" # 8

7ß ß ß ‘
components equal to the number  of the rows of the matrix.7
We will write C C ... C  to indicate the matrix A by means of its columns, while œ    " # 8

we will write, preferably vertically, R R ... R  to indicate the matrix A by means œ    " # 7

of its rows.
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A matrix is said a square matrix if the number of its rows is equal to that of its columns (this
number is called the order of the matrix and the matrix will be denoted by ), otherwise it is8

called a rectangular matrix.

SPECIAL MATRICES
The vectors may be considered as particular matrices,  by , or , if the matrix is a co-7 " 7 † " 
lumn vector;  by , or , if the matrix is a row vector." 8 " † 8 
A submatrix is a matrix formed by selecting certain rows and columns from a bigger matrix.
Given a matrix , we say submatrix  of  the matrix obtained by taking the entries 7ß8  2 † 5
of  that are common to  rows and  columns and discarding all the others. 2 5
It is said null matrix, denoted by , a matrix whose entries are all equal to zero.

SPECIAL SQUARE MATRICES
The main diagonal (or leading diagonal) of a square matrix  is the set of the entries , i.e +33

the entries having the same row and column indexes.

Definition 19 A square matrix is called diagonal if the only non-zero entries are the entriesÀ
that belong to the main diagonal, that is the entries which have the two indexes equal.
So a diagonal matrix is a matrix in which the entries outside the main diagonal are all equal to
zero.
The diagonal entries themselves may or may not be equal to zero.

Definition 20 A diagonal matrix is called a scalar matrix if the entries of the main diagonalÀ
are all equal: + œ 5ß a3 Þ33

Definition 21 A square matrix is called upper triangular if all the entries below the mainÀ
diagonal are equal to zero. Conversely, a square matrix is called lower triangular if all the
entries above the main diagonal are equal to zero.
A triangular matrix is one that is either lower triangular or upper triangular.
A matrix that is both upper and lower triangular is a diagonal matrix.

Example 28 The matrices , ,  are, re-À œ œ œ
" ! ! $ ! ! # ! $
! % ! ! $ ! ! $ %
! ! ( ! ! $ ! ! "

  ‚

                              
spectively, a diagonal matrix, a scalar matrix and an upper triangular matrix.

Definition 22 A square matrix is called a symmetric matrix if .À + œ +34 43

The entries of a symmetric matrix are symmetric with respect to the main diagonal.

Example 29 The matrix  is a symmetric matrix.À œ
" #  $
# & '
 $ ' %



      
Definition 23  The identity matrix (or unit matrix) of order , denoted with , is a scalarÀ 8 ˆ8
matrix having all the entries of the main diagonal equal to ."
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Example 30 , .À œ œ
" !
! "

" ! !
! " !
! ! "

ˆ ˆ# $  
      

Definition 24 A permutation matrix is a matrix obtained interchanging some rows (or someÀ
columns) of the identity matrix.
So a permutation matrix is a square matrix that has exactly one entry equal to  in each row"
and each column and  elsewhere.!

Example 31  and  are permutation matrices.À œ œ
! " ! ! ! "
" ! ! ! " !
! ! " " ! !

 " #

                  
BASIC MATRIX OPERATIONS
The main matrix operations are nothing but an extension of similar operations defined for
vectors.

Definition 25 Given  and , both with  rows and  columns, weÀ œ + œ , 7 8 7ß8 34 7ß8 34   
define their sum matrix as the matrix, which is also , having as the entry of indices 7 † 8   3ß 4 3ß 4 the sum of the entries of indices  of the given matrices:
‚7ß8 34 34 34œ - œ +  ,    .
The sum of two matrices can be calculated only if the two matrices have the same number of
rows and columns.

Definition 26 The scalar multiplication of a matrix  by a number  (also called aÀ 57ß8

scalar) is given by multiplying every entry of  by : 5
5 † œ 5 † œ 5 † + 7ß8 347ß8    .
We can multiply any matrix by any scalar.

Definition 27 A linear combination of matrices, all however having  rows and  columns,À 7 8
with given scalar coefficients, is defined as the matrix having as entry with indexes  the 3ß 4
linear combination, with the same coefficients, of the entries with indexes  of the given 3ß 4
matrices.
In the case of only two matrices,  and , we get: 7ß8 34 7ß8 34œ + œ ,   
α  "  α "†  † œ † +  † ,7ß8 7ß8 34 34  .

Example 32 If  and , we obtain:À œ œ
" $  % " ! !
! " # $  "  #
"  # & ! $ #

 

                  
‚  œ $ †  # † œ œ

$  # *  !  "#  ! & *  "#
!  ' $  # '  % ' " #
$  !  '  ' "&  % $ ! "*

  .

                  
Definition 28 The transpose of the  matrix  is the  matrix , havingÀ 7 † 8 8 † 7    7ß8 8ß7

T

as entry with indexes  the entry with indexes  of the given matrix, i.e. the matrix for-   3ß 4 4ß 3
med turning rows into columns and vice versa.
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Example 33 If , then  .À œ œ
" $  % #
! " # (
"  # & '

" ! "
$ "  #
 % # &
# ( '

 $ß% %ß$

                  
 

 
T

Properties of the Transpose

T ) , i.e. the Transpose of the Transpose of a matrix  is the given matrix ;" œ    T T

T2) ;     œ T T T

T3)  if and only if the matrix  is a symmetric matrix.  œ T

MATRIX PRODUCTS
There are many products that can be defined between two matrices. We will deal only with
the so-called "rows by columns" product which, among other properties, satisfies the
associative property. It is also called "matrix-multiplicative product".
Then we will deal with the "Kronecker product", an operation on two matrices of arbitrary
size resulting in a block matrix.

"ROWS BY COLUMNS" PRODUCT BETWEEN MATRICES
The "rows by columns" product between two matrices is based on the scalar product of two
vectors, in this case the rows of the first matrix by the columns of the second matrix.
Then two matrices will be multipliable "rows by columns" only if the row vectors of the first
matrix and the column vectors of the second have the same number of entries, and this
happens when the number of the columns of the first matrix is equal to the number of the
rows of the second.

Definition 29 Given two matrices , , , and ,À œ + " Ÿ 3 Ÿ 7 " Ÿ 4 Ÿ 8 œ , 7ß8 34 8ß: 34   
" Ÿ 3 Ÿ 8 " Ÿ 4 Ÿ : œ †, , we define their "rows by columns" product  as‚  7ß: 7ß8 8ß:

the matrix having as many rows, , as those of the first matrix and as many columns, , as7 :
those of the second one, whose entry with indexes , , is given by the scalar product of 3ß 4 -34
two vectors: R , the -th row of the matrix  by C , -th column of the matrix , i.e.:3 4

 3 4 

- œ † œ + † ,34 35 543 4

8

5œ"

R C  .  
This matrix product satisfies the associative property: , while it does  ‚   ‚† † œ † †   
not satisfy the commutative property: in general  and  are different matrices;   † †
equality might be fulfilled if the two matrices were both square and of the same order, but
there are examples of how, also in this case, it is not worth, in general, the commutative
property.

Example 34 Given the two matrices  and , the re-À œ œ
$  # "  %
! &  $ (

 #ß# #ß#   
sult is:

 #ß# #ß#† œ œ
$ † "   # †  $ $ †  %   # † ( *  #'

! † "  & †  $ ! †  %  & † (  "& $&               while

 #ß# #ß#† œ œ
" † $   % † ! " †  #   % † & $  ##
 $ † $  ( † !  $ †  #  ( † &  * %"               .

After calculating the two products it is thus evident that .   † Á †
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If we consider a matrix  and the unit matrices  and , the following are valid: ˆ ˆ7ß8 7 8

 ˆ  ˆ 7ß8 8 7ß8 7 7ß8† œ œ † .

We should also note that, unlike multiplication of real numbers, the product of two matrices
can give as a result the null matrix  even if none of the two matrix is a null matrix. So this
matrix product does not obey the product cancellation law.

Example 35 If  and , performing their "rowsÀ œ œ
"  " " " # $
 $ #  " # % '
 # " ! " # $

 

                  
by columns" product, we obtain  while .   † œ † œ

! ! !  "" '  "
! ! !  ## "#  #
! ! !  "" '  "

                  
For the "rows by columns" product the following properties hold:
P ) Associative: " † † œ † † œ † † à  ‚   ‚   ‚   
P ) Distributive over matrix addition:#
  ‚    ‚  ‚    ‚ †  œ †  †  † œ †  †    and ;
P ) Scalar multiplication: ;$ 5 † † œ 5 † †      

P ) Transpose: , i.e. the transpose of a product is equal to the product of% † œ †    T T T

the transposes, but in the opposite order.

Square matrices can be multiplied by themselves repeatedly in the same way as real numbers,
because such product always gives as result matrices having the same number of rows and co-
lumns. This repeated multiplication can be described as a power of the matrix. This is not
possible for rectangular matrices.
If  is a square matrix, we write: . Similarly we denote by  the product,     # 5œ † 5
times, of the matrix  by itself , to obtain the -th power of the matrix . 5

The transpose of a power of a matrix is equal to the power of the transpose: .    5 5T Tœ

In fact: ... ... .             5 5T T T T T T Tœ † † † † œ † † † † œ

If , we usually also write: .   œ œ# "
#

Example 36 If , we obtain  and so:À œ œ † œ œ
"  "  "  #
# " %  "

          #

               "  # "  " "  "  "  #
%  " # " # " %  "

œ œ
#

 and .

"
#

An idempotent matrix is a square matrix such that, when multiplied by itself, it yields itself:
 # œ .
A nilpotent matrix is a square matrix  such that: .  is called the index (or degree)  5 œ 5
of .

KRONECKER PRODUCT ON MATRICES
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There are several other types of matrices products. One of these, much used in statistics, is the
so-called Kronecker product, which is indicated with the symbol .Œ
Definition 30 Let us consider two matrices: , , , andÀ œ + " Ÿ 3 Ÿ 7 " Ÿ 4 Ÿ 87ß8 34 
:ß; 34œ , " Ÿ 3 Ÿ : " Ÿ 4 Ÿ ; , , .
We define the matrix obtained by the Kronecker product , as a matrix,Š  7†:ß8†; 7ß8 :ß;œ Œ
having  rows (the product between the number of rows of  and those of ) and 7 † : 8 † ; 
columns (the product between the number of columns of  and those of ), obtained in the 
following way: in the place of its entry  we put the matrix given by the scalar product534
+ †34  .

Example 37 Given the two matrices  and ,À œ œ
+ + , , ,
+ + , , ,

 #ß# #ß$
"" "# "" "# "$

#" ## #" ## #$
    

we obtain:   Š Š
 
 #ß# #ß$ #†#ß#†$ %ß'

"" "#

#" ##
Œ œ œ œ œ

+ † + †
+ † + † 

œ œ

+ † + †
, , , , , ,
, , , , , ,

+ † + †
, , , , , ,
, , , , , ,

        
      
      

"" "#
"" "# "$ "" "# "$

#" ## #$ #" ## #$

#" ##
"" "# "$ "" "# "$

#" ## #$ #" ## #$

œ

+ † , + † , + † , + † , + † , + † ,
+ † , + † , + † , + † , + † , + † ,
+ † , + †

        

        
"" "" "" "# "" "$ "# "" "# "# "# "$

"" #" "" ## "" #$ "# #" "# ## "# #$

#" "" #" , + † , + † , + † , + † ,
+ † , + † , + † , + † , + † , + † ,

"# #" "$ ## "" ## "# ## "$

#" #" #" ## #" #$ ## #" ## ## ## #$

.

Example 38 Given the matrices  and , we obtain:À œ œ
" #
$ %

" " " "
# # # #
$ $ $ $

 #ß# $ß% 
      
      

  Š Š
 
 #ß# ß #†$ß#†% 'ß)Œ œ œ œ œ

" † # †
$ † % †3 4  

œ

" † # †
" " " " " " " "
# # # # # # # #
$ $ $ $ $ $ $ $

$ †

             

                  
                        
        

     
      

" " " " " " " "
# # # # # # # #
$ $ $ $ $ $ $ $

% †

œ

œ

" " " " # # # #
# # # # % % % %
$ $ $ $ ' ' ' '
$ $ $ $ % % % %
' ' ' ' ) ) ) )
* * * * "# "# "# "#

           

           
.

There are no restrictions on the implementability of the Kronecker product; it is possible to
multiply any two matrices together regardless of their size.
We can easily see that .    Œ œ Œ œ
For the Kronecker product the cancellation law is valid, i.e.:
      Œ œ Ê œ œ and/or .
The Kronecker product does not satisfy the commutative property: in general  and Œ
 Œ  are different matrices.
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The Kronecker product satisfies the associative property:
  ‚   ‚   ‚   ‚Œ Œ œ Œ Œ œ Œ Œ ß a     ,  and .
The Kronecker product satisfies the distributive property: .   ‚  ‚  ‚ Œ œ Œ  Œ
For the transpose matrix, unlike the "rows by columns" product, the following property holds:    Œ œ ŒT T T .

ELEMENTARY OPERATIONS ON THE LINES OF A MATRIX
Elementary operations on the lines of a matrix are ways to change the matrices. There are
three types of line operations: line switching, that is interchanging two lines of a matrix; line
multiplication, that is multiplying all the entries of a line by a non-zero constant; and finally
line addition, which means replacing a line with the addition of the line itself to a linear com-
bination of other lines.
These line operations can be very useful to compute the Determinant and the Rank of a mat-
rix, and also to solve linear equations and to find inverses.
We will use such elementary operations on the lines (rows and/or columns) of a matrix:
") interchanging two rows or columns: L L3 4Ï
# 5 Á ! o5 †) multiplying the entries of a line by a constant : L L ;3 3

$) replacing a line with the addition of the line itself to a linear combination of other lines:
L L L  .3 3 4 4o  † 4 Á 3  α

The elementary operations can also be obtained multiplying the given matrix  by a suitable
matrix , called "elementary matrix".„
The  product coincides with elementary operations on columns, the product  with „ „ † †
elementary operations on rows.

Example 39 If , using the permutation matrix , we ob-À œ œ
" # $ ! " !
% & ' " ! !
( ) * ! ! "

 „

                  
tain: , so we have switched the first column with

                              
" # $ ! " ! # " $
% & ' " ! ! & % '
( ) * ! ! " ) ( *

† œ

the second column;

we obtain , so we have switched the first row with

                              
! " ! " # $ % & '
" ! ! % & ' " # $
! ! " ( ) * ( ) *

† œ

the second row.

Example 40 If , using the matrix , we obtain:À œ œ
" # $ "  " !
% & ' ! "  "
( ) * " ! "

 „

                                                
" # $ "  " ! % " "
% & ' ! "  " "! " "
( ) * " ! " "' " "

† œ , so we have replaced:

- the first column with the sum of the first column with the third column;
- the second column with the difference between the second column and the first column;
- the third column with the difference between the third column and the second column.
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We obtain , so we have replaced:

                              
"  " ! " # $  $  $  $
! "  " % & '  $  $  $
" ! " ( ) * ) "! "#

† œ

- the first row with the difference between the first row and the second row;
- the second row with the difference between the second row and the third row;
- the third row with the sum of the third row with the first row.

Example 41 If , using the matrix , we obtain:
2

2À œ œ
" # $ " !
% & ' ! " 
( ) * " ! "

 „

                                                
" ! " # $ * "# "&
! "  % & '  "!  ""  "#
" ! " ( ) * ) "! "#

† œ
2

2 , so we have replaced:

- the first row with the sum of the first row with the double of the second row;
- the second row with the difference between the second row and the double of the third row;
- the third row with the sum of the third row with the first row.

THE DETERMINANT
From now on we will consider only square matrices . Following first the traditional form,8

we give the
Definition 31 We define the Determinant of a square matrix , denoted with det  or ,À   8    
as the sum of the  products of entries of the matrix where:8 x
- each product has  terms, containing one and only one entry for each row and each column;8
- each of these products is taken with its own sign or changing its sign depending on whether
the permutation of the first indices of the entries of the product is or not of the same class of
the permutation of the second indices.
Permutations can be of even or odd class; the sequence of the first indexes and the sequence
of the second indexes of the entries of each product have to be brought to the original se-
quence ; the permutation is of even (or odd) class if the original sequence can be"ß #ß $ß ÞÞÞß 8
obtained by an even (or odd) number of switches of the indexes.

