COMPITI DI ANALISI MATEMATICA AA. 2024/25

Prova Intermedia 2024

- I M 1) Calcolare le radici terze del numero $e^{\log 8 + \frac{3}{4}\pi i}$, limitandosi ad esprimerle in forma trigonometrica.
- I M 2) Data la funzione $f(x,y)=\left\{\begin{array}{ll} \frac{|xy|}{\sqrt{x^2+y^2}} & (x,y)\neq (0,0)\\ 0 & (x,y)=(0,0) \end{array}\right.$, si verifichi se risulta

continua e poi anche differenziabile in (0,0).

- I M 3) Data la funzione $f(x,y)=x^3+y^3$ ed il versore u del vettore (1,1), determinare tutti i punti (x,y) nei quali risulta: $\begin{cases} \mathcal{D}_u f(x,y)=3\sqrt{2} \\ \mathcal{D}_{u,u}^2 f(x,y)=0 \end{cases}.$
- I M 4) Determinare se con l'equazione $f(x,y) = x^2 \cdot \log y + y \, e^x x = 1$, soddisfatta nel punto P = (0,1), è possibile definire una funzione implicita. In caso affermativo, calcolarne le derivate prima e seconda. Che tipo di punto viene determinato?
- I M 5) Verificare se con il sistema $\begin{cases} f(x,y,z) = xy + xz 2yz = 0 \\ g(x,y,z) = 2xyz x^2z y^3z = 0 \end{cases}$ si può definire, in un intorno di P(1,1,1), una funzione in forma implicita. Se ciò è possibile, definire tale funzione e calcolarne le derivate prime.

I Appello Sessione Invernale 2025

- I M 1) Se $z = \sqrt{3} i$, calcolare \sqrt{z} .
- I M 2) Verificare se la funzione f(x,y) = x|y| |x|y risulta differenziabile in (0,0).
- I M 3) Data l'equazione $f(x,y) = x^2 e^y y e^x x + y = 0$ ed il punto $P_0 = (1,1)$ che la soddisfa, determinare l'espressione del polinomio di Taylor di II grado della funzione implicita $x \to y(x)$ da questa definita.
- I M 4) Data $f(x,y)=x\,y$, detti v e w i versori di $\mathbb{V}=(1,1)$ e $\mathbb{W}=(1,-1)$, sapendo che $\mathcal{D}_v f(x_0,y_0)=k$ e che $\mathcal{D}_w f(x_0,y_0)=m$, determinare i valori di k e m affinchè risulti $(x_0,y_0)=(-2,3)$. Calcolare poi $\mathcal{D}^2_{v,w}f(x_0,y_0)$.
- $(x_0,y_0)=(-2,3)$. Calcolare poi $\mathcal{D}^2_{v,w}f(x_0,y_0)$. II M 1) Risolvere il problema $\left\{ \begin{array}{l} \operatorname{Max/min} f(x,y)=2x-y \\ \operatorname{s.v.:} 4x^2+y^2 \leq 4 \end{array} \right.$
- II M 2) Risolvere il sistema lineare di equazioni differenziali: $\begin{cases} x' = x y + e^t \\ y' = -4x + y + 1 \end{cases}.$
- II M 3) Risolvere il problema di Cauchy: $\left\{ \begin{array}{l} x\,y'=1+y^2\\ y(1)=1 \end{array} \right..$
- II M 4) Se $\mathbb{Q} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4; 0 \le x \le 1; 0 \le y\}$, calcolare $\iint_{\mathbb{Q}} xy \, dx \, dy$.

II Appello Sessione Invernale 2025

I M 1) Determinare tutte le soluzioni, reali o complesse, dell'equazione $\,z^5=z\,.$

I M 2) Verificare se la funzione
$$f(x,y) = \begin{cases} \frac{x^2 |y|}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 risulta difference

ziabile in (0,0).

I M 3) Data l'equazione $f(x,y) = e^{x-y} - x + 2y = 1$ ed il punto $P_0 = (0,0)$ che la soddisfa, determinare la natura del punto stazionario che presenta la funzione implicita y = y(x)definibile con tale equazione.

II M 4) Data $f(x,y) = x^2y - 2xy$, siano v il versore di (1,1) e w quello di (1,-1). Determinare tutti i punti (x_0,y_0) per i quali risulta $\begin{cases} \mathcal{D}_v f(x_0,y_0) = \sqrt{2} \\ \mathcal{D}^2_{v,w} f(x_0,y_0) = 0 \end{cases}$ II M 1) Risolvere il problema $\begin{cases} \text{Max/min } f(x,y) = x+y \\ \text{s.v. } \begin{cases} x^2+y^2 \leq 1 \\ 1-x \leq y \end{cases}$ II M 2) Data $f(x,y,z) = 2x^2-3x-3xy^2+3y^2+z^2$, si analizzi la natura dei suoi punti

II M 1) Risolvere il problema
$$\begin{cases} \text{Max/min } f(x,y) = x + y \\ \text{s.v. } \begin{cases} x^2 + y^2 \le 1 \\ 1 - x \le y \end{cases} \end{cases}.$$

stazionari.

