UNIVERSITA' DEGLI STUDI DI SIENA
 Facoltà di Economia "R. Goodwin"

A.A. 2023/24

Intermediate Test Quantitative Methods for Economic Applications - Mathematics (27/11/23)

1) Given the complex number $z=\frac{1}{1+i}-\frac{1}{1-i}$. Calculate its cubic roots.
2) Consider the matrix: $\mathbb{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & 0 \\ k & -1 & 1\end{array}\right]$. We know that the characteristics
polynomial of the matrix $\mathbb{A}, p_{\mathbb{A}}(\lambda)=\lambda(\lambda-2)^{2}$. Find the value of parameter k, and for the two eigenvalues of matrix \mathbb{A} calculate the dimention of their eigenspaces.
3) Given a linear map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, with $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{1}, x_{4}, x_{4}\right)$. Calculate the dimention of its immage and the dimention of its kernel; and for both, immage and kernel, find a basis.
4) Calculate the inverse matrix of matrix $\mathbb{B}=\left[\begin{array}{ccc}\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & \frac{1}{3} & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$.
5) Consider a matrix \mathbb{A}, we know that λ is an eigenvalue of the matrix \mathbb{A} with associated eigenvector \boldsymbol{v}; prove that λ^{2} is an eigenvalue of the matrix \mathbb{A}^{2} with associated the same eigenvector \boldsymbol{v}.