To illustrate this, let us consider the matrix .$

"" "# "$

#" ## #$

$" $# $$

œ
+ + +
+ + +
+ + +

      
The  possible products, each of  entries being not on the same row or column, are the follo-$x $
wing:
"Ñ + + + " # $ " # $ ; first indexes , , ; second indexes , , ;"" ## $$

#Ñ + + + " # $ " $ # ; first indexes , , ; second indexes , , ;"" #$ $#

$Ñ + + + " # $ # $ " ; first indexes , , ; second indexes , , ;"# #$ $"

%Ñ + + + " # $ # " $ ; first indexes , , ; second indexes , , ;"# #" $$

&Ñ + + + " # $ $ " # ; first indexes , , ; second indexes , , ;"$ #" $#

'Ñ + + + " # $ $ # " ; first indexes , , ; second indexes , , ."$ ## $"

In the six products that we have formed the first group of indices is always the same: ,"ß #ß $
so we need  (even number) switches to bring it to the original sequence .! "ß #ß $
Let us consider now the second indexes.
For products ,  and  we need respectively ,  and  switches, i.e. an even number like"Ñ $Ñ &Ñ ! # #
!; so these products are to be taken with their own sign.



25

For products ,  and  we need respectively ,  and  switches, i.e. an odd number; so#Ñ %Ñ 'Ñ " " $
these products are to be taken changing their own sign.
The Determinant of  is then equal to:  œ + + +  + + +  + + +  + + +  + + +  + + +"" ## $$ "" #$ $# "# #$ $" "# #" $$ "$ #" $# "$ ## $" .

At this point we should list all the properties which follow from the definition of Determinant.
We can list more rapidly these results presenting a more modern definition for Determinant,
which is the following:
Definition 32 (axiomatic definition for the Determinant): The Determinant  of a square 
matrix  is a multilinear and alternating function of the rows and/or columns (i.e. of the8

lines) of the matrix, that associates a real number to , and such that det . ˆ8 8  œ "
So we will write: R R ... R C C ... C .      œ 0 ß ß ß œ 0 ß ß ß" # 8 " # 8

Let us see the latter definition more precisely.
When we say that ...  is a multilinear function we mean that:0 ß ß ‹ ‹" 8

0 ß ß ß  ß ß ß œ ‹ ‹ α— " ˜ ‹ ‹" 5" 5" 8... ...
œ 0 ß ß ß ß ß ß  0 ß ß ß ß ß ß ... ... ... ... ,α ‹ ‹ — ‹ ‹ " ‹ ‹ ˜ ‹ ‹   " 5" 5" 8 " 5" 5" 8

that is, whatever line we have used, the image of a linear combination is equal to the linear
combination of the images.
When we say that ...  is an alternating function we mean that:0 ß ß ‹ ‹" 8

0 ß ß ß ß ß ß œ  0 ß ß ß ß ß ß   ‹ — ˜ ‹ ‹ ˜ — ‹" 8 " 8... ... ... ... ... ... ,
that is, swapping the position of two variables (lines), the value of the function changes its
sign.

This second definition allows us to list quickly the main properties of the Determinant:
P"Ñ - The Determinant changes its sign if we interchange two lines of the matrix (alternating
property).

Example 42   .À œ œ  œ
" # ' ! $ & & $ !
! $ & " # ' ' # "
% ) ( % ) ( ( ) %

 
                              $

P#Ñ- The Determinant of a matrix  is equal to that of its Transpose . 8 8
T

Example 43  .À œ
" # ! " & %
& ) $ # ) #
% # ! ! $ !

                  
As a consequence of the multilinear and alternating properties, the following fundamental
property is valid:
P$Ñ ! - The Determinant of a matrix is equal to  if and only if the rows (and the columns) of
the matrix are linearly dependent vectors.

A matrix  whose Determinant is different from  is called a non-singular matrix, otherwise, !
if , it is called a singular matrix.  œ !

From property P ) other properties follow:$
P%Ñ ! ! - If all the entries of a line of the matrix are equal to , the Determinant is equal to .
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P&Ñ - If two lines are proportional (i.e. the entries of a line are multiple, for the same scalar, of
the entries of the other), the Determinant is equal to .!

Example 44 .À œ œ !
" $ # " $ #
$ * ' $ † " $ † $ $ † #
! % " ! % "

                  
P'Ñ 5 - If we multiply all the entries of a line of the matrix  by a scalar , the Determinant of
this new matrix is equal to the Determinant of  multiplied by . 5

Example 45  .À œ œ $ †
" $ # " $ # " $ #
$ ' ! $ † " $ † # $ † ! " # !
! % " ! % " ! % "

                              
P(Ñ - If a line  of a matrix  can be expressed as the sum of two or more lines, the Determi-‹ 
nant of  is equal to the sum of two or more Determinants, each having the same lines of , 
except the line , instead of which we have to put, one at a time, the various addends of ‹ ‹
(multilinearity property).

Example 46 .À œ 
" $ # " $ # " $ #

#  & "  $ !  $ # " ! & $ $
! % " ! % " ! % "

                              
P)Ñ - The value of the Determinant of a matrix does not change if a line is replaced by any li-
near combination of the line itself with other lines of the matrix.
This property is very important from the point of view of the practical calculus of the Deter-
minants, since, applying it suitably, it allows us to generate lines that contain the largest pos-
sible number of zero entries, greatly reducing the calculations required to find the value of the
Determinant.

Example 47 Adding to the first line the second multiplied by  and the third multiplied byÀ %  $ o  %  $, (R R R R ) , we obtain:" " # $                              
$ " # $  % † !  $ † " "  % † #  $ † " #  % † "  $ † $ ! '  $
! # " ! # " ! # "
" " $ " " $ " " $

œ œ ,

i.e. the value of the Determinant does not change.

Example 48 Given the three vectors ,  and ,À œ "ß #ß % œ  "ß "ß  " œ "ß &ß (— ˜ ™     
we want to check whether they are linearly independent or dependent. We use property P );$
so we construct the matrix  having ,  and  as rows. — ˜ ™$

Adding the third row to the second row, and subtracting the first row to the third row
( R R R  and R R R ) we obtain:# # $ $ $ "o  o 

 
                  $ œ œ œ !

" # % " # %
 " "  " ! ' '
" & ( ! $ $

 , since the second and the third line are propor-

tional. Then the three vectors are linearly dependent vectors.

LAPLACE' THEOREMS (or LAPLACE' EXPANSION)
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To calculate practically the value of a Determinant, in a better way than using the definition,
we can use the so-called Laplace' first Theorem; to state this theorem we need some defini-
tions.
Definition 33 Given a square matrix , for every entry  the Minor M  of  is definedÀ + +8 34 34 34

to be the Determinant of the -submatrix that results from  removing the    8  " † 8  " 8

3 4-th row and the -th column, i.e. the lines to which the entry belongs.

Definition 34 Given a square matrix , for every entry  the Cofactor A  of  isÀ + +8 34 34 34

defined as A M , i.e. the Minor M  with its own sign if the sum  of the34 34 34
34œ  " † 3  4 

indexes of the entry is even; otherwise, if the sum  of the indexes of the entry is odd, we3  4
must change its sign.

Then the following applies:
Theorem (I° Laplace' Theorem): The Determinant of any square matrix  is obtained by the8

sum of the products of the entries of any line of the matrix by their own Cofactors.

For example, if we calculate the Determinant through the -th row, we obtain:3

     8 8 3" 3" 3# 3# 35 35 38 38 35 35

5œ"

8

œ œ +  +   +   + œ +det A A ... A ... A A .

Laplace' theorem then allows to calculate the Determinant of any square matrix of order  by8
calculating  Determinants of matrices of order , which are to be calculated by means8 8  "
of  Determinants of order , and so on until obtaining Determinants of matrices of8  " 8  #
order .#

Let us begin calculating the Determinant of the matrices of the lower orders.
For a  matrix, as , we have .   " † " œ + œ + "ß" "ß" "ß" "ß"

Then we calculate the Determinant of a matrix of order .#

Given the matrix , we obtain: det   . œ œ + +  + +
+ +
+ +   "" "#

#" ##
"" ## "# #"

We consider now the matrix of order :  .$ œ
+ + +
+ + +
+ + +



      
"" "# "$

#" ## #$

$" $# $$

Developing the Determinant, for example, for the entries of the first row, we will have:

        œ +  +  +
+ + + + + +
+ + + + + +

      , from which we obtain:"" "# "$
## #$ #" #$ #" ##

$# $$ $" $$ $" $#

         œ + + +  + +  + + +  + +  + + +  + + œ"" ## $$ #$ $# "# #" $$ #$ $" "$ #" $# ## $"

œ + + +  + + +  + + +  + + +  + + +  + + +"" ## $$ "" #$ $# "# #$ $" "# #" $$ "$ #" $# "$ ## $" .

Example 49 Let us calculate the Determinant of the matrix .À œ
" # $
% & '
( ) *



      
      

Using Laplace' theorem, developing for the entries of the first row, we obtain:

         œ " †   # †  $ † œ
& ' % ' % &
) * ( * ( )

œ %&  %)  # $'  %#  $ $#  $& œ  $  "#  * œ !      .

Now let us calculate the same Determinant using the property P ).)



28

Using elementary operations on the rows, we replace the second row with the row itself
minus the first row multiplied by : R R R , and then we replace the third row with% o  %# # "

the row itself minus the first row multiplied by : R R R  and so we obtain:( o  ($ $ "

 
                               œ œ œ
" # $ " # $ " # $
% & ' %  % &  ) '  "# !  $  '
( ) * (  ( )  "% *  #" !  '  "#

.

Using Laplace' theorem, developing for the entries of the first column, we obtain:

 
         œ œ " † œ $'  $' œ !
" # $
% & '
( ) *

 $  '
 '  "#

.

Even without making calculations it can be seen that the latter Determinant is : in fact the!
third line is the double of the second, and so for property P ) it follows that .& œ ! 
Since the Determinant is , the three rows (and the three columns) are linearly dependent vec-!
tors. Using the previous calculations, we can also find the linear combination between these
three rows.

From  we obtain:
R

R R
R R

                              
" # $ " # $
% & ' !  $  '  % †
( ) * !  '  "#  ( †

œ œ
"

# "

$ "

R R R R  and so: R R R  or R R R .$ " # " $ # " " # $ ( † œ # †  % † œ # †   #  œ ! 
It can be easily seen that the Determinant of a diagonal matrix is given by the product of the
entries of the main diagonal.
The product of the entries of the main diagonal expresses also the value of the Determinant of
a triangular matrix (lower triangular or upper triangular).
The Determinant of the unit matrix is equal to , whatever the order of the unit matrix is."

Example 50 Let us compute the Determinant of the matrices:À

 œ œ

" # ! ! ! ! ! ! ! ! ! "
" # $ % & ! ! ! ! ! # "
" # $ ! ! ! ! ! ! $ # "
" # $ % & ' ! ! % $ # "
" # $ % ! ! ! & % $ # "
" ! ! ! ! ! ' & % $ #

                                    
 and 

"

.

With appropriate exchanges between the rows, the matrix  can be brought to the shape of
the diagonal matrix :ƒ

ƒ œ ' x œ (#!

" ! ! ! ! !
" # ! ! ! !
" # $ ! ! !
" # $ % ! !
" # $ % & !
" # $ % & '

            
, whose Determinant is then equal to  .

As we need  exchanges between the rows to bring  to , it is .) œ ƒ  ƒ   
Operating as above, now interchanging the columns, also the matrix  can be brought to the
shape of the diagonal matrix  of the previous example.ƒ
As we need  exchanges between the columns to bring  to , it is ."& œ  œ  (#! ƒ  ƒ   
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Example 51 Given the vectors ,  and , let us de-À œ #ß 5ß / œ "ß "ß ! œ #ß / ß 5— ˜ ™    2 2

termine the set of pairs  that make them linearly dependent vectors. 2ß 5
We construct the matrix  having the three vectors as rows, and then we impose that its De-$

terminant must be equal to :!

 
            $

2

2

# #2 2 #2 2 #œ œ  " † 5  /  " † #5  #/ œ /  #/  5  #5 œ !
# 5 /
" " !

# / 5

.

Considering it as a second degree polynomial equation with the unknown , it is verified if:/2

/ œ " „ "  #5  5 œ " „ "  5 5 œ / 5 œ #  /2 2 2#   , i.e. if  and if .

BINET' THEOREM
The calculus of the Determinant cannot be switched with sum and difference operations. In
general, the Determinant of a matrix which is the sum of two matrices is not equal to the sum
of the Determinants of the two matrices.
There is a formula, called Cauchy-Binet' formula, which is an identity for the Determinant of
the product of two rectangular matrices of transpose shapes (so that the product is well
defined and square). We will present only a special case of this formula, i.e. the statement that
the Determinant of a matrix that is given by the product of two square matrices is equal to the
product of their two Determinants.

Theorem (Binet): Given two matrices  and  of the same order , if  then  ‚  8 8 8 8 88 œ †
det det det .     ‚  8 8 8œ †

Example 52 Given the two matrices  and , let us ve-À œ œ
"  " " " $ #
# ! % " ! #
% " ) " ! "

 

                  
rify the validity of Binet' theorem.
We have, developing the Determinant of  for the entries of the second row, and developing
the Determinant of  for the entries of the second column we have:

         œ  # †  % † œ  # †  )  "  % † "  % œ  #
 " " "  "
" ) % "

 and

     œ  $ † œ  $ † "  # œ $
" #
" "

 .

We now calculate the matrix product  and we obtain: †

 † œ œ
" † "  " † "  " † " " † $  " † !  " † ! " † #  " † #  " † "
# † "  ! † "  % † " # † $  ! † !  % † ! # † #  ! † #  % † "
% † "  " † "  ) † " % † $  " † !  ) † ! % † #  " † #  ) † "

      
œ † œ œ  $ † &'  &% œ  '

" $ " " $ "
' ' ) % ! '
"$ "# ") * ! "%

 , and so .

            
      

To calculate more quickly the Determinant of  we have replaced the second row with the †
second row itself minus twice the first row: R R R , and the third row with the third# # "o  #
row itself minus the first row multiplied by : R R R .% o  %$ $ "

Since , the equality is verified.    † œ  '
If we compute also , we obtain , even if .       † † œ  ' † Á † 
Then it can be shown that also the following applies:
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Theorem (II° Laplace's Theorem): The sum of the products of the entries of a row (or co-
lumn) of a matrix by the Cofactors of the entries of another row (or column) is always equal
to .!

THE RANK
Let us consider now matrices of any type, both rectangular and square; we give the following
very important:
Definition 35 The Rank of a matrix is the maximum order of its nonzero Minors.À
The Rank of the matrix  will be denoted as Rank .  
Then the Rank of a matrix  is given by the order of the largest non-singular square
submatrix included in the matrix .
By property P  of the Determinant, we can also say that Rank  expresses the maximum$Ñ  
number of linearly independent rows (and therefore of columns), contained in the matrix .
Only the null matrix , i.e. the matrix having all its entries equal to , has the Rank equal to !
!, while a non-singular square matrix has its Rank equal to its order.

Example 53 Given the matrix , it is valid that .À œ œ !

" #  " $
! " #  "
% # # %
$  " " #

 %

        
 

Then the Rank of the matrix cannot be equal to , since its  rows (and its  columns) are li-% % %
nearly dependent vectors. So let us consider the submatrix  formed by the entries belonging

to the ^, ^ and ^ row, and to the ^, ^ and ^ column: ." # % " # $ œ
" #  "
! " #
$  " "

$

      
Since , we have found a nonzero Minor of the third order, and so Rank .    œ ") œ $

We can also compute the Rank of this matrix using elementary operations on the rows (or on
the columns), which do not change the Determinants of the Minors and then the Rank of the
matrix.
Let us perform elementary operations: R R R  and R R R  to obtain:$ $ " % % "o  % o  $        
" #  " $
! " #  "
!  ' '  )
!  ( %  (

.

In this new matrix, let us then perform: R R R  and R R R  to obtain:$ $ # % % #o  ' o  (        
" #  " $
! " #  "
! ! ")  "%
! ! ")  "%

.

As we can see, the third and the fourth rows are equal, so the Rank cannot be equal to .%

Since , the Rank of  is equal to .

