Università degli Studi di Siena

Correzione Prova scritta di Matematica Generale (A.A. 2023-24) 5 febbraio 2024

Compito $\mathbb{F}1$

- 1) (6 punti) Siano dati gli intervalli $\mathcal{I}_1 = [-2, 4]$ e $\mathcal{I}_2 =]e$, $+\infty[$. Determinare l'intervallo \mathcal{I}_3 tale per cui $\mathcal{I}_1 \cup \mathcal{I}_3 =]-e$, 4] e $\mathcal{I}_2 \cap \mathcal{I}_3 =]e$, 3[. Dopo aver determinato l'intervallo \mathcal{I}_3 , calcolare l'insieme $\mathcal{C}(\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3)$. (Con $\mathcal{C}(X)$ indichiamo l'insieme complementare dell'insieme X).
- 1) Da $\mathcal{I}_1 \cup \mathcal{I}_3 =]-e, 4]$ si ottiene $Inf(\mathcal{I}_3) = -e, -e \notin \mathcal{I}_3$ e $-2 \leq Sup(\mathcal{I}_3) \leq 4$; da $\mathcal{I}_2 \cap \mathcal{I}_3 =]e, 3[$ si ottiene $Sup(\mathcal{I}_3) = 3$ e $3 \notin \mathcal{I}_3$, quindi $\mathcal{I}_3 =]-e, 3[$. $\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3 = [-2, 4] \cap]e, +\infty[\cap]-e, 3[=]e, 3[$; $\mathcal{C}(\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3) = \mathcal{C}([e, 3]) =]-\infty, e] \cup [3, +\infty[$.
- 2) (7 punti) Sia data la funzione $f(x) = e^{3x-1}$, sia inoltre f(g(x)) = 3x 4. Determinare le espressioni delle funzioni: g(x) e g(f(x)).
- 2) Da $f(x) = e^{3x-1}$ si ottiene $f(g(x)) = e^{3g(x)-1}$, posto $e^{3g(x)-1} = 3x-4$ si ha 3g(x) 1 = log(3x-4), da cui $g(x) = \frac{1 + log(3x-4)}{3}$. $g(f(x)) = g(e^{3x-1}) = \frac{1 + log(3e^{3x-1}-4)}{3}$. 3) (7 punti) Siano dati gli insiemi $A = \{x \in \mathbb{R}: x \leq 2\}$ e
- 3) (7 punti) Siano dati gli insiemi $A = \{x \in \mathbb{R}: x \leq 2\}$ e $B = \{x \in \mathbb{R}: 9 < 3^{2x-1} < 81\}$. Determinare l'insieme frontiera dell'unione fra A e B, $\delta(A \cup B)$; e l'insieme derivato dell'intersezione fra A e B, $\mathcal{D}(A \cap B)$. Gli insiemi $A \cup B$ e $A \cap B$ sono aperti, chiusi o né aperti né chiusi?
- 3) $B = \left\{x \in \mathbb{R}: 9 < 3^{2x-1} < 81\right\} = \left\{x \in \mathbb{R}: 3^2 < 3^{2x-1} < 3^4\right\} = \left\{x \in \mathbb{R}: 2 < 2x 1 < 4\right\} = \left\{x \in \mathbb{R}: \frac{3}{2} < x < \frac{5}{2}\right\}.$ $A \cup B = \left\{x \in \mathbb{R}: x \leq 2\right\} \cup \left\{x \in \mathbb{R}: \frac{3}{2} < x < \frac{5}{2}\right\} = \left\{x \in \mathbb{R}: x < \frac{5}{2}\right\},$ insieme aperto; $\delta(A \cup B) = \left\{\frac{5}{2}\right\}.$ $A \cap B = \left\{x \in \mathbb{R}: x \leq 2\right\} \cap \left\{x \in \mathbb{R}: \frac{3}{2} < x < \frac{5}{2}\right\} = \left\{x \in \mathbb{R}: \frac{3}{2} < x \leq 2\right\},$ insieme né aperto né chiuso; $\mathcal{D}(A \cap B) = \left\{x \in \mathbb{R}: \frac{3}{2} \leq x \leq 2\right\}.$
- 4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{1 \sqrt[3]{1 + x}}{sen x}$; $\lim_{x \to +\infty} \left(1 + \frac{3}{2 + x}\right)^{2 + x}$.
- 4) $\lim_{x \to 0} \frac{1 \sqrt[3]{1+x}}{\sin x} = \lim_{x \to 0} -\frac{\sqrt[3]{1+x}-1}{\frac{\sin x}{x}} = -\frac{\left(\to \frac{1}{3}\right)}{(\to 1)} = -\frac{1}{3}$.

