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I M 1) Determinare tutte le soluzioni, reali o complesse, dell'equazione .D œ $3D$

Da D œ $3D D  $3D œ D D  $3 œ ! Þ$ $ #Ê  
Una prima soluzione è data da  le altre due soluzioni sono date da:D œ ! à

D œ $3 $3 Þ# Ê D œ   Essendo:

$3 œ $  3 cos sen  sarà poi:
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I M 2) Si verifichi se la funzione  risulta conti-0 Bß C œ
B † À Bß C Á !ß !
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nua e poi anche differenziabile nel punto . !ß !

Valutiamo se la funzione risulta continua in  Passando a coordinate polari avremo: !ß ! Þ
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con convergenza uniforme in quanto:  cos cos sen  4 * * * 4# †  Ÿ # Þ

Quindi la funzione è continua in . !ß !
Passando al calcolo del gradiente, avremo:
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Quindi f0 œ "   !ß ! ß ! .
Per la differenziabilità dobbiamo infine verificare se:in   !ß !
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 e passando a coordinate polari:
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Essendo il limite uguale a  solo per particolari valori di , ne consegue che la funzione non è! *
differenziabile in . !ß !



I M 3) L'equazione 0 Bß C œ /   B C# #

 BC œ ! C œ C B definisce una funzione implicita  in
un intorno del punto . Calcolare  e .T œ "ß " C " C "  w ww   
Dato che  è palesemente funzione differenziabile in , passiamo a calcolare il gradiente ed0 ‘#

avremo:  da cui .f / / f0 Bß C œ #B à  #C 0 œ "à  $    B C B C# # # #

 C  B "ß " 
Essendo   si può definire implicitamente una funzione .0 "ß " œ  $ Á ! C œ C Bw

C   
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I M 4) Data  e la direzione  si determinino i valori  0 Bß C œ /  BC @ œ ß cos sen per iα α α
quali risulta .W W@

#
@ß@0 œ ! œ 0   !ß ! !ß !

Essendo la funzione palesemente differenziabile due volte sarà:
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Avremo poi:  ef f0 Bß C œ / ß  / Ê 0 !ß ! œ "ß  "       BC BC
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 e sostituendo la prima nella seconda:
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La seconda condizione risulta sempre soddisfatta quando è soddisfatta la prima, per cui le so-

luzioni saranno  e α αœ œ Þ
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II M 1) Risolvere il problema 
Max min
s v  Î 0 Bß C œ #B  %C

Þ Þ B  %C "# # Ÿ
Þ

Si tratta di un problema di ricerca di massimi e minimi sotto vincolo di disuguaglianza.
La funzione obiettivo del problema è una funzione continua, il vincolo definisce una regione
ammissibile  (ellisse) che è un insieme compatto, quindi per il Teorema di Weierstrass laX
funzione ammette valore massimo e valore minimo assoluti.
Formiamo la funzione lagrangiana:
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Abbiamo due soluzioni:  e    " " " "

# # # # # #   à  à à à  # # Þ

Avendo trovato due sole soluzioni, il punto  con  sarà il   " " " "

# # # # # #   à  à 0 œ # #
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II M 2) Risolvere il sistema di equazioni differenziali: B œ B  C  #>
C œ  B  C  $>

Þ
w

w

Scriviamo il sistema nella forma  e quindi, passando alla forma matri-B  B  C œ #>
B  C  C œ  $>

w

w

ciale:           H  "  " B #> H  "  " #>  "
" H  " C  $> " H  "  $> H  "
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Ê H  #H  # B œ H #>  #>  $> œ #  &>     # .
Quindi l'equazione sarà: B  #B  #B œ #  &> Þww w

Risolvendo l'equazione omogenea, da  abbiamo- -#  #  # œ ! À

- œ "„ "  # œ "„  " œ "„3   per cui la soluzione generale dell'equazione omogenea
sarà  sen cosB > œ - / >  - / > Þ  " #

> >

Per trovare una soluzione particolare dell'equazione non omogenea, visto il termine noto, do-
vremo ipotizzare una soluzione del tipo B > œ +>  , Þ! 
Sarà  e quindi, andando a sostituire nella  ot-À B > œ +ß B > œ ! B  #B  #B œ #  &>w ww ww w
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soluzione dell'equazione non omogenea:  sen cosB > œ - / >  - / >  >  Þ  " #
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Dalla prima equazione  ricaviamo  e quindi:B œ B  C  #> C œ B  B  #>w w
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e quindi la soluzione generale del sistema sarà:
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II M 3) Risolvere il problema di Cauchy .    C œ "  / "  C
C ! œ $

w B

Si tratta di una equazione a variabili separabili, per cui avremo, dopo aver posto "  C Á !
ovvero :C Á  "
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 , da cui, passando alle primitive:

    " "
Ê Ê

"  C "  C
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La funzione  che si vede essere soluzione sostituendo nell'equazione di partenza, ri-C œ  "
sulta una soluzione particolare in quanto ottenuta per 5 Ä ∞Þ

Posto poi  avremo C ! œ $ $ "  œ /  Ê / œ % Ê "  5 œ % Ê 5 œ %  "!"5 5" log log

e quindi la soluzione del problema di Cauchy C " œ " Þ
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