      
" #  "
! " #
! ! ")

œ ") Á ! $%

Example 54 Let us compute the Rank of the following matrices:À
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 œ œ
" ! " " $
# " $ % (
 " $ # & "

" ! # "
! " $  #
&  " ( %
$  # ! %

                  
 

 
; ;

‚ œ
" !  " # "
! " ! ! !
 # ! #  %  #

       .

Rank , in fact : ; 
       œ $ œ " Á !
" " $
$ % (
# & "

Rank , since  while ;   
       œ $ œ ! œ  "# Á !

" $  #
 " ( %
 # ! %

Rank  , since all its Minors of the third order are  while .   ‚ œ # ! œ " Á !
" !
! "

Example 55 Let us check, depending on the variation of the parameters  and , the RankÀ 7 5
of the matrix:

 œ
" 7 5
# 5 7
$ 5 7 5 7

       .

The third row of the matrix is equal to the sum of the first and the second row, so   œ !
and the Rank will never be equal to .$

So let us consider the following submatrix:  . " 7 5
# 5 7

The Rank of the matrix is equal to  if:#

 " 7
# 5

œ 5  #7 Á ! 5 Á #7, i.e. , or if:

 " 5
# 7

œ 7 #5 Á ! 7 Á #5, i.e. , or if:

 7 5
5 7

œ 7  5 Á ! 7 Á „ 5# # , i.e. .

None of these conditions will be satisfied if , and in this case the result is5 œ 7 œ !
Rank , as in the first column there are nonzero entries.  œ "

Example 56 Let us check, depending on the variation of the parameters  and , throughÀ 7 5

elementary row operations, the Rank of the matrix: . œ
"  " ! # "
$ " # " 5
" $ 5 7 !

      
      

Let us begin with the following: R R R  and R R R  to obtain the matrix:# # " $ $ "o  $ o       
      
"  " ! # "
! % #  & 5  $
! % 5 7 #  "

o . Then we perform the R R R  to obtain:$ $ #

      
      
"  " ! # "
! % #  & 5  $
! ! 5  # 7 $ #  5

.
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As it can be seen, we have obtained, through the first two columns, a triangular matrix, in
which, to complete a third order Minor, we can put the third or the fourth or the fifth column
of the given matrix. It is immediate to find the Determinant of these triangular matrices of
order  . So we conclude that:$
Rank  if  or if .  œ $ 5  # Á ! Ê 5 Á # 7 $ Á ! Ê 7 Á  $
If  and  we obtain:5 œ # 7 œ  $      
        "  " ! # "
! % #  &  "
! ! ! ! !

œ #, and so Rank  because the rows are reduced to two and

also , i.e. there is a nonzero Minor of order . "  "
! %

œ % Á ! #

Without giving the proof, we state the following:
Theorem 8 Every matrix  and its transpose  have the same Rank:À  T

Rank Rank .    œ T

Theorem 9 The Rank of the matrix product  is less than or equal to the Ranks of eachÀ † 
of the two matrices  and : Rank min Rank Rank .           † Ÿ à

Example 57 Using the matrices  and , perfor-À œ œ
"  " " " # $
 $ #  " # % '
 # " ! " # $

 

                  
ming the two products  and , we see that   † œ † œ

! ! !  "" '  "
! ! !  ## "#  #
! ! !  "" '  "

                  
Rank , Rank , Rank , Rank .            œ # œ " † œ ! † œ "
The Rank of  shows us how the Rank of the matrix product  can also be less than   † †
the minimum Rank among the Ranks of the matrices  and . 

Example 58 Given the two matrices  and , let us determineÀ œ œ
" B " # $
B " " # #

    
if there exist values of  such that the Rank of  is equal to .B œ † #‚  
Since the Rank of a product is less than or equal to those of the two matrices, firstly we need:
"  B Á ! Ê B Á „ " ## , so the matrix  has Rank equal to , the same Rank of , although 
this is not enough to ensure that Rank  will be equal to . ‚ #

Performing the product, we obtain: .‚ œ
"  B #  #B $  #B
"  B #  #B $B  # 

To have the Rank of  equal to , we need:‚ #        "  B #  $B  "  B $  #B œ "  B B  " Á ! B Á „ ", i.e.  ,
since, as it canbe easily seen, the first and second columns of  are proportional vectors.‚

Using the Kronecker product, the following instead is valid:
Theorem 10 If Rank  and Rank , then Rank .À œ 8 œ 7 Œ œ 8 † 7        

INVERSE MATRIX
Given a square matrix , we want to determine a square matrix, denoted by , such that: 8

"
8

    ˆ" "
8 88 8 8† œ † œ , i.e. such that the product, both from the right and from the left, of

this matrix by the matrix  gives, as its result, the unit matrix. If such a matrix exists, it will8

be called the inverse matrix of .8
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We immediately present an important property. In fact the following is valid:
Theorem 11 If a square matrix  admits the inverse matrix , then  is unique.À   8

" "
8 8

Proof: If there were two different inverse matrices  and , applying the definition, we " "

would have:
    ˆ     ˆ" " " "† œ † œ † œ † œ and .
Applying the associative property, we obtain:
      ˆ  " " " " " "† † œ † † œ † œ   and also:
       ˆ   " " " " " " " "† † œ † † œ † œ œ ñ  , i.e. . 

We must say that the problem of the existence, uniqueness and determination of the inverse
matrix is a much more general problem, also studied for rectangular matrices by means of the
so-called Moore-Penrose' inverse, with results different from those found for square matrices.
Here we treat only the case of the inverse of a nonsingular square matrix.

Having verified that it exists, let's see, now, how to build the inverse of a nonsingular square
matrix.

Definition 36 Adjugate (or classical adjoint) matrix adj( ).À 8

In the Anglo-Saxon mathematical literature the adjugate (or classical adjoint) matrix adj( )8 or  is the transpose of the matrix whose entries are the cofactors of the entries of . ‡
8 8

In the Italian mathematical literature the adjugate (or adjoint) matrix adj( ) or  often 8
‡
8 

means the matrix whose entries are the cofactors of the entries of .8

If we use the Italian version, then the following is valid:
Theorem 12 The Inverse  of a nonsingular square matrix  is given by the transposeÀ  "

8 8

of the adjugate matrix adj( ), divided by the determinant of , namely: 8

 


" ‡
8 8œ †

"   T .

So:
-we have to calculate the Determinant of the matrix  and verify that it is different from ;8 !
- we must calculate the adjugate matrix adj( ) replacing each entry of  with its cofactor; 8 8

- we must transpose the adjugate matrix;
- we must divide each entry of the transpose of the adjugate matrix for the Determinant . 
Indicating with  the Cofactor of the entry , we can write:A34 34+



  

  

8
"

"" #" 8"

"# ## 8#

œ

                    

                    

     
     

A A A
...

A A A
...

... ... ... ...
A A A

...

... ... ... ...
A A A

...

" # 83

"8 #8 88

i i     
     
  

  

Þ

Proof: Let us consider the product .  "
8 8 8† œ
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The entry  of the result matrix  is given by the product between the -th row of  and, 334 8
"
8 

the -th column of , i.e.:4 8

, œ +  +   + œ +  +   +
"

34 "4 #4 84 "3 "4 #3 #4 83 84
"3 #3 83A A A

...  A   A  ...  A  .         
   

If , the term into brackets is the development of the Determinant of  using the -th3 œ 4 48

column, and so the result is equal to , while, if , for the second Laplace' theorem, the" 3 Á 4
result is equal to .!
Similar considerations for the product , from which it follows that  .    ˆ8 8 8

"
8† œ ñ

Example 59 Let us compute the inverse matrix of .À œ
$ " #
" " #
# " $

$$

      
It is adj( ) . Then adj( )  , 8 8œ œ

" "  " "  " !
 " &  " " &  %
!  % #  "  " #

                   T

and since det , we finally obtain:  . 
       

 œ # œ

 !

 #

  "

"

" "
# #
" &
# #
" "
# #

Performing the products we can see that:

  ˆ† œ † œ
$ " #
" " #
# " $

 !

 #

  "

"

" "
# #
" &
# #
" "
# #

$  and that

      
       

  ˆ"

" "
# #
" &
# #
" "
# #

$† œ † œ

 !

 #

  "

$ " #
" " #
# " $

       
       .

Finally, for the inverse matrix the following properties are valid:

I )  (the inverse of the inverse matrix is the matrix itself);" œ  " "

I ) :# † œ †    " " "

in fact               ˆ  ˆ† † † œ † † † œ † † œ à" " " "

I ) :$ œ
"   


"

in fact, applying Binet' theorem, we obtain  and so the the-           ˆ" "† œ † œ œ "

sis;

I4) , i.e. the inverse of the transpose matrix and the transpose of the    T T" "œ

inverse matrix are the same matrix:

in fact, from  we obtain , and so .  ˆ   ˆ   ˆ" " "† œ † œ † œ   T TT T

Since  we have the thesis;ˆ  œ †T T "

I5) The inverse of a diagonal matrix is still a diagonal matrix, having as entry  the recipro-,33

cal of the entry : ;+ , œ
"

+
33 33

33

I6) The inverse of a symmetric matrix is a symmetric matrix:

in fact, from  we obtain , but, for the property I4) it is   œ œT T" " 
 " "œ  T

, and so the thesis.
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Example 60 Let us consider the matrix . It is :À œ † œ œ
$ )
 "  $

    ˆ   #

   ˆ† œ œ † œ œ
$ ) $ ) " !
 "  $  "  $ ! "

#           
and so, since , we obtain  i.e. .      ˆ  œ  " Á ! † † œ † œ" " "

For the Kronecker product, otherwise the "rows by columns" product, regarding the inverse
matrix, the following property is valid:
K1) if  and  are invertible matrices, then .      Œ œ Œ" " "

To calculate the inverse matrix we can also follow another procedure, based on elementary
operations. We write, one beside the other, the given matrix  and the unit matrix, to form a
single matrix. By elementary operations on the rows, we transform the original matrix  to
become the unit matrix: the matrix on the right is then the inverse matrix ."

Example 61 Let us compute the inverse matrix of the matrix  usingÀ œ
" !  "
" # "
" " "



      
elementary operations on rows. We begin from .

      
        " !  " " ! !
" # " ! " !
" " " ! ! "

œ l ˆ

Let us begin with R R R  and R R R  to obtain: .# # " $ $ "o  o 
" !  " " ! !
! # #  " " !
! " #  " ! "

      
      

Then by R R we obtain: .# #
" "
# #o

"

#

" !  "
! " "
! " #

" ! !

 !

 " ! "

      
      

Then by R R R  we obtain: .$ $ #
" "
# #
" "
# #

o 
" !  "
! " "
! ! "

" ! !

 !

  "

      
      

Finally, by R R R  and by R R R  we obtain:# # $ " " $o  o       
        " ! !
! " ! ! "  "
! ! "

 "

  "

œ l

" "
# #

" "
# #

"ˆ  .

Since the matrix on the left is the unit matrix, the one on the right is the matrix . And"

thus:

"

" "
# #

" "
# #

œ

 "

! "  "

  "

       .

We conclude with the following
Theorem 13 The only idempotent and nonsingular matrix  is the unit matrix .À  ˆ8 8

Proof: If , and if  is a non singular matrix, multiplying on the left by the inverse   † œ
matrix we obtain:  i.e.  and        ˆ     ˆ" " " "† † œ † † † œ † œ œ † œ 
so . ˆœ
And thus a matrix, different from the unit matrix, to be idempotent must be singular.



36

LINEAR MAPS AND LINEAR SYSTEMS
Two of the most important applications of matrix calculus are the study of linear maps (or li-
near functions) and solving systems of linear equations.
Let us consider a matrix , and let  be a column vector. The "rows by columns" — ‘7ß8

8−
product  gives as a result a column vector , i.e. . — ˜ ‘  — ˜7ß8 8ß" 7ß" 7ß8 8ß" 7ß"

7† − † œ
If we consider the vector  as an independent variable, through the "rows by columns" pro-—
duct of the matrix A by the column vector  we can construct a function (or map)—
0 À − −‘ ‘ — ‘ ˜ ‘8 7 8 7Ä  that associates to each vector  one and only one vector , such
that .˜  —œ †
The functions :  given in this form are called linear maps.0 ‘ ‘8 7Ä
‘ ‘8 7 is said the domain of the function,  is said the codomain of the function.
Conversely, if we consider  as an assigned vector, we want to check if there are and how˜
many vectors  there are that satisfy such equation. Solving such type of problem is what we—
call to solve a linear system.

LINEAR MAPS
Definition 37 A function :  is said to be a linear map if the following two con-À 0 Ä‘ ‘8 7

ditions are satisfied:
"Ñ 0  œ 0  0 ß a ß −  and     — — — — — — ‘" # " # " #

8

#Ñ 0 5 † œ 5 † 0 a 5 − ,    — — ‘
or if
Linearity property: .0 5  5 œ 5 0  5 0 ß a 5 − ß a ß −     " " # # " " # # " #

8— — — — ‘ — — ‘
So a map is said to be linear if the image of any linear combination coincides with the linear
combination of the images.

Expressing the vector ...  using the vectors of a basis of , for example the— ‘œ B ß B ß ß B " # 8
8

standard basis, from ... , we get, by the linearity property:— œ B  B   B" " # # 8 8e e e
0 œ 0 B  B   B œ B 0  B 0   B 0         — " " # # 8 8 " " # # 8 8e e e e e e... ... .
Therefore it is sufficient to know the image of the elements of the chosen basis to have the
image of any element .—

Example
e
e

 62 We consider : , such that: . So we obtain:À 0
0 œ "ß "ß #
0 œ #ß !ß "

‘ ‘# $ "

#
Ä        

0 $ß & œ 0 $  & œ $ 0  & 0 œ $ "ß "ß #  & #ß !ß " œ "$ß $ß ""             e e e e" # " # .

Given ...  and ... , we can also write:— ˜œ B ß B ß ß B œ C ß C ß ß C   " # 8 " # 7

0 œ 0 B ß B ß ß B œ C ß C ß ß C œ 0 B ß B ß ß B ß ß 0 B ß B ß ß B œ          — ˜" # 8 " # 7 " " # 8 7 " # 8.. .. .. .. .. .
So, a map is a linear map if each of the functions ...  is a linear map, namely in0 B ß B ß ß B3 " # 8 
the form ...  ... .0 B ß B ß ß B œ + B  + B   + B3 " # 8 3" " 3# # 38 8 
From this it follows that every linear map  can be expressed in the form:0 À ‘ ‘8 7Ä
˜ —  — œ 0 œ † 7 8  , where  is a matrix having  rows and  columns.
Conversely, to each matrix  corresponds a linear map : . ‘ ‘7ß8

8 70 Ä
In fact, for the properties of the "rows by columns" product, the definition of linear map is sa-
tisfied:
"Ñ †  œ †  † 0  œ 0  0  i.e. , — —  —  — — — — —       " # " # " # " #

#Ñ † 5 œ 5 † 0 5 œ 5 0 a 5 −  i.e. ,  —  — — — ‘     
and finally:
 — — — — — — — —† 5  5 œ 5  5 Ê 0 5  5 œ 5 0  5 0       " " # # " " # # " " # # " " # # .
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From  it follows  or  for any linear map .˜  —     7ß" 7ß8 8ß" 7ß8œ † † œ 0 œ 0 
Example 63 Let us consider : , .À 0 0 B ß B ß B œ #B  B ß B  B  $B‘ ‘$ #

" # $ " $ " # $Ä    
Consisting only of linear combinations of ,  is a linear map, which can be written B ß B ß B 0" # $

as: .      
      
      

# ! " C
" "  $ C

† œ
B
B
B

"

#

$

"

#

LINEAR MAPS AS LINEAR COMBINATIONS
If we denote by C C ... C  the columns of the matrix , and if ... , the" # 8 7ß8 " # 8ß ß ß œ B ß B ß ß B —  
product  can also be seen as a linear combination of the columns of the — ˜7ß8 8ß" 7ß"† œ
matrix : C   C   ...  C , and then it can be  — ˜7ß8 7ß8 8ß" " " # # 8 8 7ß"† œ † B  † B   † B œ
interpreted as the search for a suitable linear combination of the columns of the matrix 7ß8

by which we express the vector .˜

LINEAR SYSTEMS
A system of linear equations with  equations and  unknowns (or variables) ...7 8 B ß B ß ß B" # 8

can be represented as:

 

.....

.....
.......................................................



