Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023

Compito $\mathbb{G}1^{\checkmark}$

1) (6 punti) Siano p e q due proposizioni semplici. Costruire la tavola di verità della proposizione composta $\neg(p \ o \ q) \Rightarrow (q \ e \ (p \Leftrightarrow q))$.

2) (7 punti) Siano date le funzioni $f(x)=\frac{2+x}{x}$ e $g(x)=x^2$; risolvere la disequazione $g(f(x))\geq 2+f(g(x))$.

3) (6 punti) Sia data la funzione f di dominio l'intervallo $\lceil -3, 3 \rceil$ e

$$f(x) = \begin{cases} a & \text{se } -3 \leq x < -1 \\ x^2 & \text{se } -1 \leq x \leq 1 \\ b & \text{se } 1 < x \leq 3 \end{cases} \text{ . Determinare i valori di } a \text{ e } b \text{ che rendono la}$$

funzione continua nel suo dominio e disegnare il grafico della funzione.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{sen(3x) - tg^2x}{x}$; $\lim_{x \to +\infty} \frac{2x - 3\log x}{\log x}$.

5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=e^{2-\frac{1}{x^2}}$.

6) (8 punti) Calcolare $\int_1^4 \left(\frac{x^2 - 2x + 1}{\sqrt{x}} \right) dx$.

7) (7 punti) Determinare il polinomio di McLaurin di secondo grado della funzione $f(x) = xe^{x^2} + x - 3$.

8) (8 punti) Determinare la natura dei punti critici della funzione $f(x,\,y)=3x^3-4x^2-2xy-6y^2\,.$

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023

Compito $\mathbb{G}2^{\checkmark}$

1) (6 punti) Siano $p \in q$ due proposizioni semplici. Costruire la tavola di verità della proposizione composta $(p \ o \ q) \Leftrightarrow (\neg q \Rightarrow (p \ e \ q)).$

2) (7 punti) Siano date le funzioni $f(x) = \frac{1+x}{x}$ e $g(x) = x^2$; risolvere la disequazione g(f(x)) < 6 - f(g(x)).

3) (6 punti) Sia data la funzione f di dominio l'intervallo [-2, 2] e

$$f(x) = \begin{cases} a & \text{se } -2 \leq x < 0 \\ x^2 & \text{se } 0 \leq x \leq 1 \\ b & \text{se } 1 < x \leq 2 \end{cases}$$
. Determinare i valori di a e b che rendono la

funzione continua nel suo dominio e disegnare il grafico della funzione.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x\to 0}\frac{e^{2x}-\cos x}{x}$; $\lim_{x\to +\infty}\frac{x+3}{x-6\log x}$. 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione

 $y = e^{3 + \frac{1}{x^2}}$.

6) (8 punti) Calcolare $\int_1^4 \left(\frac{x^3 + x + 2}{\sqrt{x}} \right) dx$.

7) (7 punti) Determinare il polinomio di McLaurin di secondo grado della funzione f(x) = sen x - cos(4x).

8) (8 punti) Determinare la natura dei punti critici della funzione $f(x, y) = x^3 + 6x^2 - 9xy + 4y^2$.

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito G3

1) (6 punti) Siano $p \in q$ due proposizioni semplici. Costruire la tavola di verità della proposizione composta $((p \Rightarrow q) e (p \Leftrightarrow q)) \Rightarrow \neg q$.

2) (7 punti) Siano date le funzioni $f(x) = \frac{1-x}{x}$ e $g(x) = x^2$; risolvere la disequazione $g(f(x)) \ge 1 + f(g(x))$.

3) (6 punti) Sia data la funzione f di dominio l'intervallo [-3,3] e

$$f(x) = \begin{cases} a & \text{se } -3 \leq x < -2 \\ 2-x & \text{se } -2 \leq x \leq 2 \\ b & \text{se } 2 < x \leq 3 \end{cases}$$
. Determinare i valori di a e b che rendono la

funzione continua nel suo dominio e disegnare il grafico della funzione.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{senx^2 - tg^2x}{x}$; $\lim_{x \to +\infty} \frac{2\log x - x}{2 + \log x}$.

5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y = e^{3 + \frac{4}{x^2}}$.

6) (8 punti) Calcolare $\int_1^9 \left(\frac{5-x^2}{3\sqrt{x}}\right) dx$.

7) (7 punti) Determinare il polinomio di McLaurin di secondo grado della funzione $f(x) = e^{-x} + \cos(3x).$

8) (8 punti) Determinare la natura dei punti critici della funzione $f(x, y) = 2x^3 + 6x^2 - 2xy + 3y^2.$

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito G4[✓]

1) (6 punti) Siano p e q due proposizioni semplici. Costruire la tavola di verità della proposizione composta $q \Leftrightarrow ((\neg p \ o \ q) \Rightarrow \neg q)$.

