UNIVERSITA' DEGLI STUDI DI SIENA Facoltà di Economia "R. Goodwin"

A.A. 2021/22

Quantitative Methods for Economic Applications Mathematics for Economic Applications Task 27/5/2022

IM 1) Given the two complex numbers $z_{1}=e^{\frac{\pi}{4} i}$ and $z_{2}=e^{-\frac{\pi}{4} i}$; calculate the complex number $w=z_{1}+z_{2}$ and find the roots of order fourth of w.
IM 2) Find the eigenvalues of the matrix $\mathbb{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$; and study if the matrix is diagonalizable or not.
I M 3) Given a linear map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, we know that:

1. vectors $v_{1}=(1,0,0)$ and $v_{2}=(0,0,1)$ belong to the Immage of F;
2. vectors $w=(0,1,1,0)$ belongs to the Kernel of F;
3. $F(1,1,1,1)=(1,1,1)$.

Calculate the dimension of the Immage and the dimension of the Kernel, and for both the sets find a basis.
I M 4) Given the matrix $\mathbb{A}=\left[\begin{array}{lll}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a\end{array}\right]$ and knowing that its determinant is equal 20 ; find the value of the parameter a and calculate the inverse matrix of \mathbb{A}.
II M 1) Given the equation $f(x, y)=\frac{\sin (x-y)}{x+y}=0$ satisfied at the point $(1,1)$, verify that with it an implicit function $y=y(x)$ can be defined and then calculate, for this implicit function, its first derivative.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x+y \\ \text { u.c.: } 0 \leq y \leq 1-x^{2}\end{array}\right.$.
II M 3) Check if the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$ is differentiable at $(0,0)$.
II M 4) Given the function $f(x, y)=x^{2}+y^{2}+2 x-2 y$, the two unit vectors $v=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $w=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$, and the point $P=\left(x_{P}, y_{P}\right)$; if the two directional derivatives $\mathcal{D}_{v} f(P)$ and $\mathcal{D}_{w} f(P)$ are both equal to $\sqrt{2}$, find the coordinates of point P and calculate the second order directional derivative $\mathcal{D}_{v, w}^{2} f(P)$.