Il limite proposto può essere risolto anche tramite l'utilizzo del Teorema di De

L'Hôpital, infatti $\lim_{x\to 0} \frac{1-\sqrt[3]{1+x}}{sen\,x} = \frac{(\to 0)}{(\to 0)} \ FI$. Applichiamo il Teorema:

$$\lim_{x \to 0} \frac{1 - \sqrt[3]{1 + x}}{\sec x} \stackrel{H}{\Rightarrow} \lim_{x \to 0} \frac{-\frac{1}{3 \cdot \sqrt[3]{(1 + x)^2}}}{\cos x} = \frac{\left(\to -\frac{1}{3} \right)}{\left(\to 1 \right)} = -\frac{1}{3}.$$

$$\lim_{x \to +\infty} \left(1 + \frac{3}{2 + x} \right)^{2 + x} = e^3.$$

- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=\frac{1-x^2}{x} \ .$ (Non è richiesto il calcolo e lo studio della derivata seconda, la funzione non presenta punti di flesso)
- 5) $C.E.: x \neq 0, C.E. =]-\infty, 0[\cup]0, +\infty[$

Eventuali simmetrie: $y(-x) = \frac{1-(-x)^2}{-x} = -\frac{1-x^2}{x} = -y(x)$. Funzione

dispari (simmetrica rispetto all'origine degli assi) la studiamo solo per $x \in]0, +\infty[$ ed operiamo per simmetria.

Segno ed intersezioni con gli assi: se x > 0, y > 0 se e solo se

 $1-x^2>0 \Rightarrow x^2<1 \Rightarrow 0 < x < 1.$ Funzione positiva in $\,]0,1[$, negativa in

]1, $+\infty$ [; unico punto di intersezione con l'asse positivo delle ascisse A(1,0).

Limiti agli estremi del C.E.:

$$\lim_{x \to 0^+} \frac{1 - x^2}{x} = \frac{(\to 1)}{(\to 0^+)} = +\infty; AsV \text{ di equazione } x = 0.$$

$$\lim_{x \to +\infty} \frac{1 - x^2}{x} = \lim_{x \to +\infty} \frac{1}{x} - x = (\to 0) - (\to +\infty) = -\infty.$$

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\frac{1 - x^2}{x}}{x} = \lim_{x \to +\infty} \frac{1}{x^2} - 1 = -1;$$

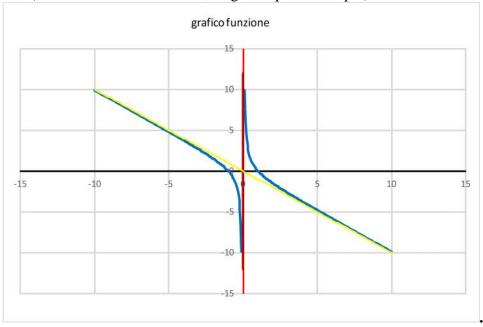
$$\lim_{x \to +\infty} y + x = \lim_{x \to +\infty} \frac{1 - x^2}{x} + x = \lim_{x \to +\infty} \frac{1}{x} = 0; AsObDx \text{ di equazione } y = -x.$$

Crescenza e decrescenza:
$$y' = \frac{-2x \cdot x - (1 - x^2) \cdot 1}{x^2} = -\frac{1 + x^2}{x^2}$$
. $y' < 0$,

 $\forall x > 0$. Funzione strettamente decrescente in $]0, +\infty[$.

Concavità e convessità: la presenza dei due asintoti, insieme alla stretta decrescenza e all'assenza di punti di flesso, implicano che la funzione è strettamente convessa in $]0, +\infty[$.