+ B  + B   + B œ C
+ B  + B   + B œ C

+ B  +

"" " "# # "8 8 "

#" " ## # #8 8 #

3" " 3# # 38 8 3

7" " 7# # 78 8 7

7ß8 8ß" 7ß"B   + B œ C

+ B  + B   + B œ C

Í † œ
.....

.......................................................
.....

. — ˜

If  is the coefficient matrix, i.e. the matrix whose entries  are the coefficients of the7ß8 34+
unknowns ... , if  is the column vector  having as components the   B ß B ß ß B 8 † "" # 8 —
unknowns ... , and if  is the column vector  having as components the   B ß B ß ß B 7 † "" # 8 ˜
constant terms ... , then the linear system can be expressed by the matrix product C ß C ß ß C" # 7

 — ˜ 7ß8 8ß" 7ß" 7ß8† œ 0, that is, it can be seen as a linear map , with matrix , which asso-
ciates, as image under , to the unknown vector  the vector of the constant terms ;0 — ˜8ß" 7ß"

and so finding a solution is like determining the inverse image (or preimage) of .˜

We can also write the system as C   C   ...  C , that is, we can see" " # # 8 8† B  † B   † B œ ˜
every solution ...  of the system as the  coefficients that allow us to express theB ß B ß ß B 8" # 8

vector of constant terms  as a linear combination of the columns C  of the matrix .˜ 3 8ß7

To solve a linear system means to determine all its possible solutions, i.e. all the -tuples8 B ß B ß ß B 7" # 8...  that simultaneously satisfy the  given equations.
If the constant terms ...  are all zero, that is, if the vector of the constant terms is theC ß ß C" 7

null vector , the linear system is said an "homogeneous system".

SQUARE MATRIX SYSTEMS - CRAMER'S RULE
Let us now consider a system of linear equations with as many equations as unknowns (or va-
riables), i.e. the matrix  is a square matrix: . 8

If  is a non-singular matrix, then its inverse  exists and it is unique and so, multiplying 8
"
8

on the left by  the two members of the equation , we obtain:  — ˜"
8 8 † œ

  —   — ˆ — —  ˜" " "
8 8 88 8 8† † œ † † œ † œ œ †    ,
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i.e. we can obtain the solution of the system multiplying the inverse matrix of  by the vector
of the constant terms: .—  ˜œ †"

8

This is explained in the following:
Theorem 14 (Cramer's Rule) A linear equations system with as many equations asÀ
unknowns, whose coefficient matrix is a non-singular square matrix, admits one and only one
solution ... . The individual values for the unknowns (or variables) are given by a B ß B ß ß B" # 8

quotient, the denominator of which is always the Determinant of the coefficient matrix, and
the numerator is the Determinant of the matrix obtained by replacing, in the coefficient
matrix, the column of the coefficients of the unknown we want to compute with the vector of
the constant terms.
Proof: If  is a non-singular square matrix, then ; and so: —  ˜8

"
8œ †

           

           

                    

       

B
B

B

B

œ

"

#

3

8

....

....



     
     
     
 

A A A
.....

A A A
.....

..... ..... ..... .....
A A A

.....

..... ..... ..... .....
A

"" #" 8"

"# ## 8#

"3 #3 83

"8

  

  

  



A A
.....

....

....

#8 88

"

#

3

8

   

           

           
 

†

C
C

C

C

from which, performing the product of the -th row of the matrix  by the vector , we3  ˜8
"

obtain: .
A   A  ...  A

B œ
C  C   C

3
"3 " #3 # 83 8  

The numerator of this fraction is nothing but the development, using the -th column, of a De-3
terminant having the same columns of the matrix , except the -th one, instead of which 3
there is the column of the constant terms, and so we obtain:

  

..... .....

..... .....
..... ..... ..... ..... ..... ..... ..... .....

B œ

+ + + C + +
+ + + C + +

+ +
3

"" "# "3" " "3" "8

#" ## #3" # #3" #8

8" 8

        # 83" 8 83" 88

"" "# "3" "3 "3" "8

#" ## #3" #3 #3" #8

+ C + +

+ + + + + +
+ + + + + +

        
..... .....
..... .....

..... ..... ..... ..... ..... ..... ..... .....
+ + + + + +8" 8# 83" 83 83" 88

namely the thesis of Cramer's Rule. ñ

If a system with a square non-singular matrix  has one and only one solution, this means
that the columns of the matrix  are linearly independent vectors, so they are a basis for  ‘8

and then there exists one and only one way to express every constant vector as a linear combi-
nation of these columns.

Example 64 Let us determine the values of the variables ,  and  for which it is satisfied:À B C D
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B # C # D
$ " D B C
C " % % D

† œ  .

Performing the product, we obtain , and then, by equating the com-

                  
%B  %C D
'  B  %D C
#C  B  "' D

œ

ponents, we obtain the system  having  equations and  unknowns.




%B  %C  D œ !
B  C  %D œ  '
B  #C  D œ  "'

$ $

Let us compute the Determinant of the coefficient matrix, to obtain:                      % %  " % %  "
"  " % "  " %
" #  " ! $  &

œ œ % †  " † œ  ""
 " % %  "
$  & $  &

 .

From Cramer's Rule, the system has one and only one solution, which is given by:

B œ œ C œ œ 

! %  " % !  "
 '  " % "  ' %
 "' #  " "  "'  "

 "" ""  "" ""

#&# #*!

                  
 ;  ;

D œ œ 

% % !
"  "  '
" #  "'

 "" ""

"&#

      
.

Example 65 Let us determine the values of the parameters  and  for which the system:À 7 5


B  #C  5D œ "
B  $C  5D œ #
7B  %C  5D œ !

 has one and only one solution.

From Cramer's Rule, the Determinant of the coefficient matrix must be different from zero, so
we need:                      " # 5 " # 5
" $ 5 ! " !
7 % 5 7 % 5

œ œ " † œ 5 " 7 Á !
" 5
7 5

  .

This is satisfied when it is, simultaneously,  and .7 Á " 5 Á !

LINEAR HOMOGENEOUS SYSTEMS
Since , , it is clear that every homogeneous system always admits at least the   † œ a
zero solution .— œ
If the homogeneous system has as many equations as unknowns, and if its coefficient matrix
is non-singular, then, by Cramer's Rule, the system has only one solution that is, as just said,
the null solution .— œ
This means that the columns of the coefficient matrix are linearly independent vectors, and so
their only linear combination which gives as a result the null vector (i.e. the vector of the con-
stant terms) must have coefficients (i.e. the solution of the system) all equal to .!
In order that a homogeneous system with a square coefficient matrix has instead other solu-
tions in addition to the null one, the Determinant of the coefficient matrix  should be equal
to .!
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Example 66 Given the three vectors ,  and ,À œ "ß #ß % œ  "ß "ß  " œ "ß &ß (— ˜ ™     
after verifying that they are linearly dependent vectors, let us determine the coefficients of
their linear combination that gives as a result the null vector.
We obtain, performing R R R  and R R R :# # " $ $ "o  o                   

" # % " # %
 " "  " ! $ $
" & ( ! $ $

œ œ ! , since the second and the third row are equal.

Then: R R R R , i.e.: # " $ " œ  #   œ Þ— ˜ ™ 
We can also use another procedure, that of linear systems.
We must find ,  and  such that: , or such that:α " # α— " ˜ # ™   œ

α " #
α " #
α " #

  œ !
#   & œ !
%   ( œ !

.

The Determinant of the coefficient matrix is clearly equal to , since the columns are the line-!
arly dependent vectors ,  and .— ˜ ™
We subtract the second equation from the third and we have the system:

α " #
α " #
α " #

  œ !
#   & œ !
#  #  # œ !

;

now the third equation is equal to the double of the first and so it can be discarded.
There remain only the first two equations and, leaving  as a free variable, we obtain:#

 α " # α #
α " # " #
 œ  œ  #

#  œ  & œ 
Þ

 
  

 and from these easily we solve: 

Therefore there are, as a function of ,  linear combinations of ,  and  that give as a# — ˜ ™∞"

result the null vector, all expressible in the form: , which generali- #   œ# — # ˜ # ™ 
zes the solution found above.

ROUCHE'-CAPELLI THEOREM
7ß8 34 is the coefficient matrix, i.e. the matrix whose entries  are the coefficients of the un-+
knowns (or variables) ... . B ß B ß ß B" # 8

The augmented matrix  is obtained adding the column of constant terms to the  ˜
7ß8"

coefficient matrix.
This theorem, valid for any linear system , ensures, under suitable assum- — ˜7ß8 8ß" 7ß"† œ
ptions, the existence of solutions for the linear system and then allows to compute their num-
ber, given the rank of its coefficient matrix and the rank of its augmented matrix.
The following applies:
Theorem 15 (Rouchè-Capelli) A linear system, whatever the number of its equations and itsÀ
unknowns, has solutions if and only if the Rank of the coefficient matrix  is equal to the
Rank of the augmented matrix . That is:  ˜

b † œ Í œ :   Rank Rank .—  — ˜   ˜7ß8 8ß" 7ß"    
Proof: This theorem states that a linear system has solutions if and only if the vector of con-
stant terms, together with the columns of the coefficient matrix, are a set of linearly dependent
vectors because, adding to the columns of  the vector of constant terms, the Rank, namely
the number of linearly independent vectors, does not increase; then the vector of constant
terms can be expressed as a linear combination of the columns of the coefficient matrix, i.e.:
˜  — ˜œ † B  † B   † B Í † œC   C   ...  C  ." " # # 8 8 7ß8 8ß" 7ß"

If the Ranks are different, it results that: Rank Rank , and this means that    ˜ œ  "

the vector of constant terms  is linearly independent from the columns of the coefficient˜
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matrix, so it is not possible to express  as a linear combination of them, and so the system˜
has no solutions. ñ

If the system has solutions, the common Rank of coefficient matrix and augmented matrix
also expresses the number of the significant equations of the system: if  is the number of the7
equations and  is the common Rank (obviously with ), this means that 5 7   5 7 5
equations are a linear combination of only  of them, and so they can be discarded.5

With regard to the search of solutions, we must proceed in the following way: after determi-
ning the common Rank  of the coefficient matrix and the augmented matrix, we use only 5 5
equations in  unknowns, provided they form a non-singular submatrix; the remaining5
7 5 5 equations, as mentioned earlier, are discarded;  unknowns remain as such while the
remaining  unknowns are to be brought with the constant terms, and then the system,8  5
which has now  equations and  unknowns, can be solved using Cramer's rule.5 5
The value of each of the  remaining unknowns becomes a function of the other  un-5 8  5
knowns, which remain undetermined, but may take any real value. We write in this case that
the system admits  solutions.∞85

We can summarize the above as follows:
from , if Rank Rank  is the common Rank of the coeffi- — ˜   ˜7ß8 8ß" 7ß"† œ 5 œ œ   
cient matrix and the augmented matrix, after having discarded the  useless equations7 5
and their constant terms, we obtain, using block notation:
   — — —5ß8 5ß" 85ß"

w ww
5ß5 5ß85œ œ     and  and so:      — —  —  — ˜w ww w ww

5ß5 5ß85 5ß5 5ß855ß" 85ß" 5ß" 85ß" 5ß"† œ †  † œ  and then:
 — ˜  —w ww

5ß5 5ß855ß" 5ß" 85ß"† œ  † , and so the solution:

—  ˜  —  5ß" 5ß" 85ß"
w ww w
5ß5 5ß85 5ß5

" " w
5ß5œ †  †     , where  is the inverse matrix of ,

having as entries the coefficient of the remaining  unknows, that is surely a non-singular5
matrix by construction.
The solution, depending from the  variables , is the general solution of the8  5 —85ß"

system.

If the system is an homogeneous one, it is , and we have the general solution in the˜ 5ß" œ

form: .—   —5ß" 85ß"
w ww
5ß5 5ß85

"
œ  † † 

Example 67 Let us study, varying the parameter , the existence and number of solutions ofÀ 5

the linear system: .




$B  B  #B  B œ (
B  B  %B  $B œ 5
&B  $B  )B  B œ #

" # $ %

" # $ %

" # $ %

Let us first consider the coefficient matrix . Its Rank is equal to ; in

      
$  " # "
" "  % $
&  $ )  "

#

fact R R R . In order for the system to have solutions we need this relationship also$ " #œ # 
between the constant terms, so that the Rank of the augmented matrix is equal to . Therefore#
it should be: , and so ."%  5 œ # 5 œ "#
If  the system has no solutions.5 Á "#
If the system is reduced to only two equations, and we can discard the third, since it5 œ "#  
is a linear combination of the first two.
Then we solve the system:
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 $B  B  #B  B œ (
B  B  %B  $B œ "#

" # $ %

" # $ %

  
  

in which we bring with the constant terms the unknowns  and  to obtain:B B$ %

 $B  B œ  #B  B  (
B  B œ %B  $B  "#

" # $ %

" # $ %

 
   

and then, using Cramer's rule, and since , we obtain: $  "
" "

œ %


B œ B  B 

" "*

# %

B œ B  #B 
( #*

# %

" $ %

# $ %

 ,

and finally the solution .— œ B  B  à B  #B  à B à B
" "* ( #*

# % # %
 $ % $ % $ %

Example 68 Let us determine for which values of the parameters  and  the linear systemÀ 7 5

B  #C  $D œ 7
B 7C  5D œ 5

 has solutions.

The coefficient matrix and the augmented matrix of the system are:

   " # $ " # $ 7
" 7 5 " 7 5 5

# and  . The Rank of the coefficient matrix is equal to  if:

     " # " $ # $
" 7 " 5 7 5

Á ! Á ! Á !, or if , or if , and so if:

7 # Á ! Ê 7 Á # 5  $ Á ! Ê 5 Á $ #5  $7 Á ! Ê 5 Á 7
$

#
, or if , or if .

If these conditions are satisfied, the Rank of the coefficient matrix is maximum, and then it
will be equal to that of the augmented matrix, and so the system has solutions.
Being a system of two equations and three unknowns, it has  solutions.∞ œ ∞$# "

If  and  (and so also ), the Rank of the coefficient matrix cannot be7 œ # 5 œ $ 5 œ 7
$

#
equal to  (it is equal to , since there are entries different from ); the augmented matrix is# " !

   " # $ # $ #
" # $ $ $ $

# Á ! 7 œ # whose Rank is equal to , since  and so the system, if 

and  has no solutions.5 œ $

Example 69 Let us solve the system .À

B  #C  D œ #
$B  C  #D œ "
%B  $C  D œ $
#B  %C  #D œ %


The system has four equations and three unknowns, and so, if there are solutions, at least one
equation must be a linear combination of the other. Since the fourth equation is equal to twice
the first, it may be discarded.

The system is thus reduced to the following: .




B  #C  D œ #
$B  C  #D œ "
%B  $C  D œ $

Applying Cramer's rule, we calculate the Determinant and we obtain:                                " # " " # " " # "
$ "  # $ "  # & & !
%  $  " &  " ! &  " !

œ œ œ " † œ  $!
& &
&  "

.
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Therefore the system has one and only one solution, which is given by:

B œ œ œ  † ' †  %  " œ "

# # " # ! "
" "  # " !  #
$  $  " $  '  "

 $!  $! $!

"

                     ;

C œ œ œ œ !

" # " " # ! " # !
$ "  # $ "  & $ "  &
% $  " % $  & " # !

 $!  $!  $!

                              
;

D œ œ œ  †  & $  $ œ "

" # #  & ! !
$ " " $ " "
%  $ $ %  $ $

 $!  $! $!

"

                       .

Example 70 Let us find the value of the parameter  so that the vector  is aÀ 5 œ "ß (ß #ß 5˜  
linear combination of the vectors  and — —" #œ "ß  "ß !ß # œ #ß #ß "ß  "   
First of all we see that  and  are linearly independent vectors, since the Rank of the— —" #

matrix  is equal to . Then we calculate, using the elementary opera-  "  " ! #
# # "  "

#

tions on the rows, the Rank of the matrix . We obtain:

      
      
"  " ! #
# # "  "
" ( # 5                              

                              
"  " ! # "  " ! # "  " ! #
# # "  " ! % "  & ! % "  &
" ( # 5 ! ) # 5  # ! ! ! 5  )

Ä Ä .

