UNIVERSITA' DEGLI STUDI DI SIENA Scuola di Economia e Management A.A. 2023/24 Quantitative Methods for Economic Applications -Mathematics for Economic Applications Task 5/2/2024

I M 1) Calculate the complex roots of equation $z^2 + 4i = 0$. From $z^2 + 4i = 0$ we get $z^2 = -4i$ and finally $z = \sqrt{-4i} = 2\sqrt{-i}$. Putting the immaginary number -i in goniometric form, we get $-i = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$; for the square roots we apply the classical formula: $z_k = 2\left(\cos\left(\frac{3\pi}{4} + k\pi\right) + i\sin\left(\frac{3\pi}{4} + k\pi\right)\right) k = 0, 1$. The two roots of equation are: $k = 0 \rightarrow z_0 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\left(-\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i\right) = -\sqrt{2} + \sqrt{2}i$.

$$k = 0 \rightarrow z_0 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\left(-\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i\right) = -\sqrt{2} + \sqrt{2}i;$$

$$k = 1 \rightarrow z_1 = 2\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = 2\left(\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i\right) = \sqrt{2} - \sqrt{2}i = -z_0.$$

I M 2) Given the matrix
$$\mathbb{A} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & -2 & -2 \end{bmatrix}$$
. Calculate its eigenvalues and

study if the matrix \mathbb{A} is diagonalizable or not. At the first step we calculate the characteristic polynomial of matrix \mathbb{A} ;

$$P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda - 2 & -2 & 0 & 0 \\ -2 & \lambda - 2 & 0 & 0 \\ 0 & 0 & \lambda + 2 & 2 \\ 0 & 0 & 2 & \lambda + 2 \end{vmatrix} = \\ \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 2 \end{vmatrix} \cdot \begin{vmatrix} \lambda + 2 & 2 \\ 2 & \lambda + 2 \end{vmatrix} = ((\lambda - 2)^2 - 4) \cdot ((\lambda + 2)^2 - 4) = \\ (\lambda^2 - 4\lambda) \cdot (\lambda^2 + 4\lambda) = \lambda^2 (\lambda - 4) (\lambda + 4). \text{ Putting } P_{\mathbb{A}}(\lambda) = 0 \text{ we find th} \end{aligned}$$

 $(\lambda^2 - 4\lambda) \cdot (\lambda^2 + 4\lambda) = \lambda^2 (\lambda - 4)(\lambda + 4)$. Putting $P_{\mathbb{A}}(\lambda) = 0$ we find three eigenvalues of matrix \mathbb{A} . $\lambda_1 = 0$, with algebraic multiplicity 2, $\lambda_2 = 4$, with algebraic multiplicity 1 and $\lambda_3 = -4$, with algebraic multiplicity 1. To verify if the matrix is diagonalizable, we find the geometric multiplicity of eigenvalue λ_1 , for our goal we calculate the rank of matrix \mathbb{A} , it's easy note that from matrix \mathbb{A} we can define a principal minor of order 2, $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ with determinant different from 0 and matrix \mathbb{A} has the second raw equal to the first and the fourth equal to the third, thus

 $Rank(\mathbb{A}) = 2$ and the geometric multiplicity of eigenvalue λ_1 is 2. The matrix is diagonalizable.

I M 3) Given the linear system
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0\\ mx_1 + x_2 + x_3 + x_4 = 0\\ mx_1 + mx_2 + x_3 + x_4 = 0\\ mx_1 + mx_2 + mx_3 + x_4 = 0 \end{cases}$$
, where *m* is a real

parameter. We indicate with S_m the set of its solutions, study, varing of m, the dimention of the set S_m , and when the dimention is bigger, find a basis for S_m .