Grafico (in rosso l'asintoto verticale, in giallo quello obliquo):



6) (8 punti) Determinare il valore del parametro positivo k per il quale risulta verificata la seguente uguaglianza: $\int_0^{2k} x^2 dx = \int_0^k x dx.$

6)
$$\int_0^{2k} x^2 dx = \left(\frac{1}{3}x^3\right)_0^{2k} = \frac{8}{3}k^3$$
; $\int_0^k x dx = \left(\frac{1}{2}x^2\right)_0^k = \frac{1}{2}k^2$. Posto $\frac{8}{3}k^3 = \frac{1}{2}k^2$ si ottiene come unica soluzione positiva $k = \frac{3}{16}$.

7) (6 punti) Sia data la matrice
$$\mathbb{A}=\begin{bmatrix}3&0&-1\\-3&0&2\\3&2&1\end{bmatrix}$$
, il vettore $\mathbb{X}=\begin{pmatrix}h-k\\h\\3k\end{pmatrix}$ e il

vettore
$$\mathbb{Y} = \begin{pmatrix} -9 \\ 15 \\ 5 \end{pmatrix}$$
. Per quali valori dei parametri h e k risulta verificata

l'uguaglianza $A \cdot X = Y$?

7)
$$\mathbb{A} \cdot \mathbb{X} = \begin{bmatrix} 3 & 0 & -1 \\ -3 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{pmatrix} h-k \\ h \\ 3k \end{pmatrix} = \begin{pmatrix} 3h-6k \\ -3h+9k \\ 5h \end{pmatrix}$$
; con
$$\begin{pmatrix} 3h-6k \\ -3h+9k \\ 5h \end{pmatrix} = \begin{pmatrix} -9 \\ 15 \\ 5 \end{pmatrix} \text{ risulta } h = 1 \text{ e } k = 2.$$

- 8) (8 punti) Determinare l'espressione del piano tangente alla superficie di equazione z = sen(6x + y) + 2y nel punto di coordinate P(0,0).
- 8) Il piano tangente alla superficie ha equazione $z-z(P)=\nabla z(P)\cdot \binom{x}{y}.$

$$z(P) = 0$$
, $\nabla z = (cos(6x + y) \cdot 6, cos(6x + y) + 2)$, $\nabla z(P) = (6, 3)$. Equazione del piano tangente: $z = 6x + 3y$, oppure $6x + 3y - z = 0$.

Compito $\mathbb{F}2$

- 1) (6 punti) Siano dati gli intervalli $\mathcal{I}_1 = [2, 2\pi]$ e $\mathcal{I}_2 = [6, 20[$. Determinare l'intervallo \mathcal{I}_3 tale per cui $\mathcal{I}_1 \cap \mathcal{I}_3 = [\pi, 2\pi]$ e $\mathcal{I}_2 \cup \mathcal{I}_3 = [\pi, 25]$. Dopo aver determinato l'intervallo \mathcal{I}_3 , calcolare l'insieme $\mathcal{C}(\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3)$. (Con $\mathcal{C}(X)$ indichiamo l'insieme complementare dell'insieme X).
- 1) Da $\mathcal{I}_1 \cap \mathcal{I}_3 =]\pi, 2\pi]$ si ottiene $Inf(\mathcal{I}_3) = \pi, \pi \notin \mathcal{I}_3$ e $Sup(\mathcal{I}_3) \leq 2\pi$; da $\mathcal{I}_2 \cup \mathcal{I}_3 =]\pi, 25]$ si ottiene $Sup(\mathcal{I}_3) = 25$ e $25 \in \mathcal{I}_3$, quindi $\mathcal{I}_3 =]\pi, 25]$. $\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3 = [2, 2\pi] \cup]6, 20[\cup]\pi, 25] = [2, 25];$ $\mathcal{C}(\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3) = \mathcal{C}([2, 25]) =]-\infty, 2[\cup]25, +\infty[.$
- 2) (7 punti) Sia data la funzione $f(x)=2^{1-x}$, sia inoltre f(g(x))=-x. Determinare le espressioni delle funzioni: g(x) e g(2x-1).
- 2) Da $f(x) = 2^{1-x}$ si ottiene $f(g(x)) = 2^{1-g(x)}$, posto $2^{1-g(x)} = -x$ si ha $1 g(x) = \log_2(-x)$, da cui $g(x) = 1 \log_2(-x)$. $g(2x-1) = 1 \log_2(-(2x-1)) = 1 \log_2(1-2x).$
- 3) (7 punti) Siano dati gli insiemi $A=\left\{x\in\mathbb{R}\colon 8<2^{3x-1}<64\right\}$ e $B=\left\{x\in\mathbb{R}\colon x\leq 2\right\}$. Determinare l'insieme derivato dell'unione fra A e B, $\mathcal{D}(A\cup B)$; e l'insieme frontiera dell'intersezione fra A e B, $\delta(A\cap B)$. Gli insiemi $A\cup B$ e $A\cap B$ sono aperti, chiusi o né aperti né chiusi?
- 3) $A = \left\{x \in \mathbb{R}: 8 < 2^{3x-1} < 64\right\} = \left\{x \in \mathbb{R}: 2^3 < 2^{3x-1} < 2^6\right\} = \left\{x \in \mathbb{R}: 3 < 3x 1 < 6\right\} = \left\{x \in \mathbb{R}: \frac{4}{3} < x < \frac{7}{3}\right\}.$ $A \cup B = \left\{x \in \mathbb{R}: \frac{4}{3} < x < \frac{7}{3}\right\} \cup \left\{x \in \mathbb{R}: x \leq 2\right\} = \left\{x \in \mathbb{R}: x < \frac{7}{3}\right\}$, insieme aperto; $\mathcal{D}(A \cup B) = \left\{x \in \mathbb{R}: x \leq \frac{7}{3}\right\}.$ $A \cap B = \left\{x \in \mathbb{R}: \frac{4}{3} < x < \frac{7}{3}\right\} \cap \left\{x \in \mathbb{R}: x \leq 2\right\} = \left\{x \in \mathbb{R}: \frac{4}{3} < x \leq 2\right\}$, insieme né aperto né chiuso; $\delta(A \cap B) = \left\{\frac{4}{3}, 2\right\}.$

