UNIVERSITA' DEGLI STUDI DI SIENA
 Facoltà di Economia 'R. Goodwin'"

 A.A. 2021/22

 A.A. 2021/22}

Intermediate Test Quantitative Methods for Economic Applications - Mathematics (25/11/21)

1) Given the complex number $z=\frac{2}{1+i}$. Calculate its cubic roots.

By rationalisation we get $z=\frac{2}{1+i}=\frac{2}{1+i} \cdot \frac{1-i}{1-i}=\frac{2(1-i)}{1-i^{2}}=\frac{2(1-i)}{1+1}=$ $\frac{\not 2(1-i)}{\not 2}=(1-i)$. The modul of z is $\rho_{z}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$, hence z can be rewritten as $z=\sqrt{2}\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)=\sqrt{2}\left(\cos \frac{7}{4} \pi+i \sin \frac{7}{4} \pi\right)$. The argument of z is $\frac{7}{4} \pi$. The three cubic roots of z can be calculated by the formula
$\sqrt[3]{z}=\sqrt[3]{\sqrt{2}}\left(\cos \left(\frac{7 \pi / 4+2 k \pi}{3}\right)+i \sin \left(\frac{7 \pi / 4+2 k \pi}{3}\right)\right)=$ $\sqrt[6]{2}\left(\cos \left(\frac{7}{12} \pi+\frac{2 \pi}{3} k\right)+i \sin \left(\frac{7}{12} \pi+\frac{2 \pi}{3} k\right)\right)$ with $k=0,1,2$; the three roots are:
$z_{1}=\sqrt[6]{2}\left(\cos \frac{7}{12} \pi+i \sin \frac{7}{12} \pi\right) ;$
$z_{2}=\sqrt[6]{2}\left(\cos \frac{5}{4} \pi+i \sin \frac{5}{4} \pi\right)=-\frac{\sqrt[3]{4}}{2}(1+i) ;$
$z_{3}=\sqrt[6]{2}\left(\cos \frac{23}{12} \pi+i \sin \frac{23}{12} \pi\right)$.
By the goniometric bisection formulas we can calculate $\cos \frac{7}{12} \pi$ and $\sin \frac{7}{12} \pi$;
$\cos \frac{7}{12} \pi=-\sqrt{\frac{1+\cos (7 \pi / 6)}{2}}=-\sqrt{\frac{1-\sqrt{3} / 2}{2}}=-\frac{1}{2}(\sqrt{6}-\sqrt{2})$ and $\sin \frac{7}{12} \pi=\sqrt{\frac{1-\cos (7 \pi / 6)}{2}}=\sqrt{\frac{1+\sqrt{3} / 2}{2}}=\frac{1}{2}(\sqrt{6}+\sqrt{2})$, hence $z_{1}=-\frac{\sqrt[3]{4}}{2}((\sqrt{3}-1)-(\sqrt{3}+1) i) ;$ while for $\cos \frac{23}{12} \pi$ and $\sin \frac{23}{12} \pi$ we get:
$\cos \frac{23}{12} \pi=\sqrt{\frac{1+\cos (23 \pi / 6)}{2}}=\sqrt{\frac{1+\cos (11 \pi / 6)}{2}}=\sqrt{\frac{1+\sqrt{3} / 2}{2}}=\frac{1}{2}(\sqrt{6}+\sqrt{2})$ and
$\sin \frac{23}{12} \pi=-\sqrt{\frac{1-\cos (23 \pi / 6)}{2}}=-\sqrt{\frac{1-\cos (11 \pi / 6)}{2}}=-\sqrt{\frac{1-\sqrt{3} / 2}{2}}=-\frac{1}{2}(\sqrt{6}-\sqrt{2})$ and in conclusion $z_{3}=\frac{\sqrt[3]{4}}{2}((\sqrt{3}+1)-(\sqrt{3}-1) i)$.
2) Consider the matrix: $\mathbb{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & k & 1 \\ 1 & 1 & 1\end{array}\right]$. Knowing that its determinant is 2 ; find the value of k, and with the given value of k calculate its inverse.
The determinant of \mathbb{A} is $|\mathbb{A}|=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & k & 1 \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{cc}k & 1 \\ 1 & 1\end{array}\right|-\left|\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right|=k-1+1=k$; put $|\mathbb{A}|=2$ we get $k=2, \mathbb{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$. The inverse of \mathbb{A} is the matrix $\frac{1}{|\mathbb{A}|} \cdot(\operatorname{Adj}(\mathbb{A}))^{T}$ where $\operatorname{Adj}(\mathbb{A})$ $\left.\left.\begin{array}{l}\text { is the adjoint matrix of } \mathbb{A}, \operatorname{Adj}(\mathbb{A})=\left[\left.\begin{array}{cc}\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right| & -\left|\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right| \\ -\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right| & \left|\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right| \\ 1 & 1\end{array} \right\rvert\,\right. \\ \left|\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right| \\ -\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right| \\ \hline\end{array}\right]=. \begin{array}{ccc}1 & 0 \\ 0 & 1\end{array}\left|\begin{array}{cc}1 & 1 \\ 0 & 2\end{array}\right|\right]$.
An alternative procedure to calculate the inverse matrix of \mathbb{A} is by elementary operations on the rows of \mathbb{A}, with this procedure:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 / 2 & 1 & -1 / 2 & 0 \\
0 & 1 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \underset{\rightarrow}{R_{1}+\frac{1}{2} R_{3}} \underset{\rightarrow}{ }} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 2 & -1 / 2 & 1 / 2 \\
0 & 1 & 1 / 2 & \mid c c c \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \underset{\rightarrow}{R_{2}-\frac{1}{2} R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 2 & -1 / 2 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] . \text { In the }}
\end{aligned}
$$