The matrix associated to the system is $\begin{bmatrix} 1 & 1 & 1 & 1 \\ m & 1 & 1 & 1 \\ m & m & 1 & 1 \\ m & m & m & 1 \end{bmatrix}$. We reduce the matrix by elementary operations on its lines: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ m & 1 & 1 & 1 \\ m & m & 1 & 1 \\ m & m & m & 1 \end{bmatrix}_{\substack{R_2 \mapsto R_2 - mR_1 \\ R_3 \mapsto R_3 - mR_1 \\ R_4 \mapsto R_4 - mR_1 \\ 0 & 0 & 1 - m & 1 - m \\ 0 & 0 & 0 & 1 - m \end{bmatrix}$, from the

reduced matrix we find that: $dim(S_m) = \begin{cases} 3 & \text{if } m = 1 \\ 0 & \text{if } m \neq 1 \end{cases}$. Dimention of S_m is bigger if m = 1, and in this case the system is reduced to the unique equazion $x_1 + x_2 + x_3 + x_4 = 0$ or $x_4 = -x_1 - x_2 - x_3$, and a generic element of S_m is $(x_1, x_2, x_3, -x_1 - x_2 - x_3) =$ $x_1(1,0,0,-1) + x_2(0,1,0,-1) + x_3(0,0,1,-1)$, a basis for S_m is the set of vectors $\mathcal{B} = \{(1,0,0,-1), (0,1,0,-1), (0,0,1,-1)\}.$

I M 4) Check if there are values of x and y for which the matrix $\mathbb{A} = \begin{bmatrix} -\frac{13}{3} & x \\ y & \frac{19}{3} \end{bmatrix}$ is similar to the matrix $\mathbb{B} = \begin{bmatrix} 1 & 4 \\ -4 & 1 \end{bmatrix}$, if the matrix of the similarity transformation is $\mathbb{P} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Matrix \mathbb{A} is similar to the matrix \mathbb{D} with \mathbb{D} with \mathbb{D} with \mathbb{D} and \mathbb{D} .

Matrix
$$\mathbb{A}$$
 is similar to the matrix \mathbb{B} with matrix of transformation \mathbb{P} if $\mathbb{A} = \mathbb{P}^{-1} \cdot \mathbb{B} \cdot \mathbb{P}$

$$\begin{aligned} |\mathbb{P}| &= -3, \mathbb{P}^{-1} = \frac{1}{|\mathbb{P}|} \cdot \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \text{ and } \\ \mathbb{P}^{-1} \cdot \mathbb{B} \cdot \mathbb{P} &= \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} 1 & 4 \\ -4 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \\ \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} 9 & 6 \\ -2 & -7 \end{bmatrix} = \begin{bmatrix} -\frac{13}{3} & -\frac{20}{3} \\ \frac{20}{3} & \frac{19}{3} \end{bmatrix}. \\ \text{Put} \begin{bmatrix} -\frac{13}{3} & x \\ y & \frac{19}{3} \end{bmatrix} = \begin{bmatrix} -\frac{13}{3} & -\frac{20}{3} \\ \frac{20}{3} & \frac{19}{3} \end{bmatrix} \text{ we find } x = -\frac{20}{3} \text{ and } y = \frac{20}{3} \end{aligned}$$

II M 1) Given the equation $f(x,y) = x \cdot \sin^2 x + y \cdot \cos^2 y = 0$ satisfied at the point (0,0), verify that with it an implicit function y = y(x) can be defined and then calculate, for this implicit function, its first and second derivatives y'(0) and y''(0). f(0,0) = 0, $f'_x = 1 \cdot \sin^2 x + x \cdot 2 \cdot \sin x \cdot \cos x$ and $f'_y = 1 \cdot \cos^2 y - y \cdot 2 \cdot \cos y \cdot \sin y$, with $f'_x(0,0) = 0$ and $f'_y(0,0) = 1$. Because $f'_y(0,0) \neq 0$, the equation $f(x,y) = x \cdot \sin^2 x + y \cdot \cos^2 y = 0$ define a function y = y(x) with $y'(0) = -\frac{f'_x(0,0)}{f'_y(0,0)} = 0$. For the second order derivative we have $y''(0) = -\frac{f''_{x,x}(0,0)}{f'_y(0,0)}$ because y'(0) = 0;