4) (8 punti) Calcolare i seguenti limiti:
$$\lim_{x \to 0} \frac{\sqrt[4]{1 + tg x} - 1}{x}$$
;

$$\lim_{x \to +\infty} \left(1 + \frac{1}{3+x}\right)^{3+x}.$$

4)
$$\lim_{x \to 0} \frac{\sqrt[4]{1 + tgx} - 1}{x} = \lim_{x \to 0} \frac{\sqrt[4]{1 + tgx} - 1}{tgx} \cdot \frac{tgx}{x} = \left(\to \frac{1}{4} \right) \cdot (\to 1) = \frac{1}{4}$$
.

L'Hôpital, infatti
$$\lim_{x \to 0} \frac{\sqrt[4]{1 + tg x} - 1}{x} = \frac{(\to 0)}{(\to 0)}$$
 FI. Applichiamo il Teorema:

$$\lim_{x \to 0} \frac{\sqrt[4]{1 + tg x} - 1}{x} \stackrel{H}{\Rightarrow} \lim_{x \to 0} \frac{\frac{1}{4 \cdot \sqrt[3]{(1 + tg x)^3}} \cdot (1 + tg^2 x)}{1} = \frac{\left(\to \frac{1}{4} \right)}{\left(\to 1 \right)} = \frac{1}{4}.$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{3 + x} \right)^{3 + x} = e.$$

- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y = \frac{1+x^2}{x}$. (Non sono richiesti il calcolo e lo studio della derivata seconda, la funzione non presenta punti di flesso)
- 5) $C.E.: x \neq 0, C.E. =]-\infty, 0[\cup]0, +\infty[.$

Eventuali simmetrie: $y(-x) = \frac{1+(-x)^2}{-x} = -\frac{1+x^2}{x} = -y(x)$. Funzione

dispari (simmetrica rispetto all'origine degli assi) la studiamo solo per $x \in [0, +\infty]$ ed operiamo per simmetria.

Segno ed intersezioni con gli assi: se x > 0, y > 0, $\forall x > 0$. Funzione positiva in $]0, +\infty[$; nessuna intersezione con gli assi cartesiani.

