# UNIVERSITA' DEGLI STUDI DI SIENA <br> Scuola di Economia e Management 

## A.A. 2023/24

## Quantitative Methods for Economic Applications Mathematics for Economic Applications <br> Task 8/1/2024

I M 1) Given the complex number $z=\left(1-i^{3}\right)^{2}$, calculate its cubic roots. $z=\left(1-i^{3}\right)^{2}=(1+i)^{2}=1+2 i+i^{2}=2 i$. Putting the the complex number $z$ in goniometric form, we get $z=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$; for the cubic roots we apply the classical formula: $z_{k}=\sqrt[3]{2}\left(\cos \left(\frac{\pi}{6}+\frac{2}{3} k \pi\right)+i \sin \left(\frac{\pi}{6}+\frac{2}{3} k \pi\right)\right) k=0,1,2$. The three roots are:
$k=0 \rightarrow z_{0}=\sqrt[3]{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt[3]{2}\left(\frac{1}{2} \sqrt{3}+\frac{1}{2} i\right)=\frac{\sqrt[3]{2}}{2}(\sqrt{3}+i) ;$
$k=1 \rightarrow z_{1}=\sqrt[3]{2}\left(\cos \frac{5}{6} \pi+i \sin \frac{5}{6} \pi\right)=\sqrt[3]{2}\left(-\frac{1}{2} \sqrt{3}+\frac{1}{2} i\right)=-\frac{\sqrt[3]{2}}{2}(\sqrt{3}-i) ;$
$k=2 \rightarrow z_{2}=\sqrt[3]{2}\left(\cos \frac{3}{2} \pi+i \sin \frac{3}{2} \pi\right)=-\sqrt[3]{2} i$.
IM 2) Given the matrix $\mathbb{A}=\left[\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & -9 & -3\end{array}\right]$. Calculate its eigenvalues and study if the matrix $\mathbb{A}$ is diagonalizable or not.
At the first step we calculate the characteristic polynomial of matrix $\mathbb{A}$;
$P_{\mathbb{A}}(\lambda)=|\lambda \mathbb{I}-\mathbb{A}|=\left|\begin{array}{ccc}\lambda-3 & -1 & -1 \\ -2 & \lambda-4 & -2 \\ -1 & 9 & \lambda+3\end{array}\right|=$
$(\lambda-3)\left|\begin{array}{cc}\lambda-4 & -2 \\ 9 & \lambda+3\end{array}\right|++\left|\begin{array}{cc}-2 & -2 \\ -1 & \lambda+3\end{array}\right|-\left|\begin{array}{cc}-2 & \lambda-4 \\ -1 & 9\end{array}\right|=$
$(\lambda-3)((\lambda-4)(\lambda+3)+18)-2(\lambda+3)+-2+18-(\lambda-4)=$
$(\lambda-3)\left(\lambda^{2}-\lambda+6\right)-2 \lambda-6+16-\lambda+4=$
$\lambda^{3}-4 \lambda^{2}+9 \lambda-18-3 \lambda+14=\lambda^{3}-4 \lambda^{2}+6 \lambda-4=(\lambda-2)\left(\lambda^{2}-2 \lambda+2\right)=$
$(\lambda-2)\left((\lambda-1)^{2}+1\right)$. Putting $P_{\mathbb{A}}(\lambda)=0$ we find the three eigenvalues of matrix $\mathbb{A}$; if
$\lambda-2=0$, we have the first eigenvalue $\lambda_{1}=2$; if $(\lambda-1)^{2}+1=0$ follow
$(\lambda-1)^{2}=-1$ and $\lambda-1= \pm i$, thus $\lambda_{2,3}=1 \pm i$. The three eigenvalues are all differents, thus matrix $\mathbb{A}$ is a diagonalizable one.
IM 3) Given a linear map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, with
$F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}+x_{4}, 2 x_{1}+m x_{3}+x_{4},-x_{1}+2 x_{2}-x_{3}\right)$; knowing that the dimention of its image and the dimention of its kernel are equal, find the value of parameter $m$ and calculate a basis for the image of linear map $F$.

