UNIVERSITA' DEGLI STUDI DI SIENA Facoltà di Economia "R. Goodwin"

A.A. 2021/22

Quantitative Methods for Economic Applications Mathematics for Economic Applications
 Task 7/2/2022

I M 1) Find all the sixth order roots of the real number -64 .
I M 2) Consider the matrix: $\mathbb{A}=\left[\begin{array}{lll}a & 1 & 2 \\ 1 & b & 2 \\ 1 & 2 & c\end{array}\right]$. Knowing that $(1,1,1)$ is an eigenvector of \mathbb{A}
associated to the eigenvalue $\lambda=1$, find the values of the three parameters a, b and c and check if the matrix is a diagonalizable one.
I M 3) Given the linear map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}, k x_{1}+m x_{3}\right)$; knowing that the dimention of the Kernel of F is 1 , find the relation between the parameters k and m, and choose a pair (k, m) that satisfy the relation before found, calculate a basis for the Immage of F and a basis for the Kernel of F.
I M 4) Check if there are values of x and y for wich the matrix $\mathbb{A}=\left[\begin{array}{ll}2 & x \\ y & 1\end{array}\right]$ is similar to the matrix $\mathbb{B}=\left[\begin{array}{cc}11 & 29 \\ -3 & -8\end{array}\right]$, if the matrix of the similarity transformation is $\mathbb{P}=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$. II M 1) Given the equation $f(x, y, z)=(x+y-z) e^{x-y z}-(x-y+z) e^{y-x z}=0$ satisfied at the point $(1,1,1)$, verify that with it an implicit function $z=z(x, y)$ can be defined and then calculate, for this implicit function, its gradient.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x y \\ \operatorname{u.c.:~} x^{2}+y^{2} \leq 4\end{array}\right.$.
II M 3) Check if the function $f(x, y)=(|x|+|y|)(x+y)$ is differentiable at $(0,0)$.
II M 4) Given $f(x, y)=(x-y)^{2}+(x+y)^{2}$ and the unit vectors $v=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $w=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$, determine all the points where $\mathcal{D}_{v} f(x, y)=\mathcal{D}_{w} f(x, y)$.