If  is a linear combination of  and  the Rank of the latter matrix must remain equal to ,˜ — —" # #
and this happens if .5 œ  )

To apply the Rouchè-Capelli theorem we should have put the three vectors as columns, but
we can also operate by rows, since Rank Rank .    œ T

THE RELATIONSHIP BETWEEN THE SOLUTIONS OF A LINEAR SYSTEM AND
THOSE OF THE ASSOCIATED HOMOGENEOUS SYSTEM
Given the linear system , with , we say that  is its — ˜ ˜   — 7ß8 8ß" 7ß" 7ß8 8ß"† œ Á † œ
associated homogeneous system. The following is valid:
Theorem 16 The linear system  has solutions if and only if each of itsÀ † œ — ˜7ß8 8ß" 7ß"

solutions  can be expressed as the sum of a particular solution * of the non-homogeneous— —
system with the general solution  of the associated homogeneous system.™
Proof: If  and * are solutions of the linear system, from  and * , by— —  — ˜  — ˜† œ † œ
subtraction we obtain * , and so *  is a solution of the associated ho- — —  — —†  œ  
mogeneous system, therefore *  and so * .— — ™ — — ™ œ œ 
On the contrary, if * , where * is a solution of the non-homogeneous system and— — ™ —œ 
™ is the general solution of the associated homogeneous system, we obtain:
 — ™  —  ™ ˜  ˜†  œ †  † œ  œ * * ,
and so  is a solution of the non-homogeneous system. — ñ

Example 71 Let us study the solvability of the system:À
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B  B  #B  B  $B œ "
#B  B  #B  #B  'B œ #
%B  B  #B  %B  #B œ !

" # $ % &

" # $ % &

" # $ % &

.

Examining the coefficient matrix , if we study the four Minors of

      
" "  # " $
#  " # # '
% "  # % #

order  that can be constructed using the first  columns, we see that they all have$ %
Determinant equal to . Considering the Minor of order  constituted with the first, second! $
and fifth column, we have:                      " " $ " " !
#  " ' #  " !
% " # % "  "!

œ œ  "! † œ  "! †  $ œ $! Á !
" "
#  "

.

The coefficient matrix has Rank equal to , i.e. maximum, therefore also the augmented$
matrix has Rank equal to , so the system has solutions, and these solutions can be obtained$
bringing the unknowns  and  to constant terms, and so we obtain:B B$ %


B  B  $B œ "  #B  B
#B  B  'B œ #  #B  #B
%B  B  #B œ #B  %B

" # & $ %

" # & $ %

" # & $ %

 
 
 

, from which, using Cramer's rule, we obtain:

B œ œ  B 
" "

$! &

"  #B  B " $
#  #B  #B  " '
#B  %B " #

" %

$ %

$ %

$ %

       ,

B œ œ #B
"

$!

" "  #B  B $
# #  #B  #B '
% #B  %B #

# $

$ %

$ %

$ %

       ,

B œ œ
" #

$! &

" " "  #B  B
#  " #  #B  #B
% " #B  %B

&

$ %

$ %

$ %

       ,

and so the system has  solutions:     .∞ œ  B  ß #B ß B ß B ß
" #

& &
#

% $ $ %—  
Let us consider the associated homogeneous system ;




B  B  #B  B  $B œ !
#B  B  #B  #B  'B œ !
%B  B  #B  %B  #B œ !

" # $ % &

" # $ % &

" # $ % &

for its coefficient matrix the same considerations previously made are valid, so it has the solu-
tion:

B œ œ  B
"

$!

#B  B " $
 #B  #B  " '
#B  %B " #

" %

$ %

$ %

$ %

       ,

B œ œ #B
"

$!

" #B  B $
#  #B  #B '
% #B  %B #

# $

$ %

$ %

$ %

       ,

B œ œ !
"

$!

" " #B  B
#  "  #B  #B
% " #B  %B

&

$ %

$ %

$ %

       .

So the general solution of the associated homogeneous system is .™ œ  B ß #B ß B ß B ß ! % $ $ %
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Having verified that *  is a particular solution of the system, then the— œ  ß !ß !ß !ß
" #

& &
 

equality: *  is satisfied.— — ™œ 

KERNEL AND IMAGE OF A LINEAR MAP
Definition 38 The Image (or Range): Im  of a linear map  is the set:À œ †  ˜  —
Im :  , .    ˜ ‘ — ‘ ˜  —œ − b − œ †7 8

Therefore the Image is a subset of the codomain of the linear map.

Theorem 17 The Image of a linear map is a vector space whose dimension is equal to theÀ
Rank of the matrix .7ß8

Proof: If Im  and Im , it is  and , from which it˜  ˜  ˜  — ˜  —" # " " # #− − œ † œ †   
follows, for the properties of the matrix product:
5  5 œ 5 †  5 † œ † 5  5" " # # " " # # " " # #˜ ˜  —  —  — — , 
and so, since , it follows that Im , i.e. the Image (or5  5 − 5  5 −" " # # " " # #

8— — ‘ ˜ ˜  
Range) of a linear map is a vector space.
Considering the linear map as a linear combination of the columns of the matrix , from:
˜ œ † B  † B   † BC C  ... C , we immediately see that the Range is the vector" " # # 8 8

space spanned by the columns of , and so its dimension is given by the maximum number of
independent columns of , i.e. by Rank .    ñ

Definition 39 The Kernel (or nullspace): Ker  of a linear map  is the set:À œ †  ˜  —
Ker : ,    — ‘  — œ − † œ8

i.e. the set of the vectors of the domain having as image the null vector.

Theorem 18: The Kernel of a linear map is a vector subspace of the domain .‘8

Proof: If  and  belong to the Kernel, since:— —" #

 — —  —  —   † 5  5 œ 5 †  5 † œ  œ " " # # " " # # ,
we immediately see that the Kernel is a vector space, more exactly a vector subspace of the
domain . ‘8 ñ

We must notice the similarities between the Kernel of a linear map and the solutions of a
linear homogeneous system, and also the similarities between the Image of a linear map and
the linear non-homogeneous systems that have solutions.

Also the following is valid:
Theorem 19 In a linear map, linearly dependent vectors have linearly dependent images.À
Proof: From ... , with at least one , it follows:5  5   5 œ 5 Á !" " # # : : 3— — — 
 — — —  —  —  — † 5  5   5 œ † 5  † 5  † 5 œ " " # # : : " " # # : :... ...  from which:
5 †  5 †  5 † œ" " # # : : —  —  — ...  or:
5 0  5 0  5 0 œ 5 Á !" " # # : : 3     — — — ... , with at least one  and so the images are line-
arly dependent vectors. ñ

Consequently, also the following is valid:
Theorem 20 In a linear map, linearly independent images are generated by linearly indepen-À
dent vectors.

RELATIONSHIP BETWEEN KERNEL AND IMAGE DIMENTIONS:
RANK-NULLITY THEOREM
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Given the linear map , if Im  surely Rank Rank . — ˜ ˜    ˜7ß8 8ß" 7ß"† œ − œ     
We have seen that the dimension of the Image of a linear map is equal to the Rank of the
matrix : Dim Im Rank .  7ß8      œ œ 5
Considering the associated homogeneous system  we have got its solution: ˜ 5ß" œ

—   —5ß" 85ß"
w ww
5ß5 5ß85

"
œ  † †  ,

from which we see that Dim Ker , i.e. the dimension of the Kernel is equal to   œ 8 5
the number of unknowns brought with the constant terms, i.e. the number of variables which
remain independent.
The dimension of the Kernel of  is also called the nullity of . 

The following theorem summarizes what we have already said:
Theorem 21 ("rank-nullity theorem" or "Sylvester's theorem" or "Image theorem") À
The Rank and the nullity of a matrix add up to the number of columns of the matrix itself, i.e.:
adding the dimensions of the Image and the dimensions of the Kernel of a linear map we
obtain the dimension of the domain, i.e.:
Dim Im Dim Ker Dim  or:          ‘ œ 8

Dim Im Dim Ker number of the columns of .         œ
In fact, as previously seen, .5  8  5 œ 8 
Example 72 Given the linear map , with , let us de-À † œ œ

5 # 5
 " !  $
"  # "

 — ˜ 

      
      

termine, varying the parameter , the dimension of the Kernel and the dimension of the Image5
of the linear map.
Since Det , it follows that:    œ  % "  5
- if , Rank  Dim Im  and Dim Ker ;5 œ  " œ # Ê œ # œ $  # œ "     
- if , Rank  Dim Im  and Dim Ker .5 Á  " œ $ Ê œ $ œ $  $ œ !     

SURJECTIVE, INJECTIVE, BIJECTIVE AND INVERTIBLE LINEAR MAPS
A function is surjective (onto) if every element of the codomain is mapped to by at least one
element of the domain. That is, the image and the codomain of the function are the same set.
A function is injective (one-to-one) if every element of the codomain is mapped to by at most
one element of the domain.
A function is bijective (one-to-one and onto or one-to-one correspondence) if every element
of the codomain is mapped to by exactly one element of the domain. That is, the function is
both injective and surjective.
A function is an invertible one if it is both injective and surjective, i.e. if it is bijective.
Since linear maps are functions , we study the problem of the existence of their in-‘ ‘8 7Ä
verse function, which requires first to check when a linear map is surjective and when it is inj-
ective.

The linear map: ,  is a surjective map if its Image (Range) is‘ ‘  — ˜8 7
7ß8 8ß" 7ß"Ä † œ

equal to the whole , i.e. if Dim Im .‘ 7    œ 7
Therefore it must be Dim Im Rank  (  number of the columns of ).      œ œ 7 Ÿ 8

The linear map: ,  is an injective map if:‘ ‘  — ˜8 7
7ß8 8ß" 7ß"Ä † œ

0 œ 0 Ê œ   — — — —" # " # .
But , i.e. Ker .0 œ 0 Ê 0  œ  −       — — — —  — — " # " # " #



47

And so  if and only if Ker , i.e. Dim Ker , i.e.:— —   " #œ œ œ !         8  5 œ ! Ê œ 5 œ 8 Ÿ 7Rank  (  number of the rows of ). 

The linear map: ,  is an invertible map if it is surjective and inj-‘ ‘  — ˜8 7
7ß8 8ß" 7ß"Ä † œ

ective, and as previously seen it must be: Rank , and then the matrix   œ 5 œ 7 œ 8
must be a square and non-singular matrix.
From , if  is a square and non-singular matrix, we obtain — ˜ 8 8ß" 8ß"† œ

—  ˜ ˜  —8ß" 8ß" 8ß" 8ß"
" "
8 8œ † œ †, and so , which is the inverse map of the linear map.

Example 73 For the linear map , with , as seen inÀ † œ œ
5 # 5
 " !  $
"  # "

 — ˜ 

      
      

Example 72, we have:
-if , Dim Im  and Dim Ker , and so the map is neither injective nor surj-5 œ  " œ # œ "   
ective;
-if , Dim Im  and Dim Ker , and so the map is injective and surjective,5 Á  " œ $ œ !   
and then invertible.

COMPOSITION OF LINEAR MAPS
Let : ,  and : , . We see that0 † œ 1 † œ‘ ‘  — ˜ ‘ ‘  ˜ ™8 7 7 :

7ß8 8ß" 7ß" :ß7 7ß" :ß"Ä Ä
the composition of two linear maps is still a linear map.
In fact, if  and , it is:˜ —  — ™ ˜  ˜œ 0 œ † œ 1 œ †   7ß8 8ß" :ß7 7ß"

™ ˜ —  ˜   —   —œ 1 œ 1 0 œ † œ † † œ † †         :ß7 7ß" :ß7 7ß8 8ß" :ß7 7ß8 8ß" .
Then the composed linear map is given by  : , , with1 ‰ 0 † œ‘ ‘ ‚ — ™8 :

:ß8 8ß" :ß"Ä
‚  :ß8 :ß7 7ß8œ † .
The composition of two or more linear maps is still a linear map having for matrix the product
of the matrices of the composed linear maps.

Example 74 Let : ,  and : , ,À 0 † œ 1 † œ‘ ‘  — ˜ ‘ ‘  ˜ ™# % % $
%ß# #ß" %ß" $ß% %ß" $ß"Ä Ä

with:  and . The composition of these line %ß# $ß%œ œ

" !
! #
" "
# "

! " # "
" " ! !
# " " #

                    

                    
ar maps is

1 ‰ 0 † œ : , , with‘ ‘ ‚ — ™# $
$ß# #ß" $ß"Ä

‚  $ß# $ß% %ß#œ † œ † œ
! " # " % &
" " ! ! " #
# " " # ( &

" !
! #
" "
# "

                              
                              

 

 

 

 
.

ORTHONORMAL BASES - ORTHOGONAL MATRICES
Two vectors are orthogonal if and only if their scalar (or dot) product is equal to . A vector!
whose modulus (or length) is equal to  is a unit vector (or versor or normalized vector)."
A set of vectors form an orthonormal set if all the vectors in the set are unit vectors and are
mutually orthogonal.
Definition 40 An orthonormal basis for a vector space  is a basis for  whose vectorsÀ ‘ ‘8 8

are orthonormal vectors.
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If ...  form an orthonormal basis, since they are mutually orthogonal unit vectors, it— — —" # 8ß ß ß

follows that:  .
if 
if 

— —3 4† œ
" 3 œ 4
! 3 Á 4

Definition 41 A matrix  is orthogonal if .À † œ † œ     ˆT T

This definition requires that the matrix is a square and non-singular matrix, so an invertible
matrix; since  is the only matrix for which the property  applies, it     ˆ" " "† œ † œ
follows that a matrix  is orthogonal if its transpose is equal to its inverse: .  T œ "

From this definition it also follows that the rows (and the columns) of an orthogonal matrix
form an orthonormal basis, i.e. its rows and its columns are mutually orthogonal unit vectors.

It is easily seen that all unit matrices  and all permutation matrices are orthogonal matrices.ˆ8

For orthogonal matrices the following properties are valid:
O1) If  and  are orthogonal matrices, also  and  are orthogonal matrices:     8 8 † †

in fact , so the thesis;            ˆ  ˆ† † † œ † † † œ † † œT T T T

O2) If  is an orthogonal matrix, then :   œ „"

in fact, from , we obtain  and so ;              ˆ    ˆ † œ † œ œ œ " œ „"T T #

O3) If  is an orthogonal matrix, also  and  are orthogonal matrices:  T "

in fact  while    ˆT T TT
† œ † œ 

      ˆ" " " " "
† œ † œ † œ     T T T T ;

O4) If  is an orthogonal matrix, also  is an orthogonal matrix: 5

in fact: .               ˆ5 5 55T T T T T† œ † œ † † ÞÞÞ † † † ÞÞÞ † † œ

ORTHONORMAL BASES: GRAM-SCHMIDT PROCESS

If ...  is a basis of , but conditions  are not satisfied,
if 
if 

  — — — ‘ — —" # 8 3 4
8ß ß ß † œ

" 3 œ 4
! 3 Á 4

the Gram-Schmidt process allows us to construct, starting from ... , an orthonor-— — —" # 8ß ß ß
mal basis.

We start with the first vector of the basis, , and we set .— ™ —" " "œ

The unit vector  is the first vector of the orthonormal basis.–
™

™
"

"

"
œ  

To find the second vector, , first we determine a vector , expressed in the form:– ™# #

™ — α–# # "œ  ,
i.e. the second vector of the original basis minus a multiple of the first vector found for the or-
thonormal basis.
™ –# " has to be orthogonal to , and so we need:
™ – — α– – — – α– –# " # " " # " " "† œ  † œ †  † œ !  ,
from which, since , we obtain:– –" "† œ "
α — – — –œ † œ  ß # " # "  in order to obtain:
™ — — – –# # # " "œ   ß  † .

Then the second vector of the orthonormal basis is .–
™

™
#

#

#
œ  

To determine the third vector, we set:
™ — α– "–$ $ " #œ   .
™ – –$ " # has to be orthogonal to  and  and so:
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   ™ – — α– "– – — – α– – "– –
™ – — α– "– – — – α– – "– –

$ " $ " # " $ " " " # "

$ # $ " # # $ # " # # #

† œ   † œ †  †  †
† œ   † œ †  †  †

.

Since  and , we obtain:– – – – – – – –" " # # " # # "† œ † œ " † œ † œ !

α — – — –
" — – — –
œ † œ  ß 
œ † œ  ß 

$ " $ "

$ # $ #
 and so:

™ — — – – — – –$ $ $ " " $ # #œ   ß  †   ß  † .