2) (7 punti) Siano date le funzioni $f(x) = \frac{1-x}{x}$ e $g(x) = x^2$; risolvere la disequazione $f(g(x)) \ge g(f(x))$.

3) (6 punti) Sia data la funzione f di dominio l'intervallo [-5, 5] e

$$f(x) = \begin{cases} a & \text{se } -5 \le x < -2 \\ 1 - x^2 & \text{se } -2 \le x \le 2 \\ b & \text{se } 2 < x \le 5 \end{cases}$$
. Determinare i valori di a e b che rendono la

funzione continua nel suo dominio e disegnare il grafico della funzione.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{1 - sen x - cos x}{x}$; $\lim_{x \to +\infty} \frac{\log x}{6x + \log x}$.

5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=e^{1-\frac{2}{x^2}}$.

6) (8 punti) Calcolare $\int_1^9 \left(\frac{x^2 - 4x - 2}{2\sqrt{x}} \right) dx.$

7) (7 punti) Determinare il polinomio di McLaurin di secondo grado della funzione $f(x) = e^{2x} - sen x$.

8) (8 punti) Determinare la natura dei punti critici della funzione $f(x,\,y)=\,-\,2x^3+6x^2+5xy-y^2$.

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito G5

1) (6 punti) Siano date tre proposizioni semplici p, q e r; costruire la tavola di verità della proposizione composta $((p \circ r) e \neg (p \Rightarrow q)) \Leftrightarrow r$.

2) (7 punti) Siano dati gli insiemi $\mathbb{A} = \{x \in \mathbb{R}: 1 \le x \le 6\}$ e $\mathbb{B} = \{x \in \mathbb{R}: 2x \le x^2\}$. Determinare gli insiemi $\mathbb{A} \cup \mathbb{B}$ e $\mathbb{A} \cap \mathbb{B}$ e calcolare i loro insiemi frontiera, $\delta(\mathbb{A} \cup \mathbb{B})$ $e \delta(\mathbb{A} \cap \mathbb{B}).$

3) (6 punti) Sia date le funzioni $f(x) = log(x^3 - 2)$ e $g(x) = \sqrt[5]{4^x - 11}$. Determinare

le espressioni delle loro funzioni inverse: $f^{-1}(x)$ e $g^{-1}(x)$.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{e^{x^2 - 5x} - 1}{4x}$; $\lim_{x \to +\infty} \left(1 - \frac{1}{2+x}\right)^x$.

5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=arctg\Big(1-rac{4}{x^2}\Big)$. (Non sono richiesti il calcolo e lo studio della derivata seconda. La funzione presenta due punti di flesso, uno di ascissa positiva e l'altro di ascissa negativa.)

6) (8 punti) Calcolare $\int_0^1 (2 \cdot \log(1+x)) dx.$

7) (7 punti) Sia data la funzione di equazione $y = a \cdot \cos x + b \cdot \sin x$. Determinare i valori dei parametri a e b sapendo che y(0) = 1 e y'(0) = 1; e calcolare il polinomio di McLaurin di secondo grado della funzione.

8) (8 punti) Calcolare l'equazione del piano tangente alla superficie di equazione $z = f(x, y) = \frac{y - x^2}{1 + u^2}$ nel punto di coordinate P(0, 0).

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito $\mathbb{G}6^{\checkmark}$

1) (6 punti) Siano date tre proposizioni semplici p, q e r; costruire la tavola di verità della proposizione composta $((p e r) \Rightarrow (p o \neg q)) \Rightarrow r$.

2) (7 punti) Siano dati gli insiemi $\mathbb{A} = \{x \in \mathbb{R} : 0 \le x \le 4\}$ e $\mathbb{B} = \{x \in \mathbb{R} : -x \le x^2\}$. Determinare gli insiemi $\mathbb{A} \cup \mathbb{B}$ e $\mathbb{A} \cap \mathbb{B}$ e calcolare i loro insiemi interni, $(\overline{\mathbb{A} \cup \mathbb{B}})$ e $(\overline{\mathbb{A} \cap \mathbb{B}})$.

3) (6 punti) Sia date le funzioni $f(x)=\log\left(2+\frac{6}{x}\right)$ e $g(x)=4^{\sqrt[3]{x}}$. Determinare le espressioni delle loro funzioni inverse: $f^{-1}(x)$ e $g^{-1}(x)$.

4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{sen(x^2 - 3x)}{x}$;

$$\lim_{x \to +\infty} \left(1 + \frac{1}{6x+1}\right)^x.$$

5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=arctg\left(\frac{1}{x^2}-1\right)$. (Non sono richiesti il calcolo e lo studio della derivata seconda. La funzione presenta due punti di flesso, uno di ascissa positiva e l'altro di ascissa negativa.)

