UNIVERSITA' DEGLI STUDI DI SIENA
 Facoltà di Economia 'R. Goodwin'

A.A. 2021/22

Quantitative Methods for Economic Applications Mathematics for Economic Applications Task 6/10/2022

I M 1) Solve the following equation: $x^{3}+x^{2}+x+1=0$; and find the roots of order two of the unique solution with positive imaginary part.
I M 2) Given the matrix $\mathbb{A}=\left[\begin{array}{lll}a & 1 & 1 \\ b & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and knowing that $(1,1,1)$ is an eigenvector associated to the eigenvalue $\lambda=1$; find the value of the parameters a and b and calculate the value of the another eigenvalue of the matrix \mathbb{A}.
IM 3) Given the linear homogeneous system $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}+x_{4}=0 \\ m x_{1}+x_{2}+x_{3}+x_{4}=0 \\ x_{1}+m x_{2}+k x_{3}+k x_{4}=0\end{array}\right.$, find, on varying the parameters k and m, the dimension of the linear space of its solutions. I M 4) Given a linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$, we know that vectors $v_{1}=(1,0,0,0)$ and $v_{2}=(0,0,0,1)$ belong to the Image of F. Calculate the dimension of the Image and the dimension of the Kernel, and for the Image find a basis.
II M 1) Given the equation $f(x, y)=\log (e+x y)-e^{x+y}=0$ satisfied at the point $(0,0)$, verify that with it an implicit function $y=y(x)$ can be defined and then calculate, for this implicit function, its first derivative.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}+y \\ \text { u.c.: }\left\{\begin{array}{l}x^{2}+y^{2} \leq 1 \\ y \geq 0\end{array}\right.\end{array}\right.$.
II M 3) Given the function $f(x, y, z)=x^{2}+4(x-1) y^{2}+2 y z$, analyze the nature of its stationary point.
II M 4) Given the function $f(x, y)=x e^{x+y}-y e^{x-y}$ and the unit vectors $v=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$; find the two directional derivatives $\mathcal{D}_{v} f(0,0)$ and $\mathcal{D}_{v, v}^{2} f(0,0)$.