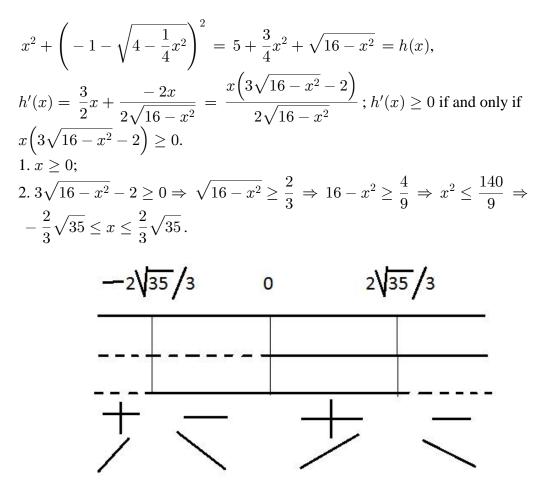
$$\begin{split} f_{x,x}'' &= 2 \cdot \sin x \cdot \cos x + 2 \cdot \sin x \cdot \cos x + x \cdot 2 \cdot \cos^2 x - x \cdot 2 \cdot \sin^2 x \text{ and} \\ f_{x,x}''(0,0) &= 0 \text{ thus } y''(0) = 0. \\ \text{II M 2) Solve the problem } \begin{cases} \text{Max/min } f(x,y) = x^2 + y^2 \\ \text{u.c.: } x^2 + 4y^2 + 8y \leq 12 \end{cases}. \end{split}$$

The function f is a polynomial, continuos function, the admissible region is the interior region of an ellipse, a bounded and closed set; constraint is qualified on ellipse therefore f presents absolute maximum and minimum in the admissible region. The Lagrangian function is

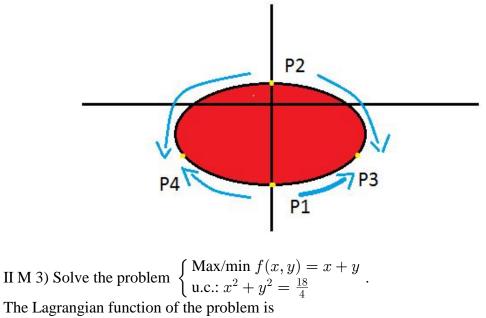
 $\mathcal{L}(x, y, \lambda) = x^2 + y^2 - \lambda(x^2 + 4y^2 + 8y - 12)$ with $\nabla \mathcal{L} = (2x - 2\lambda x, 2y - 8\lambda y - 8\lambda, -(x^2 + 4y^2 + 8y - 12)).$ $I^{\circ} CASE$ (free optimization): $\begin{cases} \lambda = 0 \\ 2x = 0 \\ 2y = 0 \\ x^2 + 4y^2 + 8y - 12 \le 0 \end{cases} \Rightarrow \begin{cases} \lambda = 0 \\ x = 0 \\ y = 0 \\ -12 \le 0 \end{cases}; \text{ point } (0, 0) \text{ is admissible,} \\ -12 \le 0 \end{cases}$ $\mathcal{H}f = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \mathcal{H}_1 = 2 > 0, \mathcal{H}_2 = 4 > 0. \ (0, 0) \text{ is a minimum point.} \end{cases}$ $II^{\circ} CASE$ (constrained optimization): $\begin{cases} \lambda \neq 0\\ 2x - 2\lambda x = 0\\ 2y - 8\lambda y - 8\lambda = 0\\ x^2 + 4y^2 + 8y - 12 = 0 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0\\ 2x(1 - \lambda) = 0\\ 2(y - 4\lambda y - 4\lambda) = 0\\ x^2 + 4y^2 + 8y = 12 \end{cases}; \text{ if } x = 0 \text{ and } y = -3, \end{cases}$ $\lambda = 3/8$, if x = 0 and y = 1, $\lambda = 1/8$, otherwise $\lambda = 1$, y = -4/3 and $x = \pm 2\sqrt{35}/3$. Four critical points $P_1 = (0, -3), P_2 = (0, 1)$ and $P_{3,4} = (\pm 2\sqrt{35}/3, -4/3)$, all candidates for maximum ($\lambda > 0$). $f(P_1) = 9$, $f(P_2) = 1, f(P_{3,4}) = 52/3 > 9, f$ presents absolute maximum equal 52/3 on points $(\pm 2\sqrt{35}/3, -4/3)$ and absolute minimum equal 0 on point (0, 0). To analize the nature of point P_1 and P_2 we study the function f along the upper and the lower border of the admissible region. Rewrite the ellipse's equation as $x^2 + 4(y+1)^2 = 16$, we get $(y+1)^2 = 4 - \frac{1}{4}x^2$ and the upper and the lower border of the admissible region are respectively $y = -1 + \sqrt{4 - \frac{1}{4}x^2}$ and $y = -1 - \sqrt{4 - \frac{1}{4}x^2}$. In the upper border consider the function $f\left(x, -1 + \sqrt{4 - \frac{1}{4}x^2}\right) =$ $x^{2} + \left(-1 + \sqrt{4 - \frac{1}{4}x^{2}}\right)^{2} = 5 + \frac{3}{4}x^{2} - \sqrt{16 - x^{2}} = g(x),$ $g'(x) = \frac{3}{2}x - \frac{-2x}{2\sqrt{16 - x^2}} = \frac{x\left(3\sqrt{16 - x^2} + 2\right)}{2\sqrt{16 - x^2}}; g'(x) \ge 0 \text{ if and only if } x \ge 0.$