If image and kernel have the same dimention, both are equal to 2 , therefore the rank of the matrix associated at $F$ must be 2 . Matrix $\mathbb{A}_{F}$ associated at $F$ is

$m$ such that $\mathbb{A}_{F}$ has rank two is $m=1$ and so
$F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}+x_{4}, 2 x_{1}+x_{3}+x_{4},-x_{1}+2 x_{2}-x_{3}\right)$. For the basis of the image of $F$, note that the first element of the image $x_{1}+2 x_{2}+x_{4}$ is just equal to the sum of the second element $2 x_{1}+x_{3}+x_{4}$ and the third $-x_{1}+2 x_{2}-x_{3}$, thus any element of the image can be written as $\left(y_{2}+y_{3}, y_{2}, y_{3}\right)=y_{2}(1,1,0)+y_{3}(1,0,1)$ and a basis for the image is the set $\mathcal{B}_{I F}=\{(1,1,0),(1,0,1)\}$.
I M 4) Given the three vectors $V_{1}=(1,1,1), V_{2}=(1,0,1)$ and $V_{3}=(1,1,0)$; if vector $W$ has coordinates $(1,2,0)$ respect to the canonical basis
$\mathcal{B}=\{(1,0,0),(0,1,0),(0,0,1)\}$, what are the coordinates of $W$ respect to the basis $\mathcal{B}^{\prime}=\left\{V_{1}, V_{2}, V_{3}\right\}$ ?
Respect basis $\mathcal{B}$, vector $W=1(1,0,0)+2(0,1,0)+0(0,0,1)=(1,2,0)$, while respect basis $\mathcal{B}^{\prime}$, vector $W=\alpha(1,1,1)+\beta(1,0,1)+\gamma(1,1,0)=$ $(\alpha+\beta+\gamma, \alpha+\gamma, \alpha+\beta)$; putting $(1,2,0)=(\alpha+\beta+\gamma, \alpha+\gamma, \alpha+\beta)$ we easily find $\alpha=\gamma=1$ and $\beta=-1$.
II M 1) Given the equation $f(x, y)=x \cdot \cos ^{2} y+y \cdot \sin ^{2} x=0$ satisfied at the point $(0,0)$, verify that with it an implicit function $x=x(y)$ can be defined and then calculate, for this implicit function, its first and second derivatives $x^{\prime}(0)$ and $x^{\prime \prime}(0)$. $f(0,0)=0, f_{x}^{\prime}=\cos ^{2} y+2 y \cdot \sin x \cdot \cos x$ and $f_{y}^{\prime}=-2 x \cdot \cos y \cdot \sin y+\sin ^{2} x$, with $f_{x}^{\prime}(0,0)=1$ and $f_{y}^{\prime}(0,0)=0$. Becouse $f_{x}^{\prime}(0,0) \neq 0$, the equation $f(x, y)=x \cdot \cos ^{2} y+y \cdot \sin ^{2} x=0$ define a function $x=x(y)$ with $x^{\prime}(0)=-\frac{f_{y}^{\prime}(0,0)}{f_{x}^{\prime}(0,0)}=0$. For the second order derivative we have
$x^{\prime \prime}(0)=-\frac{f_{y, y}^{\prime \prime}(0,0)}{f_{x}^{\prime}(0,0)}$ becouse $x^{\prime}(0)=0 ; f_{y, y}^{\prime \prime}=2 x\left(\sin ^{2} y-\cos ^{2} y\right)$ and
$f_{y, y}^{\prime \prime}(0,0)=0$ thus $x^{\prime \prime}(0)=0$.
II M 2) Solve the problem $\left\{\begin{array}{l}\operatorname{Max} / \min f(x, y)=x^{2}+2 y \\ \text { u.c.: } x^{2}+y^{2} \leq 4\end{array}\right.$.
The function $f$ is a polynomial, continuos function, the admissible region is a disk with center $(0,0)$ and radius 2 , a bounded and closed set, therefore $f$ presents absolute maximum and minimum in the admissible region. The Lagrangian function is
$\mathcal{L}(x, y, \lambda)=x^{2}+2 y-\lambda\left(x^{2}+y^{2}-4\right)$ with
$\nabla \mathcal{L}=\left(2 x-2 \lambda x, 2-2 \lambda y,-\left(x^{2}+y^{2}-4\right)\right)$.
$I^{\circ} C A S E$ (free optimization):
$\left\{\begin{array}{l}\lambda=0 \\ 2 x=0 \\ 2=0 \quad ; \text { system impossible; } \\ x^{2}+y^{2} \leq 4\end{array}\right.$
II ${ }^{\circ}$ CASE (constrained optimization):
$\left\{\begin{array}{l}\lambda \neq 0 \\ 2 x-2 \lambda x=0 \\ 2-2 \lambda y=0 \\ x^{2}+y^{2}=4\end{array} \Rightarrow\left\{\begin{array}{l}\lambda \neq 0 \\ x(1-\lambda)=0 \\ \lambda y=1 \\ x^{2}+y^{2}=4\end{array} ;\right.\right.$ if $x=0, y= \pm 2$ and $\lambda= \pm 1 / 2$, otherwise
$\lambda=y=1$ and $x= \pm \sqrt{3}$. Four critical points $P_{1,2}=(0, \pm 2)$, the first a candidate for maximum $(\lambda>0)$, the second for minimum $(\lambda<0)$, and $P_{3,4}=( \pm \sqrt{3}, 1)$, both candidate for maximum $(\lambda>0) . f\left(P_{1,2}\right)= \pm 4, f\left(P_{3,4}\right)=5, f$ presents absolute maximum equal 5 on points $( \pm \sqrt{3}, 1)$ and absolute minimum equal -4 on point $(0,-2)$. To analize the nature of point $(0,2)$ we study the function $f$ along the upper border of the admissible region $\left(y=\sqrt{4-x^{2}}\right.$ ).
$f\left(x, \sqrt{4-x^{2}}\right)=x^{2}+2 \sqrt{4-x^{2}}=g(x), g^{\prime}(x)=2 x+2 \cdot \frac{-2 x}{2 \sqrt{4-x^{2}}}=$
$\frac{2 x\left(\sqrt{4-x^{2}}-1\right)}{\sqrt{4-x^{2}}} ; g^{\prime}(x) \geq 0$ if and only if $x\left(\sqrt{4-x^{2}}-1\right) \geq 0:$