Then the third vector of the orthonormal basis is .–
™

™
$

$

$
œ  

Generalizing the process, the -th vector of the orthonormal basis is , with3 œ–
™

™
3

3

3 
™ — — – – — – – — – –3 3 3 " " 3 # # 3 3" 3"œ   ß  †   ß  †    ß  †... .

Example 75 Let us consider the basis of  consisting of these three vectors:À ‘$

— — —" # $œ !ß "ß " œ "ß !ß " œ "ß "ß !     , ,  and we want to determine, starting from this,
an orthonormal basis. Obviously, we have checked that the three vectors are linearly indepen-
dent and that they are not perpendicular two by two.

–
™ —

™ —
"

" "

" "
œ œ œ !ß ß

" "

# #        is the first vector of the orthonormal basis.

From  we obtain, since :™ — — – – — –# # # " " # "œ   ß  †  ß  œ
"

#
™ ™# #œ "ß !ß "  !ß ß œ "ß  ß œ

" " " " " $

# # # ## #
          

 , and since  we obtain:

–
™

™
#

#

#
œ œ ß  ß

# " "

' ' '      .

Finally, to find the third vector, we calculate first:
™ — — – – — – –$ $ $ " " $ # #œ   ß  †   ß  †  and since:

 ß  œ  ß  œ
" "

# '
— – — –$ " $ #  and  we obtain:

™$ œ "ß "ß !  !ß ß  ß  ß œ ß ß 
" " " " # " " # # #

# # # ' ' ' ' $ $ $
              

from which, since , we obtain .      ™ –$ $œ œ ß ß 
# " " "

$ $ $ $

The vectors:

               – – –" # $ß ß œ !ß ß ß  ß ß ß 
" " # " " " " "

# # ' ' ' $ $ $
, , 

constitute an orthonormal basis.

CHANGE OF BASIS
To express every element of a vector space we need a basis for this space. We have seen that
every vector of  is expressed in one and only one way as a linear combination of the  ele-‘8 8
ments of the chosen basis.
If not otherwise specified, writing ...  we mean the vector  expressed— —œ B ß B ß ß B " # 8

under the standard basis, i.e. ... .— —œ œ B  B   B/ " " # # 8 8e e e
If we choose any other basis, always formed by  linearly independent vectors, we want to8
find the coordinates of the vector  under the new basis.—
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The problem can be reduced to linear maps and their appropriate compositions.
Being , since the columns of  are the elements of the standard basis, we see that— ˆ — ˆœ †8 8

every vector  can be written as a product of a suitable matrix, which, in the case of— ‘− 8

the standard basis, is the unit matrix , multiplied by the column vector  formed by its co-ˆ —8

ordinates under the chosen basis.
If we choose a basis other than the standard, for example ... , and if the vector – – –" # 8ß ß ß
— — α α α has, under this basis, coordinates ... , it is:w œ ß ß ß " # 8

— α – α – α –/ " " # # 8 8œ   ... ,
that can be written as:

— – — – – –

α
α

α

/ " # 8

"

#

8

œ † œ †w    
        

        
... ,

...

i.e. the product of a matrix , whose columns are the vectors ...  of the basis, by– – – –" # 8ß ß ß
the column vector  formed by the coordinates of  under the new basis.— —w /

Vectors ...  are a basis, so they are linearly independent vectors, and so the ma-– – –" # 8ß ß ß
trix  is non-singular and then invertible.–
Being , by means of the product  we obtain the coordinates  of– — — – — —" "

/ /† œ †w w

the vector  under the new basis ... .— – – – " # 8ß ß ß
If we want to change any vector of the space to this new basis ... , we only – – –" # 8ß ß ß
need to left-multiply its components (or coordinates) by the inverse of the matrix .–
The matrix  is said the transition matrix (or change-of-basis matrix) from the standard–"

basis to the new basis.
Therefore a change of basis is a linear invertible map  from a vector space into it-‘ ‘8 8Ä
self.

If we choose a further new basis for : ...  and if we want to express the vec-‘ • • •8
" # 8 ß ß ß

tor  under this basis, operating as in the previous case we have:—/

— • — • — —/ /
"œ † † œv v and then ,

where  is the matrix having as columns the vectors ... .• • • • " # 8ß ß ß
And so, since:  we obtain, premultiplying properly:— – — • —/ œ † œ †w v

— – • — — • – —w v v wœ † † œ † †" "  or 
to obtain directly the transition from the coordinates  to the coordinates  and vice versa.— —v w

The matrix  is the transition matrix from the basis ...  to the basis – • • • •œ † ß ß ß"
" # 8  – – –" # 8ß ß ß... .

The matrix  is the transition matrix from the basis ...  to the’ • – – – –œ † ß ß ß"
" # 8 

basis ... . • • •" # 8ß ß ß

Obviously ’ • – – • œ † œ † œ Þ" " "" 
Example 76 Let us consider the vector .À œ $ß &—/  
Chosen the new basis , , it is  from which         – – –" #ß œ "ß " "ß  " œ

" "
"  "

we obtain: . It can be easily seen that .– —"
" "
# #
" "
# #

œ œ %ß  "
    w

Chosing another basis , , it is  and .           • • • —" #ß œ #ß " "ß # œ œ ß
# "
" #

" (

$ $
v
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Performing the products we verify that: , or that:            " "
# #
" "
# #

"
$
(
$

† † œ
# " %
" #  "

– • — —" † † œv w .

CHANGE OF BASIS AND LINEAR MAPS
Let : ,  be a linear map, and let  and  be0 † œ œ œ‘ ‘  — ˜ — — ˜ ˜8 8

8 8ß" 8ß" / /Ä
expressed under the standard basis. We change the basis of  using the vectors‘8

 – – – — ˜ — ˜" # 8ß ß ß... , so  and  will have, under this new basis, the coordinates  and .w w

We want to see if there exists a matrix  such that , that is, such that it realizes a  — ˜† œw w

linear map in which the image of  is , as well as  was the image of .— ˜ ˜ —w w / /

With  and  we want to represent the same linear map under two different bases. 
As previously seen, it is  and , from which, substituting in— – — ˜ – ˜w wœ † œ †" "

/ /

 — ˜  – — – ˜† œ † † œ †w w , we obtain:  or:" "
/ /

–  – — ˜  — –  – † † † œ œ † † † œ" "
/ / /  from which we obtain  and so:

 –  –œ † †" , which is the matrix of the same linear map but under the basis – – –" # 8ß ß ß... .

Example 77 Let : , , with . Let À 0 † œ œ œ
" # "
" $ #

‘ ‘  — ˜  —# #
# #ß" #ß" # #ß"Ä       

and so .˜#ß" œ † œ
" # " &
" $ # (          

We use a new basis of  given by the vectors .‘ – –#
" #      ß œ "ß " ß "ß  "

It is  from which  and so:– –œ œ
" "
"  " 

     "
" "
# #
" "
# #

— – —w œ † œ † œ
 

"
#

"
/

" " $
# # #
" " "
# # #

          and

˜ – ˜w œ † œ † œ


& '
(  "

"
/

" "
# #
" "
# #

          .

But , and so we –  –œ † † œ † † œ


" # " "
" $ "  "




"

" "
# #
" "
# #

( $
# #
" "
# #

            
obtain: , and also: — ˜† œ † œ œ



 

'
 "w w         ( $

# #
" "
# #

$
#
"
#

–  – — ˜† † † œ † † † œ œ
" " " &
"  " # (



 
"

/ /

( $
# #
" "
# #

" "
# #
" "
# #

                 .

MATRIX SIMILARITY
Using what we have seen in the previous section, we give the following:
Definition 42  Two square matrices  and  are called similar if it exists a square non-À  8 8

singular matrix  such that , or, equivalently, such that .        œ † † † œ †"

The matrix  is sometimes called a similarity transformation.
Similar matrices represent the same linear map under two different bases, and  is the change
of basis matrix.
We will denote two similar matrices  and  with the symbol .   µ
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Similarity between matrices is an equivalence relation, i.e. it is reflexive, symmetric and tran-
sitive.
- Reflexivity: : .a µ  
In fact, just take . ˆœ 8

- Symmetry: .   µ Ê µ
In fact  ; if  and then , we obtain:           œ † † Ê œ † † œ œ" " " "

     œ † † µ" , i.e. .
- Transitivity:  and   .       ‚  ‚µ µ Ê µ
If  and if , substituting, we obtain:    ‚   œ † † œ † †" "

‚             œ † † œ † † † † œ † † † †" " " "      .
If  then we obtain: , i.e. .’   ‚ ’  ’  ‚œ † œ † † µ"

Another important property is the following:
Theorem 22 Two similar matrices have the same Determinant.À
Proof: If  then ; applying Binet's theorem we obtain:     µ œ † †"

                   


œ † † œ † † œ ñ
"" " " and since  the thesis is confirmed. 

And finally the following
Theorem 23 If  then , .À µ µ 5 −    5 5

Proof: From  we obtain:   œ † †"

         5 " " "œ † † † † † † ÞÞÞ † † † œ      ; for the associative property
             5 " " " " 5œ † † † † † ÞÞÞ † † † † † œ † †     so the thesis is confir-
med.

EIGENVALUES AND EIGENVECTORS
Given a linear map : , , we want to check if there are vectors 0 Ä † œ‘ ‘  — ˜ —8 8

8 8ß" 8ß"

whose image in such linear map is a scalar multiple of the vector  itself, i.e. such that—
 — -— -† œ , where  is a scalar real or complex . 
So an eigenvector of a square matrix is a non-zero vector that, when multiplied by the matrix,
yields a vector that is parallel to the original.
The system  is equivalent to the system , i.e. a linear homoge- — -—  - ˆ — † œ  † œ 
neous system in the unknowns  having, between its coefficients, the parameter .— -
The null vector  is always a solution of this system, but we are interested of course to— œ
the presence of other solutions in addition to the null one.
For this purpose, since  is a square matrix, its Determinant must be equal to : - ˆ !  - ˆ œ ! , otherwise, by Cramer's rule, this homogeneous system will have only one so-
lution, i.e. the null one.
The equation  is a polynomial equation of degree  in the unknown ;c -  - ˆ -8   œ  œ ! 8
for the fundamental theorem of algebra it admits exactly  roots, which may be real or com-8
plex, simple (of multiplicity ) or multiple."
If the matrix  has real entries, complex roots will always be in an even number, each
complex root being present with its conjugate.
The roots of the equation  are the eigenvalues of the matrix ; a vec-c -  - ˆ 8   œ  œ !
tor  such that  is called an eigenvector with the eigenvalue .—   — -— -Á † œ
The polynomial  is the characteristic polynomial; the spectrum of a matrix is the set ofc -8 
its eigenvalues: ... , with  due to the possible multiple roots. - - -" # 7ß ß ß 7 Ÿ 8
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The spectral radius of a square matrix is the supremum among the absolute values of the ele-
ments in its spectrum: Max ... , where  represents the absolute value3 - - - -œ ß ß ß        " # 7 3

if  is a real number, and represents the modulus if  is a complex number.- -3 3

The algebraic multiplicity of an eigenvalue  is defined as the multiplicity of the-
corresponding root  of the characteristic polynomial and will be denoted by .- 7+

-

Obviously, if ... , , are the eigenvalues (simple or multiple) of the matrix ,- - - " # 7ß ß ß 7 Ÿ 8

it is:  .
3œ"

7
+7 œ 8-3

Example 78 Given the matrix , let us determine its eigenvalues and the cor-À œ
" #
$ #

   
responding eigenvectors.

From  we obtain:    - ˆ
-

-
 œ œ !

"  #
$ # 

c - - - - - - -# " #
#    œ "  #   ' œ  $  % œ ! œ  " œ %, so the roots are  and .

The spectral radius of the matrix is equal to .%
To find the eigenvectors with  we solve the system: , and-  ˆ — " œ  "   " † † œ  
so: , i.e. the equation , satisfied when .      # # B

$ $ B
† œ #B  #B œ ! B œ  B"

#
" # # "

All the vectors  are thus such that: —" œ 5ß  5 † œ  " † Þ
" # 5 5
$ #  5  5

             
To find the eigenvectors with  we solve the system , and so:-  ˆ — " œ %  % † † œ 
       $ # B

$  # B
† œ $B  #B œ ! B œ B

$

#
"

#
" # # " , i.e. the equation , satisfied when .

All the vectors  are thus such that: —# $ $
# #

œ 5ß 5 † œ % † Þ
$

#

" #
$ #

5 5

5 5            

Example 79 Given the matrix  let us determine its eigenvalues andÀ œ
 " !  &
! " #
" ! $



      
      

the corresponding eigenvectors. From  we ob- 
       - ˆ

-
-

-
 œ œ !

 "  !  &
! "  #
" ! $ 

tain:
c - - - - - - -$

#            œ "   "  $   & œ "   #  # œ !  whose roots are:
- - -" # $œ " œ "  3 œ "  3, , . We have found three simple solutions, one is real and two
are complex and conjugate.
Since , this is the spectral radius of the matrix.    "  3 œ "  3 œ #
Let us find the eigenvectors with .-" œ "

We have to solve the system , i.e. , from 
                  

       ˆ —   " † † œ † œ
 # !  & B
! ! # C
" ! # D

which we obtain:  which is satisfied if .

 
  

 #B  &D œ ! B œ !
#D œ ! a C
B  #D œ ! D œ !
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All the vectors  are thus such that: —" œ !ß 5ß ! † œ " †
 " !  & !
! " # 5
" ! $ !

 
                              
                         

!
5
!

.

Let us find now the eigenvectors with .-# œ "  3

We have to solve the system , from which we obtain:

                  
      

 #  3 !  & B
!  3 # C
" ! #  3 D

† œ 




 
     #  3 B  &D œ !

 3 C  #D œ !
B  #  3 D œ !

B œ 3  # D
C œ  #3 D

 which is satisfied if .

Therefore all the vectors  satisfy the equation:—# œ 5 3  #ß  #3ß "                               
                                " !  & 3  # 3  #

! " #  #3  #3
" ! $ " "

† œ "  3 .

Let us finally find the eigenvectors with .-$ œ "  3

We have to solve the system , from which we obtain:

                  
      

 #  3 !  & B
! 3 # C
" ! #  3 D

† œ 

  which is satisfied if .




 
     #  3 B  &D œ !

3 C  #D œ !
B  #  3 D œ !

B œ  3  # D
C œ #3 D

Therefore all the vectors  satisfy the equation:—$ œ 5  3  # ß #3ß "                                
                              

     " !  &  3  #  3  #
! " # #3 #3
" ! $ " "

† œ "  3 .

THE CHARACTERISTIC POLYNOMIAL
Definition 43 The trace of a square matrix , tr , is defined to be the sum of the entriesÀ  8  
on the main diagonal: tr .   œ +

3œ"

8

33

Definition 44 Given a square matrix , a Principal Minor  is the Determinant of aÀ QT8

square submatrix having as entries of its main diagonal only entries of the main diagonal of
 8 8, i.e. the Determinant of a square submatrix built from  by choosing rows and columns
with the same indexes.

Example 80 The matrix  has only one Principal Minor of the thirdÀ œ
+ + +
+ + +
+ + +

$

"" "# "$

#" ## #$

$" $# $$

      
order, the Determinant of the matrix itself: ; the matrix has threeQT œ

+ + +
+ + +
+ + +

"#$

"" "# "$

#" ## #$

$" $# $$

      
Principal Minors of the second order, which are: ,QT œ

+ +
+ +"#
"" "#

#" ##
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QT œ QT œ
+ + + +
+ + + +"$ #$
"" "$ ## #$

$" $$ $# $$
   , ; the matrix has three Principal Minors of the first

order, which are , , .QT œ + QT œ + QT œ +" "" # ## $ $$     
The indexes refer to the rows (and columns) used to construct the Principal Minor.

Let us now see the relationship between the coefficients of the characteristic polynomial and
the Principal Minors of the matrix.

Given the matrix , it is , and so:  - ˆ
-

-#
"" "# "" "#

#" ## #" ##
œ  œ

+ + +  +
+ + + +    

      - ˆ - - œ  +  +  + +  + + œ#
"" ## "" ## "# #"          - ˆ - - -  -  œ  QT QT QT œ  # #

" # "# tr det .