II M 3) Risolvere il sistema lineare di equazioni differenziali:
$$\begin{cases} x' = x + y + e^t \\ y' = x + y + 2 \end{cases}.$$

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1; 1 - x \le y\}$$
, calcolare $\iint_{\mathbb{Q}} xy \, \mathrm{d}x \, \mathrm{d}y$.

Appello Sessione Straordinaria I 2025

I M 1) Dopo aver determinato le quattro soluzioni complesse dell'equazione $\,z^4+1=0\,,$ se ne calcoli il loro prodotto.

ne calcoli il loro prodotto.

I M 2) Data la funzione
$$f(x,y) = \begin{cases} \frac{x^5}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
, si verifichi che essa è continua $\forall (x,y) \in \mathbb{R}^2$ e si determini poi se essa risulta anche differenziabile in $(0,0)$

continua $\forall (x,y) \in \mathbb{R}^2$, e si determini poi se essa risulta anche differenziabile in (0,0).

I M 3) Data l'equazione $f(x,y) = x^2 \log y - y \log x = 0$ soddisfatta in (1,1), verificare che con essa si definisce, in un intorno di $x_0 = 1$, una funzione y = y(x). Approssimare tale funzione con un opportuno polinomio di II^ grado.

I M 4) Data la funzione $f(x,y) = e^{x-y}$, determinare tutte le direzioni v nelle quali, qualun-

que sia il punto
$$(x_0,y_0)$$
, risulta $\mathcal{D}_v f(x_0,y_0)=0$.
 II M 1) Risolvere il problema
$$\begin{cases} \operatorname{Max/min} f(x,y)=x-y+1 \\ \operatorname{s.v.:} x^2+y^2\leq 1 \end{cases}$$

 II M 2) Data $f(x,y,z)=3x^2+y^2+z^2-3xy+3yz$, si analizzi la natura dei suoi punti sta-

zionari.

II M 3) Tra tutte le soluzioni del sistema di equazioni differenziali: $\begin{cases} x' = x - 2y + t \\ y' = x - y - t \end{cases}$ si determini quella per cui $\begin{cases} x(0) = 1 \\ y(0) = 0 \end{cases}.$

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2; 1 \le y\}$$
, calcolare $\iint_{\mathbb{Q}} x^2 y \, \mathrm{d}x \, \mathrm{d}y$.

I Appello Sessione Estiva 2025

I M 1) Se
$$z = \frac{3-i}{1-2i}$$
, calcolare $\sqrt[3]{z}$.

I M 2) Verificare se la funzione
$$f(x,y) = \begin{cases} \frac{x^3 + y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 risulta continua nel

punto (0,0), e se del caso verificare poi se essa fosse anche differenziabile in (0,0).

I M 3) Data l'equazione $f(x,y) = x^2 e^y - y e^x = 0$ soddisfatta nel punto (1,1), verificare se con essa si possa definire, in un intorno opportuno, una funzione y = y(x) oppure una funzione x = x(y). Di tale funzione calcolare nel punto opportuno derivata prima e seconda.

I M 4) Data la funzione $f(x,y) = e^{x-\sqrt{3}y}$, determinare le direzioni $v = (\cos \alpha, \sin \alpha)$ nelle quali risulta $\mathcal{D}_{v}f\left(0,0\right)=0$.

II M 1) Risolvere il problema
$$\begin{cases} \text{Max/min } f(x,y) = 2x - y + 1 \\ \text{s.v.: } x^2 - 1 \le y \le 1 \end{cases}$$

quali risulta $\mathcal{D}_v J$ (0,0) = 0.

II M 1) Risolvere il problema $\begin{cases} \operatorname{Max/min} f(x,y) = 2x - y + 1 \\ \operatorname{s.v.:} x^2 - 1 \leq y \leq 1 \end{cases}$.

II M 2) Data $f(x,y) = 3x^2 + y^2 - 3xy + 3y$, si analizzi la natura dei suoi punti stazionari.

II M 3) Tra tutte le soluzioni del sistema di equazioni differenziali: $\begin{cases} x' = x + y + e^t \\ y' = -x - y \end{cases}$ si de-

termini quella per cui $\begin{cases} x(0) = 1 \\ y(0) = 0 \end{cases}$.