6) (8 punti) Calcolare $\int_{-1}^{0} (5 \cdot \log(2 + x)) dx.$

7) (7 punti) Sia data la funzione di equazione $y=a\cdot e^x+b$. Determinare i valori dei parametri a e b sapendo che y(0)=2 e y'(0)=-1; e calcolare il polinomio di McLaurin di secondo grado della funzione.

8) (8 punti) Calcolare l'equazione del piano tangente alla superficie di equazione $z = f(x,y) = y + 5x^2 + \left(1 - y^2\right)^3$ nel punto di coordinate P(0,0).

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito ©7[✓]

- 1) (6 punti) Siano date tre proposizioni semplici p, q e r; costruire la tavola di verità della proposizione composta $p \Rightarrow ((q \Leftrightarrow r) \ e \ \neg (q \Rightarrow r))$.
- 2) (7 punti) Siano dati gli insiemi $\mathbb{A} = \{x \in \mathbb{R}: -3 \le x \le 0\}$ e $\mathbb{B} = \{x \in \mathbb{R}: 5x > -x^2\}$. Determinare gli insiemi $\mathbb{A} \cup \mathbb{B}$ e $\mathbb{A} \cap \mathbb{B}$ e calcolare i loro insiemi frontiera, $\delta(\mathbb{A} \cup \mathbb{B})$ e $\delta(\mathbb{A} \cap \mathbb{B})$.
- 3) (6 punti) Sia date le funzioni $f(x) = e^{3-2x}$ e $g(x) = \sqrt[3]{1-x^7}$. Determinare le espressioni delle loro funzioni inverse: $f^{-1}(x)$ e $g^{-1}(x)$.
- 4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{\sin x^2}{x^2 3x^3}$; $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{3x 6}$.
- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=arctg\big(x^2-1\big)$. (Non sono richiesti il calcolo e lo studio della derivata seconda. La funzione presenta due punti di flesso, uno di ascissa positiva e l'altro di ascissa negativa.)
- 6) (8 punti) Calcolare $\int_0^2 (4 \cdot \log(3 x)) dx.$
- 7) (7 punti) Sia data la funzione di equazione $y = a \cdot sen x + b$. Determinare i valori dei parametri a e b sapendo che y(0) = 1 e y'(0) = -1; e calcolare il polinomio di McLaurin di secondo grado della funzione.
- 8) (8 punti) Calcolare l'equazione del piano tangente alla superficie di equazione $z=f(x,y)=\frac{2-y-x^2}{1+x^2} \ \ \text{nel punto di coordinate } P(0,0).$

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.

Prova scritta di Matematica Generale (A.A. 2022-23)

9 gennaio 2023 Compito ℂ8[✓]

- 1) (6 punti) Siano date tre proposizioni semplici p, q e r; costruire la tavola di verità della proposizione composta $(q \Rightarrow r) \Rightarrow ((q \Leftrightarrow p) \ o \ \neg q)$.
- 2) (7 punti) Siano dati gli insiemi $\mathbb{A} = \{x \in \mathbb{R}: -3 \le x \le 3\}$ e $\mathbb{B} = \{x \in \mathbb{R}: -5x > x^2\}$. Determinare gli insiemi $\mathbb{A} \cup \mathbb{B}$ e $\mathbb{A} \cap \mathbb{B}$ e calcolare i loro insiemi interni, $(\overline{\mathbb{A} \cup \mathbb{B}})$ e $(\overline{\mathbb{A} \cap \mathbb{B}})$.
- 3) (6 punti) Sia date le funzioni $f(x) = 3^{1+\frac{2}{x}}$ e $g(x) = \sqrt[5]{1-x^3}$. Determinare le espressioni delle loro funzioni inverse: $f^{-1}(x)$ e $g^{-1}(x)$.
- 4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{e^{x^2} 1}{x^3 + 4x^2}$; $\lim_{x \to +\infty} \left(1 \frac{1}{2x}\right)^{x+7}$.
- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=arctg\big(x^2-9\big)$. (Non sono richiesti il calcolo e lo studio della derivata seconda. La funzione presenta due punti di flesso, uno di ascissa positiva e l'altro di ascissa negativa.)
- 6) (8 punti) Calcolare $\int_{-1}^{0} (3 \cdot \log(1-x)) dx.$
- 7) (7 punti) Sia data la funzione di equazione $y = a \cdot \cos x + b \cdot x$. Determinare i valori dei parametri a e b sapendo che y(0) = -1 e y'(0) = 1; e calcolare il polinomio di McLaurin di secondo grado della funzione.
- 8) (8 punti) Calcolare l'equazione del piano tangente alla superficie di equazione $z = f(x, y) = (2 y x^2) \cdot (1 y^2)$ nel punto di coordinate P(0, 0).

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono nella prova una votazione non inferiore a 24 vengono ammessi alla prova orale.