Let us consider now the third order matrix .$

"" "# "$

#" ## #$

$" $# $$

œ
+ + +
+ + +
+ + +

      
It is  and so we obtain: - ˆ

-
-

-
 œ

+  + +
+ +  +
+ + + 

      
"" "# "$

#" ## #$

$" $# $$    - ˆ - - œ   +  +  + $ #
"" ## $$

 + +  + +  + +  + +  + +  + +       "" ## "# #" "" $$ "$ $" ## $$ #$ $# -
 + + +  + + +  + + +  + + +  + + +  + + + œ "" ## $$ "" #$ $# "# #$ $" "# #" $$ "$ #" $# "$ ## $"

œ   QT QT QT  QT QT QT QT œ- - -$ #
" # $ "# "$ #$ "#$   

œ    QT QT QT -  - - $ #
"# "$ #$tr det .     

As seen in the two previous examples, let us construct the general expression of the characte-
ristic polynomial of a square matrix of any order .8
It is:

c -  - ˆ -8

3œ!

8
83 3 83       œ  œ  " † QT ,

where  is the sum of all the Principal Minors of order  of the matrix, having putQT 33

QT œ " QT QT œ
8

3
! 3 ". We see that  is a sum of  terms, that tr  and that    

the constant term is equal to det .QT œ8  
Factoring the characteristic polynomial into its roots, we obtain:

c - - -8 3
8

3œ"

8     œ  " †  .

From the algebraic theory we know that: S , where S  is thec - -8 3 3

3œ!

8
83 83   œ  " † †

sum of all the possible products of  roots.3

The coefficient of  is  while the constant term is , and from this- - -8" 8"

3œ" 3œ"

8

3 3

8    " †

we obtain the two equalities: tr  and  det .    
3œ" 3œ"

8

3 3

8

-  - œ œ

From this we see immediately that  is an eigenvalue if and only if det .- œ ! œ ! 
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The Determinant det  is the only Principal Minor of order  and it is equal to the product  8

of the eigenvalues:  det .8 œ   
3œ"

8

3- 

The trace tr  is the sum of all the Principal Minors of order  and it corresponds to the sum  "

of the products of the eigenvalues  to , i.e. to the sum of the eigenvalues: tr ." " œ  
3œ"

8

3- 

Let us formulate what we have stated into the following:
Theorem 24 The sum of all the Principal Minors of order  is equal to the sum of allÀ 8  3
the products of  eigenvalues.8  3

Example 81 Given the matrix , let us determine, varying the parame-À œ
" !  "
! " 7
" ! 5



      
      

ters  and , its eigenvalues and their algebraic multiplicity. It is:7 5

     
          - ˆ - - -

-
-

-
 œ œ "  "  5   " œ

"  !  "
! "  7
" ! 5 

œ "   5  "  5  " œ !    - - -# .
And so the matrix has the eigenvalue   and  .- œ " a 7 a 5
In order for the eigenvalue  to have its algebraic multiplicity equal to , it must be- œ " #
- - -#  5  "  5  " œ ! œ " "  5  "  5  " œ !    if , and so: , which is not satis-
fied for any value of .5
So we study the roots of .- -#  5  "  5  " œ ! 
We obtain .- œ œ

5  " „ 5  "  % 5  "

# #

5  " „ 5  #5  $        #
#

If  we have two real and distinct eigenvalues, both different from  as seen5  #5  $  ! "#

before;
if  we have two complex and conjugate eigenvalues;5  #5  $  !#

if , i.e. if  or if  we have a real eigenvalue whose algebraic5  #5  $ œ ! 5 œ $ 5 œ  "#

multiplicity is equal to ; we see with easy calculations that it is  if , while it is# œ # 5 œ $-
- œ ! 5 œ  " if .

EIGENVALUES OF SPECIAL MATRICES
Given a matrix , ...  are its eigenvalues, real or complex, simple or multiple. - - -8 " # 8ß ß ß

The following properties are valid:
A ) The transpose matrix  has the same eigenvalues of ... ." À ß ß ß  - - -T

" # 8

A ) If , the eigenvalues of the inverse matrix  are the reciprocal ... .# Á ! ß ß ß
" " "  
- - -

"

" # 8

In fact, from  it follows: , or  — -— —  -—  — —
-

† œ œ † † œ Þ
"" "

A ) The eigenvalues of the matrix are the multiples ... .$ 5 5 ß 5 ß ß 5 - - - " # 8

In fact, if , immediately it follows that: . — -—  — - —† œ 5 † œ 5 
A ) The eigenvalues of a diagonal or triangular matrix are the entries of the main diagonal.%
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A ) Similar matrices have the same spectrum, the same determinant and the same trace.&
In fact, if , from Binet's theorem, we have:   œ † †"

         - ˆ    - ˆ     - ˆ  œ † †  œ † † †  † œ" " "

œ † † †  † œ † † † †  † † † œ           - ˆ        - ˆ   - ˆ" " " " " .
Therefore two similar matrices have the same characteristic polynomial, and then they have
the same eigenvalues, and since the trace and the Determinant are the second and the last
coefficient of the characteristic polynomial, they are equal, i.e. tr tr  and    œ
det det .    œ
A ) The orthogonal matrices have all their eigenvalues, if real, equal to .' „"
In fact, since for orthogonal matrices it is , for the property A ), the transpose   T Tœ ""

and the inverse  of an orthogonal matrix have the same eigenvalues of the matrix . If   -"

is an eigenvalue of the matrix , for the property A ) it should also be  or  and - -
-

# œ œ "
" #

so .- œ „"
A ) Given two square matrices of the same order  and , the matrices  and ( † †     8 8

have the same eigenvalues.

If  is a rectangular matrix  and  is a rectangular matrix , with , the    7 † 8 8 † 7 7  8
square matrix  has the same eigenvalues of the matrix  adding‚   ƒ  7 8œ † œ †
7  8 ! eigenvalues equal to .

Finally, if  and  are square matrices, even of a different order, having eigenvalues respecti- 
vely  and , the matrix , resulting from the Kronecker product,- - - . . .  " # 8 " # 7ß ß ÞÞÞß ß ß ÞÞÞß Œ
has eigenvalues   and ./ - .3ß4 3 4œ ß " Ÿ 3 Ÿ 8 " Ÿ 4 Ÿ 7

PROPERTIES OF THE EIGENVECTORS
Regarding the eigenvectors, the following properties are valid:
B ) If  is an eigenvector with the eigenvalue , also ,  is an eigenvector of " 5 a 5 −— - — ‘ ‡

with .-
In fact: ; —  — -— - —† 5 œ 5 † œ 5 œ 5   
B ) The same eigenvector cannot correspond to two different eigenvalues.#
In fact, if  and also , with , subtracting we obtain: — - —  — - — - -† œ † œ Á" # " #

 —  —  - - — —  - -†  † œ œ  Á œ " # " #, and since  this is possible only if ,
against the hypothesis.
B ) Eigenvectors with distinct eigenvalues are linearly independent vectors.$
Let ... , , be the distinct eigenvalues of the matrix  and let ...- - -  — — —" # 7 8 " # 7ß ß ß 7 Ÿ 8 ß ß ß
be the corresponding eigenvectors. If these eigenvectors were linearly dependent, at least one
of them, , can be expressed as a linear combination of some of the other eigenvectors.—!

So we suppose: ... , with .— α — α — α —! " " # # 5 5œ    5 Ÿ 7 "
Premultiplying both terms of the equality by the matrix  we obtain:
 —  α — α — α —† œ †   ! " " # # 5 5 ...  from which:
 —  α —  α —  α —† œ †  †   †! " " # # 5 5...  or:
- — α - — α - — α - —! ! " " " # # # 5 5 5œ    ,
since ...  are eigenvectors.— — — —! " # 5ß ß ß ß
On the contrary, multiplying both terms of the same equality by  we obtain:-!

- — α - — α - — α - —! ! " ! " # ! # 5 ! 5œ    .
Subtracting member to member we finally obtain:
 α - - — α - - — α - - —œ      " " ! " # # ! # 5 5 ! 5      ,
from which, since ...  are linearly independent vectors, it follows that:— — —" # 5ß ß ß
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- - - - - -" ! # ! 5 !œ ß œ ß ÞÞÞß œ  against the hypothesis that the eigenvalues are distinct.
B ) If  and if  is an eigenvector with the eigenvalue  for the matrix , then% œ † †    — - "

 — - " †  is an eigenvector with the eigenvalue  for the similar matrix .
In fact, given two similar matrices  and , and if , from  we   — -—    † œ œ † † "

obtain:  from which, premultiplying by , we obtain:-—  —    — œ † œ † † †" "

 -— - —     —   —" " " " "† œ † œ † † † † œ † † ,
and so, if , we obtain: — ˜" † œ
-  — -˜  ˜   —   " "† œ œ † œ † †

i.e.  is an eigenvector for the matrix . — " †
B ) If  is an eigenvector for the non-singular matrix  with the eigenvalue , then  is& —  - —! ! !

also an eigenvector for the inverse matrix  with the eigenvalue .
-

"

!

"

In fact, from  and since  is invertible, we obtain: — - — † œ †! ! !

—  - — -  — —  —
-

! ! ! ! ! ! !
" " "

!
œ † † œ † † † œ †

"
 and then: , that is the thesis.

Example 82 Given a matrix , from , if  it is also:À œ † † œ     — - —#
! ! !

 —   —  - — -  — - — # #
! ! ! ! ! ! !!

#† œ † † œ † œ † œ , i.e. the eigenvalues of the matrix 
are the squares of the eigenvalues of , while the corresponding eigenvectors are the same as
.

Example 83 Let us consider an idempotent matrix, i.e. such that .À œ #

From  and from  we obtain: , which can be — - —  —  — - — - —† œ † œ † œ! ! ! ! ! ! ! !
# #

!

satisfied only if  or if .- -! !œ ! œ "
Then only the values  and  can be the eigenvalues of an idempotent matrix.! "

THE ASSOCIATED EIGENSPACE OF AN EIGENVALUE
Suppose that  is a square matrix and  is an eigenvalue of , simple or multiple. - 
Theorem 25 The eigenvectors with the same eigenvalue , with the inclusion of the nullÀ -
vector , form a vector subspace, called the associated eigenspace of the eigenvalue : . - Xf-
Proof À If  and  are eigenvectors with the same eigenvalue , it is:— — -" #

 — -—  — -—† œ † œ" " # # and ; then:
 α— " — α — "  — α-— " -— - α— " —†  œ †  † œ  œ    " # " # " # " #

i.e. also  is an eigenvector with . α— " — -" # ñ

Therefore we must determine, for each eigenvalue , the dimension of its associated eigen--3

space. The geometric multiplicity of an eigenvalue  is defined as the dimension of the-3

associated eigenspace, i.e. the number of linearly independent eigenvectors with that
eigenvalue; the geometric multiplicity will be denoted by .71

3

If  is an eigenvalue for the matrix , to find all the eigenvectors with  we have to solve-  -! !

the linear homogeneous system , i.e. we have to determine the Kernel of  - ˆ —  † œ!

the linear map .  - ˆ — †!

So the following equality applies: Dim Ker .7 œ 1
!-!

   - ˆ

For the "rank-nullity theorem" or "Sylvester's theorem", we know that:
Dim Ker Rank     - ˆ  - ˆ œ 8 ! !

and then we obtain the final equality:
7 œ 8 1

!-!
 Rank .  - ˆ

Since , it follows that Rank  and so , i.e.:    - ˆ  - ˆ œ !  Ÿ 8  " 7   "! !
1
-!
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Theorem 26 The associated eigenspace of every eigenvalue  is a vector subspace whoseÀ -
dimension is .7   "1

-

I.e.: no eigenvalue can have an eigenspace reduced to a single point, that is the null vector .

From the property B ) we know that the eigenvectors with distinct eigenvalues are linearly$
independent vectors; from the fundamental theorem of Algebra we know that a polynomial
equation of degree  admits at most  distinct roots.8 8
Since the eigenvectors of a matrix  are vectors of , we have the following: ‘8

8

Theorem 27 A matrix  has at most  linearly independent eigenvectors.À 88

Theorem 28 If a matrix  has  distinct eigenvalues, then it has  linearly independent ei-À 8 88

genvectors.

Example 84 For the null matrix, it is:  and so the multiple solu-À  œ  œ !    - ˆ -8 8
8

tion  with algebric multiplicity .- œ ! 7 œ 8+
!

Since ,  , the associated eigenspace of the eigenvalue  is the — —  — ‘† œ ! † œ a − !
whole , and so .‘8 1

!
+
!7 œ 8 œ 7

Similarly for the unit matrix , it is , and so the multiple solutionˆ ˆ - ˆ -8 8 8
8    œ "  œ !

- œ " 7 œ 8 with algebraic multiplicity .+
"

Since ,  , the associated eigenspace of the eigenvalue  is theˆ — — — — ‘8 † œ " † œ a − "
whole , and so .‘8 1

"
+
"7 œ 8 œ 7

Example 85 Given the matrix , let us determine the associated eigen-À œ
" !  "
" # "
" " "



      
      

space of its eigenvalues.

It is ; this equation has 
      
       - ˆ - - -

-
-

-
 œ œ   %  &  # œ !

"  !  "
" #  "
" " " 

$ #

solutions , , . So  is a simple solution while  is a double- - - - -" # $œ " œ " œ # œ # œ "
solution.
To determine the eigenspace associated to  we solve the homogeneous system:- -" #œ œ "

   
      
       ˆ   ˆ " † œ  " † œ
! !  "
" " "
" " !

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is  ˆ - - " † œ # œ œ "" #

equal to Rank , and so .7 œ $   " † œ " " œ 7  7 œ #1 1
" "

+
"  ˆ

Discarding the second row, we have the system  that gives us the eigenvectors  D œ !
B  C œ !   5ß  5ß ! œ 5 "ß  "ß ! ß 5 − ‘ .

To determine the eigenspace associated to  we solve the homogeneous system:-$ œ #

   
      
       ˆ   ˆ # œ  # † œ
 " !  "
" ! "
" "  "

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - # œ # œ #$

7 œ $   # † œ " 7 œ 7 œ "1 1
# #

+
#Rank , and so .  ˆ
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Discarding the first row, we have the system  that gives us the eigenvectorsB  D œ !
B  C  D œ !   5ß  #5ß  5 œ 5 "ß  #ß  " ß 5 − ‘ .

Example 86 Given the matrix , let us determine the associated eigen-À œ
$  " "
! # !
"  " $



      
      

space of its eigenvalues.

It is ; this equation has   
      
         - ˆ - - -

-
-

-
 œ œ #   '  ) œ !

$   " "
! #  !
"  " $ 

#

solutions , , . So  is a simple solution while  is a double- - - - -" # $œ # œ # œ % œ % œ #
solution.
To determine the eigenspace associated to  we solve the homogeneous system:- -" #œ œ #

   
      
       ˆ   ˆ # œ  # œ
"  " "
! ! !
"  " "

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - # œ " œ #
7 œ $   # œ # 7 œ 7 œ #1 1

# #
+
#Rank , and so .  ˆ

From the only remaining equation:  we obtain the eigenvectors .B  C  D œ ! C  Dß Cß D 
Since , we must determine from this two independent vectors, which may be, for7 œ #1

#

example,  and .   "ß "ß !  "ß !ß "
Every eigenvector with  can be written as: .- ‘œ # 5 "ß "ß !  2  "ß !ß " ß 5ß 2 −   
To determine the eigenspace associated to  we solve the homogeneous system:-$ œ %

   
      
       ˆ   ˆ % œ  % œ
 "  " "
!  # !
"  "  "

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - % œ # œ %
7 œ $   % œ " 7 œ 7 œ "1 1

% %
+
%Rank , and so .  ˆ

Finally we solve the system  from which we obtain  and so the


  B  C  D œ !

 #C œ !
B  C  D œ !

B œ D
C œ !

eigenvectors .   5ß !ß 5 œ 5 "ß !ß " ß 5 − ‘

The relation between geometric multiplicity and algebraic multiplicity of any eigenvalue is
the following:
 Rank , and this results from the following:" Ÿ 7 œ 8   Ÿ 7 Ÿ 81

3 !
+
3  - ˆ

Theorem 29 For every eigenvalue  it is: .À 7 Ÿ 7-3
1
3

+
3

Proof À By hypothesis,  is a matrix with the eigenvalue , whose geometric multiplicity is -8 !

7 œ 5 71 +
- -! !

