UNIVERSITA' DEGLI STUDI DI SIENA Facoltà di Economia "R. Goodwin"

A.A. 2021/22

Quantitative Methods for Economic Applications Mathematics for Economic Applications Task 30/5/2022

I M 1) Given the complex number $z=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$; find the roots of order fourth of the complex number $w=z^{2}$.
IM 2) Find the eigenvalues of the matrix $\mathbb{A}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]$; and for the eigenvalue with algebraic multiplicity equal two calculate a basis of its associated eigenspace. IM 3) Given a linear map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, with $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}-x_{3}-x_{4}, x_{1}+x_{2}+x_{3}+x_{4}, m x_{1}+k x_{2}+m x_{3}+k x_{4}\right)$; study, by varing the parameters m and k, the dimensions of the Kernel and of the Immage of F, and find a basis for the Immage when the dimension of the Kernel is maximum.
I M 4) Vector $V \in \mathbb{R}^{3}$ has coordinates $(1,2,3)$ respect the basis $\mathcal{B}=\{(1,1,1),(1,1,0),(1,0,0)\}$. Find the coordinates of V respect the basis $\mathcal{B}^{\prime}=\{(0,0,1),(0,1,1),(1,1,1)\}$.
II M 1) Given the equation $f(x, y)=(x+y)^{2} \cdot \log \left(x^{2}+y^{2}-1\right)=0$ satisfied at the point $(1,1)$, verify that with it an implicit function $y=y(x)$ can be defined and then calculate, for this implicit function, its first derivative.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x y \\ \text { u.c.: }\left\{\begin{array}{l}x^{2}+y^{2}-1 \leq 0 \\ x+y+1 \leq 0\end{array}\right.\end{array}\right.$.
II M 3) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}+y^{2} \\ \text { u.c.: } x^{2}-y^{2}=3\end{array}\right.$.
II M 4) Given $f(x, y)=(x-y) e^{x-y}$ and the unit vector $v=(\cos \alpha,-\sin \alpha)$, determine the values for α for which the directional derivatives $\mathcal{D}_{v} f(1,1)$ are equal to zero and with such values of α calculate $\mathcal{D}_{v, v}^{2} f(1,1)$.