Limiti agli estremi del C.E.:

$$\lim_{x \to 0^{+}} \frac{1 + x^{2}}{x} = \frac{(\to 1)}{(\to 0^{+})} = +\infty; AsV \text{ di equazione } x = 0.$$

$$\lim_{x \to 0^{+}} \frac{1 + x^{2}}{x} = \lim_{x \to 1^{+}} \frac{1}{x} + x = (\to 0) + (\to +\infty) = +\infty$$

$$\lim_{x \to +\infty} rac{y}{x} = \lim_{x \to +\infty} rac{rac{1+x^2}{x}}{x} = \lim_{x \to +\infty} rac{1}{r^2} + 1 = 1;$$

$$\lim_{x \to +\infty} \frac{1+x^2}{x} = \lim_{x \to +\infty} \frac{1}{x} + x = (\to 0) + (\to +\infty) = +\infty.$$

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\frac{1+x^2}{x}}{x} = \lim_{x \to +\infty} \frac{1}{x^2} + 1 = 1;$$

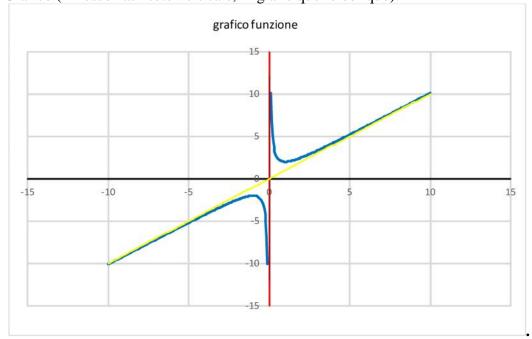
$$\lim_{x \to +\infty} y - x = \lim_{x \to +\infty} \frac{1+x^2}{x} - x = \lim_{x \to +\infty} \frac{1}{x} = 0; AsObDx \text{ disequatione } y = x.$$

Crescenza e decrescenza: $y'=\frac{2x\cdot x-(1+x^2)\cdot 1}{x^2}=\frac{x^2-1}{x^2}$. y'>0 se

 $x^2 - 1 > 0 \Rightarrow x^2 > 1 \Rightarrow x > 1$. Funzione strettamente decrescente in]0, 1[, strettamente crescente in $]1, +\infty[$. Punto di minimo relativo in m(1, 2).

Concavità e convessità: la presenza dei due asintoti, insieme al punto di minimo e all'assenza di punti di flesso, implicano che la funzione è strettamente convessa in $]0, +\infty[.$

Grafico (in rosso l'asintoto verticale, in giallo quello obliquo):



- 6) (8 punti) Determinare il valore del parametro positivo k per il quale risulta verificata la seguente uguaglianza: $\int_0^{3k} x^2 dx = \int_0^k x dx.$
- 6) $\int_0^{3k} x^2 dx = \left(\frac{1}{3}x^3\right)_0^{3k} = 9k^3$; $\int_0^k x dx = \left(\frac{1}{2}x^2\right)_0^k = \frac{1}{2}k^2$. Posto $9k^3 = \frac{1}{2}k^2$ si ottiene come unica soluzione positiva $k = \frac{1}{18}$.
- 7) (6 punti) Sia data la matrice $\mathbb{A} = \begin{bmatrix} 2 & 1 \\ 0 & 4 \\ 2 & 0 \end{bmatrix}$, il vettore $\mathbb{X} = \begin{pmatrix} h \\ h+k \\ k \end{pmatrix}$ e il vettore $\mathbb{Y} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$. Per quali valori dei parametri h e k risulta verificata l'uguaglianza $\mathbb{A}^T \cdot \mathbb{X} = \mathbb{Y}$?

7)
$$\mathbb{A}^T \cdot \mathbb{X} = \begin{bmatrix} 2 & 0 & 2 \\ 1 & 4 & 0 \end{bmatrix} \cdot \begin{pmatrix} h \\ h+k \\ k \end{pmatrix} = \begin{pmatrix} 2h+2k \\ 5h+4k \end{pmatrix}; \operatorname{con} \begin{pmatrix} 2h+2k \\ 5h+4k \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 risulta $h=2$ e $k=-1$.

- 8) (8 punti) Determinare l'espressione del piano tangente alla superficie di equazione $z = cos(x-2y) 3x\,$ nel punto di coordinate P(0,0).
- 8) Il piano tangente alla superficie ha equazione $z z(P) = \nabla z(P) \cdot \binom{x}{y}$. $z(P) = 1, \ \nabla z = (-sen(x-2y)-3, -sen(x-2y)\cdot (-2)), \ \nabla z(P) = (-3,0).$ Equazione del piano tangente: z-1=-3x, oppure 3x+z=1.