, while we do not know its algebraic multiplicity .
The eigenspace associated to  has dimension equal to  and therefore there are  linearly-! 5 5
independent eigenvectors — — —" # 5ß ß ÞÞÞß Þ
Let us form a basis of  with the  eigenvectors  together with  vectors‘ — — —8

" # 55 ß ß ÞÞÞß 8  5
• • •5" 5# 8ß ß ÞÞÞß  freely chosen.
Let ...  be the matrix having as columns the vectors of– — — — • • •œ ÞÞÞ       " # 5 5" 5# 8

the basis we have constructed.
Let's suppose   ...  . - - - –  • –  • –  •8 ! " ! # ! 5 5" 5# 8

" " "œ † † † † ÞÞÞ † †       e e e
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We see that , or that . In fact: – –  –  – † œ † † † œ"

 –  — — — • • •† œ † ÞÞÞ œ       " # 5 5" 5# 8...
œ † † † † † ÞÞÞ † œ        —  —  —  •  •  •" # 5 5" 5# 8...
œ † † ÞÞÞ †       - — - — - —  •  •  •! " ! # ! 5 5" 5# 8  ...  , while
–  – - - - –  • –  • –  •† œ † † † † † ÞÞÞ † † œ       ! " ! # ! 5 5" 5# 8

" " "  ...  e e e
œ † † † † † † ÞÞÞ † † † œ      – - – - – - – –  • – –  •! " ! # ! 5 5" 8

" "  ...  e e e
œ † † † † † ÞÞÞ † œ       - – - – - –  •  •  •! " ! # ! 5 5" 5# 8  ...  e e e
œ † † ÞÞÞ † œ † Þ       - — - — - —  •  •  •  –! " ! # ! 5 5" 5# 8  ...  

So the matrices  and  are similar, and so they have the same characteristic polynomial and 

the same eigenvalues. But 

...

...
...



-
-

8

! "ß5" "ß8

! #ß5" #ß8

œ

! ! @ ÞÞÞ @
! ! @ ÞÞÞ @

              

              

... ... ...
...
...

... ... ... ...
...

, and so:
ÞÞÞ ÞÞÞ ÞÞÞ

! ! @ ÞÞÞ @
! ! ! @ ÞÞÞ @

ÞÞÞ ÞÞÞ ÞÞÞ
! ! ! @ ÞÞÞ @

-! 5ß5" 5ß8

5"ß5" 5 ß8

8ß5" 8ß8

1

      - ˆ - - - † œ  † Þ! 85
5 P

If P , the root  will have an algebraic multiplicity greater than , and therefore85 ! ! - -œ ! 5
it is . If on the contrary it is P , we will have  7  7 Á ! 7 œ 7 Þ ñ1 1+ +

85 !- -- -! !! !
 -

Example 87 Given the matrix , let us study its multiple eigenvalue and itsÀ œ
$ " "
# % #
" " $



      
      

algebraic and geometric multiplicity. It is:              $  " "
# %  #
" " $ 

œ #  %  $   #  #  #  %  œ
-

-
-

- - - - -

œ #   )  "# œ #   #  ' œ ! Þ      - - - - - -#

And then its eigenvalues are:  and - - -" # $œ œ # œ ' Þ
To determine the eigenspace associated to  we solve the homogeneous system:- -" #œ œ #

   
      
       ˆ   ˆ # œ  # œ
" " "
# # #
" " "

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - # œ " œ #
7 œ $   # œ # 7 œ 7 œ #1 1

# #
+
#Rank , and so . From the only remaining equation:  ˆ

B  C  D œ ! Bß Cß  B  C we obtain the eigenvectors . 
Since , we must determine from this two independent vectors, which may be, for7 œ #1

#

example,  and .   "ß !ß  " !ß "ß  "
Every eigenvector with  can be written as: .- ‘œ # 5 "ß !ß  "  2 !ß "ß  " ß 5ß 2 −   
To complete a basis of  we choose the vector .‘$  "ß !ß !

If  and since  we obtain:– –œ œ
" ! " !  "  "
! " ! ! " !
 "  " ! " " "

                  
                  

"
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 –  –œ † † œ † † œ
!  "  " $ " " " ! "
! " ! # % # ! " !
" " " " " $  "  " !

"

                                          
                              

      
# !  $
! # #
! ! '

.

The matrix  too has the eigenvalue  whose algebraic multiplicity is equal to . - œ # #
Also for the matrix  it is . 7 œ 71

#
+
#

Instead, let us consider the matrix . Let us study its multiple eigenvalue œ
" !  "
" # "
" " "

      
      

and its algebraic and geometric multiplicity. It is:             "  !  "
" #  "
" " " 

œ "  #  "   "  " "  #  œ
-

-
-

- - - -

œ "   $  # œ "   "  # œ ! Þ      - - - - - -#

Then its eigenvalues are:  and - - -" # $œ œ " œ # Þ
To determine the eigenspace associated to  we solve the homogeneous system:- -" #œ œ "

   
      
       ˆ   ˆ " † œ  " † œ
! !  "
" " "
" " !

, whose matrix is .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - " † œ # œ "
7 œ $   " † œ " 7 œ "  7 œ #1 1

" "
+
"Rank , and so .  ˆ

If we had followed the outline of the proof of Teorema 29, we would not have had to find that
7 œ # 7 œ "+

"
1
" while ; we would have had to start from the assumption that the dimension

of the eigenspace with  was equal to  and then we had to find out its algebraic- œ " "
multiplicity. But this approach is a purely theoretical and not practical one.

From equations  we find the eigenvector .   D œ !
B  C œ !

"ß  "ß !

To complete a basis of  we choose the two vectors  and ‘$    "ß !ß ! !ß !ß " Þ

If  and since , we obtain:– –œ œ
" " ! !  " !
 " ! ! " " !
! ! " ! ! "

                  
                  

"

 –  –œ † † œ † † œ
!  " ! " !  " " " !
" " ! " # "  " ! !
! ! " " " " ! ! "

"

                                          
                               

     


"  "  "
! # !
! " "

Þ

So: , and then .      - ˆ - - œ "  #  7 œ "# 1
"7 œ # +

"

Theorem 30 If  is a simple root of the characteristic polynomial, then .À 7 œ 7 œ "-3
1
3

+
3

Theorem 31 A matrix  has exactly  linearly independent eigenvectors if and only if forÀ 88

every eigenvalue  it is: .-3
1
3

+
37 œ 7

MATRIX DIAGONALIZABILITY AND TRIANGULARISABILITY
The search for the roots of the characteristic polynomial can be very difficult, if not
impossible unless stopping to approximate values, when the order of the matrix is quite high.
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Since it is very easy to find the eigenvalues of diagonal or triangular matrices, and since
similar matrices have the same spectrum, it may be useful to determine when a matrix is
similar to a diagonal or to a triangular matrix.
In these cases we deal with diagonalizable or triangularisable matrices.

Definition 45 A square matrix  is called diagonalizable if it is similar to a diagonalÀ 8

matrix ; a square matrix  is called triangularisable if it is similar to a triangular matrix .ƒ  “8

From the definition of similar matrices, we have the following:
Theorem 32 A square matrix  is a diagonalizable one if there exists a non-singular matrixÀ 8

    ƒ   ƒ  ƒ such that  or, equivalently, such that , where  is a diagonal† œ † œ † † "

matrix.
And also
Theorem 33 A square matrix  is a triangularisable one if there exists a non-singularÀ 8

matrix  such that  or, equivalently, such that , where  is a    “   “  “† œ † œ † † "

triangular (upper or lower) matrix.

For an orthogonal matrix it is , and so, if diagonalizability or triangularisability T œ "

were performed with an orthogonal matrix , we have evident saving in the calculations if we
can simply calculate  instead of . T "

Let us see firstly when a matrix is diagonalizable. The following is valid:
Theorem 34 A matrix  is diagonalizable if and only if it has exactly  linearlyÀ 88

independent eigenvectors.
Proof: Let us verify firstly that the condition is sufficient.
If the matrix  is diagonalizable then there exists, by definition, a non-singular matrix  such 
that . If ...  are the columns of the non-singular matrix , they are li-   ƒ — — — † œ † ß ß ß" # 8

nearly independent vectors.
From , if ...  are the entries of the main diagonal of the matrix , we   ƒ - - - ƒ† œ † ß ß ß" # 8

obtain:
 — — — — — — ƒ† œ †        " # 8 " # 8 ...  ... , which can be written as:         —  —  — - — - — - —† † † œ" # 8 " " # # 8 8 ...  ...
from which, by equating the columns, we obtain:
 — - —  — - —  — - —† œ ß † œ ß ß † œ" " " # # # 8 8 8 ...  .
From this we see that ...  are eigenvectors with the eigenvalues ... , and— — — - - -" # 8 " # 8ß ß ß ß ß ß
they are also linearly independent eigenvectors since the matrix  is non-singular.
Then we verify that the condition is necessary.
If ...  are  linearly independent eigenvectors with the eigenvalues ... ,— — — - - -" # 8 " # 8ß ß ß 8 ß ß ß
let  be the matrix having ...  as columns. — — —" # 8ß ß ß
The  equalities:8
 — - —  — - —  — - —† œ † œ † œ" " " # # # 8 8 8, ,..., 
can be written in block-matrix form as:         —  —  — - — - — - —† † † œ" # 8 " " # # 8 8 ...  ...
that we can rewrite, if  is the diagonal matrix having ...  as its main diagonal ent-ƒ - - -" # 8ß ß ß
ries, as:
 — — — — — — ƒ    ƒ† œ † † œ †        " # 8 " # 8 ...  ...  i.e. .
And so, being  an invertible matrix since it has linearly independent columns, we obtain:
  ƒ  œ † † ñ" , i.e. the matrix  is diagonalizable. 
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The matrix  having the eigenvectors as columns is called modal matrix (in Italian literature
"matrice modale"), and provides, by means of the , the procedure for the dia-ƒ   œ † †"

gonalization of .

From the previous theorems, we deduce also the following:
Theorem 35 A matrix  is diagonalizable if and only if ,  eigenvalue .À 7 œ 7 a -8 3

1
3

+
3

Theorem 36 If a matrix  has  distinct eigenvalues then the matrix is a diagonalizableÀ 88

one.

TRIANGULARISABLE MATRICES
As previously seen, matrices having multiple eigenvalues may not be diagonalizable. For at
least one multiple eigenvalue in fact it may happen that .7  71

3
+
3

For those matrices  that don't have exactly  independent eigenvectors, we can use the si-8 8
milarity to a triangular matrix, since the following is valid:
Theorem 37 (Schur decomposition) Every matrix  is similar to an upper triangular matrixÀ 8

“ ”  ” ” “ ”  ” “. Indeed, there is an orthogonal matrix  such that:  or .† œ † † † œT

SYMMETRIC MATRICES
Let us examine diagonalizability for symmetric matrices, i.e. the matrices for which . T œ
A first important property is the following:
Theorem 38 The eigenvalues of a symmetric matrix are always real numbers.À
Proof: Let . Turning to the conjugate we have  . — -—  — -—† œ À † œ

Since the entries of  are real numbers, it is .  —  — -—† œ † œ

Taking the transpose we obtain:  or .    — -— —  -—† œ † œ
T T T TT

Since  is symmetric, it is , so we obtain:  .   —  -—T T T
œ † œ

From , multiplying on the left by  we obtain: ; — -— — —  — -— —† œ † † œ †
T T T

from , multiplying on the right by  we obtain: .—  -— — —  — -— —
T T T T
† œ † † œ †

And so , and since , it follows , i.e. . -— — -— — — — - - - ‘
T T T
† œ † † Á ! œ − ñ

With respect to the eigenvectors, we have the following:
Theorem 39 In a symmetric matrix, any two eigenvectors with distinct eigenvalues are or-À
thogonal.
I.e. to distinct eigenvalues orthogonal eigenvectors correspond.
Proof: Let  and  be two eigenvectors with distinct eigenvalues  and .— — - -" # " #

Since this product  gives a real number and , it is:—  —T T
" #† † 5 œ 5 

—  — —  — —  — —  —T T T T TT
" " # ## # " "† † œ † † œ † † œ † †  ,

because the matrix is symmetric, and then, as  and  are eigenvectors, it follows that:— —" #

— - — - — — — - — - — —T T T T
" " # ## # # # " " " "† œ † œ † œ † .

But , because the scalar product of the vectors  and  gives as result a— — — — — —T T
" ## " " #† œ †

real number , and so we obtain: , and this equality is possible, since5 † œ †- — — - — —" " # "# #
T T

- - — — — —" # " " ##Á † œ ! ñ, if and only if , i.e. if and only if  and  are orthogonal.T

As a first consequence, from the previous theorems, we have:
Theorem 40 If a symmetric matrix  has all distinct eigenvalues, then there exists an ortho-À 
gonal matrix  that diagonalizes .” 
Proof À If the eigenvalues are all distinct, the corresponding eigenvectors are not only linearly
independent, but, for the previous theorem, are also two by two orthogonal vectors.
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When constructing the modal matrix it is enough to normalize these eigenvectors to obtain an
orthogonal matrix  such that: . ”  ” ” ƒ† œ † ñ

However, applying to a symmetric matrix the Schur's decomposition theorem, we obtain a
more general result, namely that every symmetric matrix is always diagonalizable by means
of an orthogonal matrix. Indeed the following is valid:
Theorem 41 (spectral theorem) Every symmetric real matrix can be diagonalized by an or-À
thogonal matrix.
I.e.: For every symmetric real matrix  there exists a real orthogonal matrix  such that ”
ƒ ”  ”œ † †T  is a diagonal matrix.
Proof: From Schur's theorem every matrix  is similar to an upper triangular matrix , i.e. “
there is an orthogonal matrix  such that .” “ ”  ”œ † †T

But, since  is symmetric, we obtain:

“ ”  ” ”  ” ”  ” “T T T T TT
œ † † œ † † œ † † œ 

and so , that is, the triangular matrix  is a symmetric one, so it is a diagonal matrix.“ “ “T œ
Therefore , i.e.  is diagonalizable by an orthogonal matrix. ”  ” “ ƒ T † † œ œ ñ

Example 88 Given the symmetric matrix , let us determine the or-À œ
# "  #
" # #
 # #  "



      
      

thogonal matrix that diagonalizes .
Searching for the roots of the characteristic polynomial, we have:

 
      
       - ˆ - - -

-
-

-
 œ œ   $  *  #( œ !

#  "  #
" #  #
 # #  " 

$ #

and so the roots: , , , therefore three real roots, one is a multiple- - -" # $œ $ œ $ œ  $
(double) root and one is a simple one.
To determine the eigenspace associated to  we solve the homogeneous system:- -" #œ œ $

 
                  
                   ˆ   $ œ † œ
 " "  # B
"  " # C
 # #  % D

, or .

Since Rank , the dimension of the eigenspace associated to  is equal to  ˆ - $ œ " œ $
7 œ $   $ œ # 7 œ 7 œ #1 1

$ $
+
$Rank , and so .  ˆ

Obviously, since the matrix is a symmetric one.
From the only remaining equation:  we obtain  and then the ei-B  C  #D œ ! B œ C  #D
genvectors . C  #Dß Cß D
Since , we must determine from these two independent eigenvectors; if we choose7 œ #1

$

C œ " D œ ! œ "ß "ß ! and  the first vector is .—"  
To determine the second we must remember that we want orthogonal eigenvectors with the
same eigenvalue.
Requiring that  we derive the condition , for which the   "ß "ß ! † C  #Dß Cß D œ ! D œ C
other eigenvector will be, choosing , .C œ " œ  "ß "ß "—#  
To determine the eigenspace associated to  we solve the homogeneous system:-$ œ  $

 
                  
                   ˆ   $ œ † œ

& "  # B
" & # C
 # # # D

, or .
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Since  is a simple root, the dimension of the eigenspace associated to  is- -œ  $ œ  $
equal to . The homogeneous system becomes:"
 &B  C  #D œ !

B  &C  #D œ !
 #B  #C  #D œ !

B œ  C
D œ  #C

 whose solutions are .
 

From the eigenvectors  we choose , and we see that this vec-    Cß Cß  #C œ "ß  "ß #—$

tor is orthogonal to both the eigenvectors with .- œ $
To have the modal orthogonal matrix that diagonalizes the symmetric matrix we should
finally normalize the three eigenvectors we have found, and so we obtain:

  the modal orthogonal matrix. œ
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