Along the upper border, function f is decreasing for $x \ge 0$ and increasing for $x \ge 0$, P_2 is a false maximum (minimum point along the border).

In the lower border consider the function $f\left(x, -1 - \sqrt{4 - \frac{1}{4}x^2}\right) =$



As on the graphic above, $P_{3,4}$ are maximum points, while P_1 is a false maximum (minimum point along the border). In the graphic below, the admissible region, in red, and the behaviour of f along the border rappresented by the turquoise arrows.



$$\mathcal{L}(x, y, \lambda) = x + y - \lambda \left(x^2 + y^2 - \frac{18}{4} \right) \text{ with}$$
$$\nabla \mathcal{L} = \left(1 - 2\lambda x, 1 - 2\lambda y, - \left(x^2 + y^2 - \frac{18}{4} \right) \right)$$

FOC:

$$\begin{cases} 1-2\lambda x=0\\ 1-2\lambda y=0\\ x^2+y^2=\frac{18}{4} \end{cases} \Rightarrow \begin{cases} x=1/(2\lambda)\\ y=1/(2\lambda)\\ 1/(4\lambda^2)+1/(4\lambda^2)=\frac{18}{4} \end{cases} \Rightarrow \begin{cases} x=1/(2\lambda)\\ y=1/(2\lambda)\\ 2/\lambda^2=18 \end{cases} \Rightarrow \begin{cases} x=\pm\frac{3}{2}\\ y=\pm\frac{3}{2}\\ \lambda=\pm\frac{1}{3} \end{cases}$$

two constraint critical points $P_{1,2}=\left(\pm\frac{3}{2},\pm\frac{3}{2},\right).$

SOC:

$$\overline{\mathcal{H}} = \begin{bmatrix} 0 & -2x & -2y \\ -2x & -2\lambda & 0 \\ -2y & 0 & -2\lambda \end{bmatrix}, \text{ with } |\overline{\mathcal{H}}| = \begin{vmatrix} 0 & -2x & -2y \\ -2x & -2\lambda & 0 \\ -2y & 0 & -2\lambda \end{vmatrix} = \\ -2\lambda \cdot \begin{vmatrix} 0 & -2x \\ -2x & -2\lambda \end{vmatrix} - 2y \cdot \begin{vmatrix} -2x & -2\lambda \\ -2y & 0 \end{vmatrix} = 8\lambda x^2 + 8\lambda y^2 = 8\lambda (x^2 + y^2).$$

 $|\overline{\mathcal{H}}(P_1)| = 12 > 0$, P_1 point of maximum with $f(P_1) = 3$, $|\overline{\mathcal{H}}(P_2)| = -12 < 0$, P_2 point of minimum and $f(P_2) = -3$.

II M 4) Given the function
$$f(x, y) = (x + y)e^{x - y}$$
 and the unit vector
 $v = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$; calculate on point (0,0) the directional derivatives $\mathcal{D}_v f(0,0)$ and
 $\mathcal{D}_{v,v}^{(2)} f(0,0)$.
 $\nabla f(x,y) = ((1 + x + y)e^{x - y}, (1 - x - y)e^{x - y}), \nabla f(0,0) = (1,1),$
 $\mathcal{D}_v f(0,0) = \nabla f(0,0) \cdot v = (1,1) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \sqrt{2}.$
 $\mathcal{H}f(x,y) = \begin{bmatrix} (2 + x + y)e^{x - y} & -(x + y)e^{x - y} \\ -(x + y)e^{x - y} & -(2 - x - y)e^{x - y} \end{bmatrix}$ and $\mathcal{H}f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$
with $\mathcal{D}_{v,v}^{(2)} f(0,0) = v^T \cdot \mathcal{H}f(0,0) \cdot v = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \cdot \left(\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}\right) = 0.$