Compito $\mathbb{F}3$

1) (6 punti) Siano dati gli intervalli $\mathcal{I}_1 =]-\infty, 5[$ e $\mathcal{I}_2 =]e, 7[$. Determinare l'intervallo \mathcal{I}_3 tale per cui $\mathcal{I}_1 \cap \mathcal{I}_3 =]-e, 5[$ e $\mathcal{I}_2 \cap \mathcal{I}_3 =]e, 6]$. Dopo aver

determinato l'intervallo \mathcal{I}_3 , calcolare l'insieme $\mathcal{C}(\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3)$. (Con $\mathcal{C}(X)$ indichiamo l'insieme complementare dell'insieme X).

- 1) Da $\mathcal{I}_1 \cap \mathcal{I}_3 =]-e, 5[$ si ottiene $Inf(\mathcal{I}_3) = -e, -e \notin \mathcal{I}_3$ e $Sup(\mathcal{I}_3) \geq 5;$ da $\mathcal{I}_2 \cap \mathcal{I}_3 =]e, 6]$ si ottiene $Sup(\mathcal{I}_3) = 6$ e $6 \in \mathcal{I}_3$, quindi $\mathcal{I}_3 =]-e, 6].$ $\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3 =]-\infty, 5[\cup]e, 7[\cup]-e, 6] =]-\infty, 7[;$ $\mathcal{C}(\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3) = \mathcal{C}(]-\infty, 7[) = [7, +\infty[.$
- 2) (7 punti) Sia data la funzione $f(x) = 4^{x-1}$, sia inoltre f(g(x)) = 2x. Determinare le espressioni delle funzioni: g(x) e g(1-x).
- 2) Da $f(x) = 4^{x-1}$ si ottiene $f(g(x)) = 4^{g(x)-1}$, posto $4^{g(x)-1} = 2x$ si ha $g(x) 1 = \log_4(2x)$, da cui $g(x) = 1 + \log_4(2x)$. $g(1-x) = 1 + \log_4(2(1-x)) = 1 + \log_4(2-2x)$.
- 3) (7 punti) Siano dati gli insiemi $A = \left\{x \in \mathbb{R}: 1 < 2^{x-2} < 8\right\}$ e $B = \left\{x \in \mathbb{R}: x \leq 4\right\}$. Determinare l'insieme frontiera dell'intersezione fra A e B, $\delta(A \cap B)$; e l'insieme interno dell'unione fra A e B, $\overline{(A \cup B)}$. Gli insiemi $A \cup B$ e $A \cap B$ sono aperti, chiusi o né aperti né chiusi?
- 3) $A = \left\{x \in \mathbb{R} : 1 < 2^{x-2} < 8\right\} = \left\{x \in \mathbb{R} : 2^0 < 2^{x-2} < 2^3\right\} = \left\{x \in \mathbb{R} : 0 < x 2 < 3\right\} = \left\{x \in \mathbb{R} : 2 < x < 5\right\}.$ $A \cap B = \left\{x \in \mathbb{R} : 2 < x < 5\right\} \cap \left\{x \in \mathbb{R} : x \leq 4\right\} = \left\{x \in \mathbb{R} : 2 < x \leq 4\right\},$ insieme né aperto né chiuso; $\delta(A \cap B) = \left\{2, 4\right\}.$ $A \cup B = \left\{x \in \mathbb{R} : 2 < x < 5\right\} \cup \left\{x \in \mathbb{R} : x \leq 4\right\} = \left\{x \in \mathbb{R} : x < 5\right\},$ insieme aperto; $O(A \cup B) = A \cup B$, in quanto $O(A \cup B) = A \cup B$, in
- 4) (8 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{\sqrt{1 + sen x 1}}{x}$;

$$\lim_{x \to +\infty} \left(1 - \frac{1}{4+x}\right)^{4+x}.$$
4)
$$\lim_{x \to 0} \frac{\sqrt{1 + \operatorname{sen} x} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1 + \operatorname{sen} x} - 1}{\operatorname{sen} x} \cdot \frac{\operatorname{sen} x}{x} = \left(\to \frac{1}{2} \right) \cdot (\to 1) = \frac{1}{2}.$$