1. $x \geq 0$;
2. $\sqrt{4-x^{2}}-1 \geq 0 \Rightarrow \sqrt{4-x^{2}} \geq 1 \Rightarrow 4-x^{2} \geq 1 \Rightarrow x^{2} \leq 3 \Rightarrow-\sqrt{3} \leq x \leq \sqrt{3}$.


As on the graphic above, $P_{3,4}$ are points of maximum, while $P_{1}$ is a false maximum. In the graphic in the next page, the admissible region, in red, and the behaviour of $f$ along the border rappresented by the turquoise arrows.


II M 3) Calculate the gradient of the function $f(x, y, z)=(x+y)^{z}-\log \left(z-y \cdot x^{2}\right)$.

$$
\begin{gathered}
f_{x}^{\prime}=z(x+y)^{z-1}+\frac{2 x y}{z-y \cdot x^{2}} ; \quad f_{y}^{\prime}=z(x+y)^{z-1}+\frac{x^{2}}{z-y \cdot x^{2}} ; \\
f_{z}^{\prime}=(x+y)^{z} \cdot \log (x+y)-\frac{1}{z-y \cdot x^{2}} .
\end{gathered}
$$

II M 4) Given the function $f(x, y)=x e^{x+y}$ and the unit vector $v=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$; find a point $\left(x_{0}, y_{0}\right)$ such that $\mathcal{D}_{v} f\left(x_{0}, y_{0}\right)=0$. After having determined the point $\left(x_{0}, y_{0}\right)$, calculate the second order directional derivative $\mathcal{D}_{v, v}^{(2)} f\left(x_{0}, y_{0}\right)$.
$\nabla f(x, y)=\left((1+x) e^{x+y}, x e^{x+y}\right), \mathcal{D}_{v} f=\nabla f(x, y) \cdot v=$
$\left((1+x) e^{x+y}, x e^{x+y}\right) \cdot\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}(1+2 x) e^{x+y}$, thus $\mathcal{D}_{v} f\left(x_{0}, y_{0}\right)=0$ if
and only if $1+2 x=0$ then $x_{0}=-\frac{1}{2}$. Point $\left(x_{0}, y_{0}\right)$ that satisfy the condition $\mathcal{D}_{v} f\left(x_{0}, y_{0}\right)=0$ are all the point $\left(-\frac{1}{2}, y_{0}\right)$.
$\mathcal{H} f(x, y)=\left[\begin{array}{cc}(2+x) e^{x+y} & (1+x) e^{x+y} \\ (1+x) e^{x+y} & x e^{x+y}\end{array}\right]$ and
$\mathcal{H} f\left(-\frac{1}{2}, y_{0}\right)=\left[\begin{array}{cc}\frac{3}{2} e^{y_{0}-1 / 2} & \frac{1}{2} e^{y_{0}-1 / 2} \\ \frac{1}{2} e^{y_{0}-1 / 2} & -\frac{1}{2} e^{y_{0}-1 / 2}\end{array}\right]$ with
$\mathcal{D}_{v, v}^{(2)} f\left(-\frac{1}{2}, y_{0}\right)=v^{T} \cdot \mathcal{H} f\left(-\frac{1}{2}, y_{0}\right) \cdot v=$
$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot\left[\begin{array}{cc}\frac{3}{2} e^{y_{0}-1 / 2} & \frac{1}{2} e^{y_{0}-1 / 2} \\ \frac{1}{2} e^{y_{0}-1 / 2} & -\frac{1}{2} e^{y_{0}-1 / 2}\end{array}\right] \cdot\binom{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=$
$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot\binom{\sqrt{2} e^{y_{0}-1 / 2}}{0}=e^{y_{0}-1 / 2}$.