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x^2 \le y \le x\}$$
, calcolare $\iint_{\mathbb{Q}} x \, y \, dx \, dy$.

II Appello Sessione Estiva 2025

I M 1) Se z = 1 + i, calcolare $\sqrt[3]{z^4}$.

I M 2) Verificare se la funzione $f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ risulta continua nel punto (0,0), e se del caso verificare poi se essa fosse anche differenziabile in (0,0).

I M 3) Dato il sistema
$$\begin{cases} f(x,y,z) = x^3y^2z - xy^2z^3 = 0 \\ g(x,y,z) = x e^{y-z} - y e^{x-z} + x - y = 0 \end{cases}$$
 e il punto $P = (1,1,1)$ che lo soddisfa, verificare che con esso è definibile una funzione implicita $x \to (y(x),z(x))$

e di questa calcolare le derivate prime.

I M 4) Data $f(x, \underline{y}) = x^2 - 3xy + 2y^2$, siano v e w i versori di (1, 1) e (1, -1). Sapendo

che $\mathcal{D}_v f(\mathsf{P}_0) = \sqrt{2}$ e che $\mathcal{D}_w f(\mathsf{P}_0) = 0$, si determini P_0 . II M 1) Risolvere il problema $\begin{cases} \mathsf{Max/min}\ f(x,y) = x^2 - y^2 \\ \mathsf{s.v.}\ x^2 + 4y^2 \leq 1 \end{cases}.$

II M 2) Risolvere il problema di Cauchy
$$\begin{cases} y' = \frac{y^2}{x} \\ y(1) = 1 \end{cases}$$
.

II M 3) Risolvere il sistema di equazioni differenziali lineari: $\begin{cases} x' = y + 1 \\ v' = x + t \end{cases}$

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1; 0 \le x \le y\}$$
, calcolare $\int_{\mathbb{Q}} \int_{\mathbb{Q}} x y \, dx \, dy$.

I Appello Sessione Autunnale 2025

I M 1) Se
$$z=1+\sqrt{3}\,i$$
, calcolare $\sqrt[3]{z}$.

I M 2) Data la funzione $f(x,y)=\left\{\begin{array}{ll} \frac{|xy|^{\alpha}}{x^2+y^2} & (x,y)\neq (0,0)\\ 0 & (x,y)=(0,0) \end{array}\right.$, si determini per quali valori del parametro positivo α essa risulta continua e poi anche differenziabile in $(0,0)$.

del parametro positivo α essa risulta continua e poi anche differenziabile in (0,0).

- I M 3) Data l'equazione $f(x,y)=x^2-y-e^y+e^x=0$ ed il punto $P_0=(1,1)$ che la soddisfa, determinare derivata prima e seconda della funzione implicita $x \to y(x)$ da questa definita.
- I M 4) Data la funzione f(x,y) = xy x, siano $u \in v$ i versori di $(1,1) \in (1,2)$. Sapendo che $\mathcal{D}_u f(\mathsf{P}_0) = \sqrt{2}$ e che $\mathcal{D}_v f(\mathsf{P}_0) = \sqrt{5}$, si determini P_0 e si calcoli poi $\mathcal{D}^2_{u,v} f(\mathsf{P}_0)$. II M 1) Risolvere il problema $\left\{ \begin{array}{l} \mathsf{Max/min}\ f(x,y) = x + y \\ \mathsf{s.v.:}\ x^2 - 2x \leq y \leq x \end{array} \right.$ II M 2) Data $f(x,y,z) = x^3 + y^3 + z^2 - 6yz - 3x^2$, si studi la natura dei suoi punti stazio-

- II M 3) Risolvere il sistema omogeneo di equazioni differenziali: $\begin{cases} x' = 3x + y \\ y' = -x + 3y \end{cases}$

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x^2 - x \le y \le x\}$$
, calcolare $\iint_{\mathbb{Q}} xy \, dx \, dy$.

II Appello Sessione Autunnale 2025

I M 1) Se z = 1 + i, calcolare $\sqrt[3]{z^8}$.

I M 2) Data la funzione
$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{\sqrt[3]{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
, si determini per quali valuri del peremetro positivo e esse risulte continuo e pei enche differenziabile in $(0,0)$

lori del parametro positivo α essa risulta continua e poi anche differenziabile in (0,0).

- I M 3) Data l'equazione $f(x,y) = e^{x^2+y^2} e^{x+y} = 0$ ed il punto $P_0 = (0,0)$ che la soddisfa, determinare derivata prima e seconda della funzione implicita y = y(x) da questa definita.
- I M 4) Data la funzione $f(x,y) = (x+y)e^{x+y}$, con u versore di (1,1), calcolare $\mathcal{D}_u f(0,0)$ e $\mathcal{D}_{u,u}^2 f(0,0)$.

