COMPITI DI MATEMATICA GENERALE AA. 2025/26

Prova Intermedia Anno 2025-Compito A1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x \cdot (3^x - 1)}; \quad \lim_{x \to +\infty} \left(\frac{x - 1}{x + 5}\right)^x.$$

- 2) Determinare il campo d'esistenza della funzione $f(x) = \log(1 \log(1 x))$.
- 3) Date le funzioni $f(x) = \frac{1}{1-x}$, $g(x) = 2^x 1$ e h(x) = 3x, determinare l'espressione della funzione composta f(g(h(x))) e di questa determinare poi l'espressione dell'inversa.
- 4) Date le tre generiche proposizioni A, B e C, determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Leftrightarrow \mathbb{B}) \Rightarrow (\mathbb{B} \Leftrightarrow \mathbb{C})$ sotto l'ipotesi che la proposizione $(non \mathbb{A} \circ \mathbb{B})$ sia falsa.
- 5) Date le funzioni $f(x) = 2^{x-1} + k$ e $g(x) = \log(x-3)$, siano A il punto in cui f(x)taglia l'asse delle ordinate, B quello in cui la funzione g(x) taglia l'asse delle ascisse e sia O l'origine degli assi. Determinare il valore del parametro k in modo che il triangolo AOB abbia area uguale a 3.

Prova Intermedia Anno 2025-Compito B1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0}\frac{\log{(1-x)}}{\operatorname{tg}{2x}}\,;\ \lim_{x\to +\infty}\left(\frac{3x+1}{2+2x}\right)^x.$$

- 2) Determinare il campo d'esistenza della funzione $f(x) = \frac{1}{\log(x-1)-2}$.
- 3) Date le funzioni $f(x) = \log x$, $g(x) = \frac{x+1}{x}$ e h(x) = x-3, determinare l'espressione della funzione composta f(g(h(x))) e di questa determinare poi l'espressione dell'inversa.
- 4) Date le tre generiche proposizioni A, B e C, determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Rightarrow \mathbb{B}) \Leftrightarrow (\mathbb{C} \Rightarrow \mathbb{B})$ sotto l'ipotesi che la proposizione $(non \mathbb{B} \circ \mathbb{C})$ sia falsa.
- 5) Date le funzioni $f(x) = 3^{1-x} + k$ e $g(x) = \log(x-2)$, siano A il punto in cui f(x)taglia l'asse delle ordinate, B quello in cui la funzione q(x) taglia l'asse delle ascisse e sia O l'origine degli assi. Determinare il valore del parametro k in modo che il triangolo AOB abbia area uguale a 6.

Prova Intermedia Anno 2025-Compito C1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x\to 0} \frac{\sqrt{1+\sin x}-1}{\operatorname{tg} 2x}\,;\ \lim_{x\to -\infty} \left(\frac{x+5}{x+3}\right)^x.$$
 2) Determinare il campo d'esistenza della funzione $f(x)=\log\left(2-\log x\right)$.

- 3) Date le funzioni f(x) = 3x + 1, $g(x) = \frac{x}{x+1}$ e $h(x) = 2^x$, determinare l'espressione della funzione composta f(g(h(x))) e di questa determinare poi l'espressione dell'inversa.
- 4) Date le tre generiche proposizioni A, B e C, determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Leftrightarrow \mathbb{B}) \Leftrightarrow (\mathbb{C} \Rightarrow \mathbb{A})$ sotto l'ipotesi che la proposizione $(non \mathbb{A} e \mathbb{C})$ sia vera.
- 5) Date le funzioni $f(x) = k \cdot 3^{1+x}$ e $g(x) = \log(x-3)$, siano A il punto in cui f(x) taglia l'asse delle ordinate, B quello in cui la funzione q(x) taglia l'asse delle ascisse e sia O l'origine

degli assi. Determinare il valore del parametro k in modo che il triangolo AOB abbia area uguale a 12.

Prova Intermedia Anno 2025-Compito D1

1) Determinare il valore dei seguenti limiti:

$$\lim_{x \to 0} \frac{x(2^x - 1)}{\sin^2 x}; \quad \lim_{x \to +\infty} \left(\frac{3 + 2x}{3 + 3x}\right)^{1 - x}.$$

- 2) Determinare il campo d'esistenza della funzione $f(x) = \log(1-x) \cdot \log^2 x$.
- 3) Date le funzioni $f(x) = \frac{x}{x+3}$, $g(x) = \log x$ e h(x) = 2x, determinare l'espressione della funzione composta f(g(h(x))) e di questa determinare poi l'espressione dell'inversa.
- 4) Date le tre generiche proposizioni \mathbb{A} , \mathbb{B} e \mathbb{C} , determinare i casi di verità e di falsità della proposizione $(\mathbb{A} \Rightarrow \mathbb{B}) \Rightarrow (\mathbb{B} \Leftrightarrow \mathbb{C})$ sotto l'ipotesi che la proposizione $(\mathbb{C} e non \mathbb{B})$ sia vera.
- 5) Date le funzioni $f(x) = 2^{1-x} + k$ e $g(x) = \log(x-4)$, siano A il punto in cui f(x) taglia l'asse delle ordinate, B quello in cui la funzione g(x) taglia l'asse delle ascisse e sia O l'origine degli assi. Determinare il valore del parametro k in modo che il triangolo AOB abbia area uguale a 10.