last three columns we can read the inverse of \mathbb{A}.
3) Given a linear map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, with
$F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{4}, x_{1}+x_{3}-x_{4}, x_{2}+x_{4}\right)$. Calculate the matrix associated at F and find the dimention of the immage and the dimention of the kernel of F.
The linear map F is from \mathbb{R}^{4} to \mathbb{R}^{4} and \mathbb{M}_{F}, the matrix associated at F must be a 4×4 matrix. The first coordinate of the immage of F is $x_{1}+x_{2}+x_{3}$, hence the first row of \mathbb{M}_{F} is
$\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)$, the second coordinate of the immage of F is $x_{2}+x_{4}$, hence the second row of \mathbb{M}_{F} is $\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right)$ and so on follow $\mathbb{M}_{F}=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1\end{array}\right]$. For the dimention of the immage and the dimention of the kernel remember that the dimention of the immage is the rank of matrix \mathbb{M}_{F}, while the dimention of the kernel is the difference between the dimention of dominion of F and the dimention of the immage, the rank of \mathbb{M}_{F} can be calculated by elementary operations
on rows of $\mathbb{M}_{F}:\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1\end{array}\right] \stackrel{R_{3}-R_{1}}{\rightarrow}\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1\end{array}\right] \xrightarrow{R_{3}+R_{2}} \begin{gathered} \\ R_{4}-R_{2}\end{gathered}\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. As we can note, two rows of reduced matrix have all zeros while the 2×2 submatrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has determinant different from zero; $\operatorname{rank}\left(\mathbb{M}_{F}\right)=\operatorname{dim}(\operatorname{Imm}(F))=2$,
$\operatorname{dim}(\operatorname{Ker}(F))=\operatorname{dim}\left(\mathbb{R}^{4}\right)-\operatorname{dim}(\operatorname{Imm}(F))=4-2=2$.
4) Consider the matrix: $\mathbb{A}=\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]$. Calculate its eigenvalues and for any eigenvalue find a base for its associated eigenspace.
The characteristic polinomial of \mathbb{A} is $p_{\mathbb{A}}(\lambda)=\left|\begin{array}{ccc}-\lambda & 0 & 2 \\ 0 & 1-\lambda & 0 \\ 2 & 0 & -\lambda\end{array}\right|=$
$(1-\lambda)\left|\begin{array}{cc}-\lambda & 2 \\ 2 & -\lambda\end{array}\right|=(1-\lambda)\left(\lambda^{2}-4\right)=(1-\lambda)(\lambda-2)(\lambda+2)$; put $p_{\mathbb{A}}(\lambda)=0$ we have the three eigenvalues of matrix $\mathbb{A}: \lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=-2$. Take a generic vector $v \in \mathbb{R}^{3}$, it is an eigenvector associated to the eigenvalue λ_{1} if $(\mathbb{A}-\mathbb{I}) v=\mathbb{O}$ or in system form is $\left\{\begin{array}{l}-v_{1}+2 v_{3}=0 \\ 0=0 \\ 2 v_{1}-v_{3}=0\end{array} \Rightarrow v_{1}=v_{3}=0 \Rightarrow v=\left(\begin{array}{c}0 \\ v_{2} \\ 0\end{array}\right)=v_{2}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right.$. A base for the eigenspace associated to the eigenvalue λ_{1} is $\left.B_{\lambda_{1}}=\left\{\begin{array}{lll}0 & 1 & 0\end{array}\right)\right\}$. For λ_{2} we get $(\mathbb{A}-2 \mathbb{I}) v=\mathbb{O} \Rightarrow\left\{\begin{array}{l}-2 v_{1}+2 v_{3}=0 \\ -v_{2}=0 \\ 2 v_{1}-2 v_{3}=0\end{array} \Rightarrow\left\{\begin{array}{l}v_{3}=v_{1} \\ v_{2}=0\end{array} \Rightarrow v=\left(\begin{array}{c}v_{1} \\ 0 \\ v_{1}\end{array}\right)=v_{1}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right.\right.$ and $B_{\lambda_{2}}=\left\{\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)\right\}$. Finally for $\lambda_{3},(\mathbb{A}+2 \mathbb{I}) v=\mathbb{O} \Rightarrow\left\{\begin{array}{l}2 v_{1}+2 v_{3}=0 \\ 3 v_{2}=0 \\ 2 v_{1}+2 v_{3}=0\end{array} \Rightarrow\right.$ $\left\{\begin{array}{l}v_{3}=-v_{1} \\ v_{2}=0\end{array} \Rightarrow v=\left(\begin{array}{c}v_{1} \\ 0 \\ -v_{1}\end{array}\right)=v_{1}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right.$ and $B_{\lambda_{2}}=\left\{\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)\right\}$.