II M 1) Risolvere il problema
$$\begin{cases} \text{Max/min } f(x,y) = x + y \\ \text{s.v.: } \begin{cases} x^2 + y^2 \le 1 \\ x \le y \end{cases} \end{cases}$$

- II M 2) Risolvere l'equazione differenziale $y' = (1+x)(1+y^2)$
- II M 3) Risolvere il sistema di equazioni differenziali: $\left\{ \begin{array}{l} x'=x-y+1\\ y'=x+3y \end{array} \right..$

II M 4) Se
$$\mathbb{Q} = \{(x,y) \in \mathbb{R}^2 : x \le y; x^2 + y^2 \le 1\}$$
, calcolare $\iint_{\mathbb{Q}} x + y \, dx \, dy$.

Appello Sessione Straordinaria II 2025

I M 1) Calcolare
$$i^5 \cdot \frac{\left(1-i\right)^3}{\left(1+i\right)^7}$$
 .

I M 2) Si verifichi se la funzione $f(x,y)=\begin{cases}x\cdot\frac{x^2-y^2}{x^2+y^2} & (x,y)\neq (0,0)\\0 & (x,y)=(0,0)\end{cases}$ risulta continua

e poi anche differenziabile nel punto (0,0).

- I M 3) L'equazione $f(x,y) = \log(x+y) 2y = 0$ definisce in un intorno del punto (1,0)una funzione implicita y = y(x). Calcolare y'(1) e y''(1).
- I M 4) Data la funzione $f(x,y)=e^{x-y}$, siano $v=(\cos\alpha, \sin\alpha)$ e $w=(\cos\beta, \sin\beta)$. Calcolare le derivate direzionali $D_v f(x,y)$ e $D_{v,w}^2 f(x,y)$ sapendo che $\alpha = \frac{\pi}{4}$ e $\beta = \frac{3\pi}{4}$. II M 1) Risolvere il problema $\begin{cases} \text{Max/min } f(x,y) = x - 2y \\ \text{s.v. } x^2 + 2y^2 = 1 \end{cases}$
- II M 2) Risolvere l'equazione differenziale y' = (1 + 2x)(1 + y).
- II M 3) Risolvere l'equazione differenziale lineare non omogenea: $y''' y'' y' + y = \operatorname{sen} x$.
- II M 4) Data f(x,y)=x+2y e data la regione $\mathbb{Q}=\{(x,y):0\leq x\leq 1,x\leq y\leq e^x\}$, cal-

Compito di Analisi Matematica del 17/10/2025

- I M 1) Calcolare $i^5 \cdot \frac{(1-i)^5}{(1+i)^7}$.
- I M 2) Si verifichi se la funzione $f(x,y) = \begin{cases} x \cdot \frac{x^2 y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ risulta continua

e poi anche differenziabile nel punto (0,0).

- I M 3) L'equazione $f(x,y) = \log(x+y) 2y = 0$ definisce in un intorno del punto (1,0) una funzione implicita y = y(x). Calcolare y'(1) e y''(1).
- I M 4) Data la funzione $f(x,y)=e^{x-y}$, siano $v=(\cos\alpha,\sin\alpha)$ e $w=(\cos\beta,\sin\beta)$. Calcolare le derivate direzionali $D_v f(x,y)$ e $D_{v,w}^2 f(x,y)$ sapendo che $\alpha = \frac{\pi}{4}$ e $\beta = \frac{3\pi}{4}$.
- II M 1) Risolvere il problema $\begin{cases} \text{Max/min } f(x,y) = x-2y \\ \text{s.v. } x^2+2y^2=1 \end{cases}.$ II M 2) Risolvere l'equazione differenziale y'=(1+2x)(1+y).
- II M 3) Risolvere l'equazione differenziale lineare non omogenea: $y''' y'' y' + y = \operatorname{sen} x$.
- II M 4) Data f(x,y) = x + 2y e data la regione $\mathbb{Q} = \{(x,y) : 0 \le x \le 1, x \le y \le e^x\}$, calcolare $\iint f(x,y) dx dy$.

Compito di Analisi Matematica del //2025

- I M 1)
- I M 2)
- I M 3)
- I M 4)
- II M 1)
- II M 2)
- II M 3)
- II M 4)

Prova Intermedia 2023

I Appello Sessione Invernale 2025

II Appello Sessione Invernale 2025

Appello Sessione Straordinaria I 2025

I Appello Sessione Estiva 2025

II Appello Sessione Estiva 2025

I Appello Sessione Autunnale 2025

II Appello Sessione Autunnale 2025

Appello Sessione Straordinaria II 2025