Il limite proposto può essere risolto anche tramite l'utilizzo del Teorema di De

L'Hôpital, infatti $\lim_{x\to 0} \frac{\sqrt{1+sen\,x}-1}{x} = \frac{(\to 0)}{(\to 0)} \ FI. \ \text{Applichiamo il Teorema:}$ $\lim_{x\to 0} \frac{\sqrt{1+sen\,x}-1}{x} \overset{H}{\Rightarrow} \lim_{x\to 0} \frac{\frac{1}{2\cdot\sqrt{1+sen\,x}}\cdot\cos x}{1} = \frac{(\to 0)}{1} = \frac{1}{2}.$ $\lim_{x\to +\infty} \left(1-\frac{1}{4+x}\right)^{4+x} = e^{-1}.$

- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=\frac{x}{1+4x^2}$. (Non sono richiesti il calcolo e lo studio della derivata seconda, la funzione presenta tre punti di flesso)
- 5) C.E.: $1+4x^2\neq 0$, vera $\forall x\in\mathbb{R}.$ $C.E.=\mathbb{R}.$ Eventuali simmetrie: $y(-x)=\frac{-x}{1+4(-x)^2}=-\frac{x}{1+4x^2}=-y(x)$. Funzione dispari (simmetrica rispetto all'origine degli assi) la studiamo solo per $x\in[0,+\infty[$ ed operiamo per simmetria.

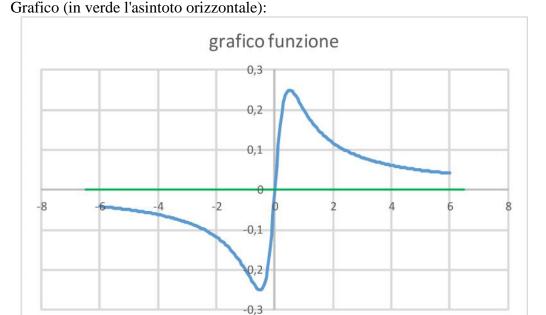
Segno ed intersezioni con gli assi: se $x>0, y>0, \ \forall x>0$. Funzione positiva in $]0, +\infty[$; y(0)=0, unica intersezione con gli assi cartesiani in O(0,0). Limiti agli estremi del C.E.:

$$\lim_{x\to +\infty}\frac{x}{1+4x^2}=\lim_{x\to +\infty}\frac{\cancel{t}}{\cancel{t}\big(\frac{1}{x}+4x\big)}=\frac{1}{(\to +\infty)}=0; AsOrDx \ \text{diagonal equation}$$
 equations $y=0$.

Crescenza e decrescenza:
$$y' = \frac{1 \cdot (1 + 4x^2) - x \cdot 8x}{(1 + 4x^2)^2} = \frac{1 - 4x^2}{(1 + 4x^2)^2}$$
. $y' > 0$ se

$$1-4x^2>0\Rightarrow 4x^2<1\Rightarrow x^2<\frac{1}{4}\Rightarrow x<\frac{1}{2} \text{ . Funzione strettamente crescente in } \begin{bmatrix}0,\frac{1}{2}\Big[\text{ , strettamente decrescente in }\Big]\frac{1}{2},+\infty\Big[\text{ . Punto di massimo assoluto in } M\left(\frac{1}{2},\frac{1}{4}\right).$$

Concavità e convessità: la presenza dell'asintoto, insieme al punto di massimo ed ai tre di punti di flesso, implicano che la funzione è strettamente concava in $]0,\alpha[$ e strettamente convessa in $]\alpha, +\infty[$, dove $\alpha>\frac{1}{2}$ è l'ascissa di un punto di flesso, per la simmetria della funzione, O(0,0) è punto di flesso.



6) (8 punti) Determinare il valore del parametro positivo k per il quale risulta verificata la seguente uguaglianza: $\int_0^{4k} x^2 dx = \int_0^k x dx.$

6)
$$\int_0^{4k} x^2 dx = \left(\frac{1}{3}x^3\right)_0^{4k} = \frac{64}{3}k^3$$
; $\int_0^k x dx = \left(\frac{1}{2}x^2\right)_0^k = \frac{1}{2}k^2$. Posto $\frac{64}{3}k^3 = \frac{1}{2}k^2$ si ottiene come unica soluzione positiva $k = \frac{3}{128}$.

7) (6 punti) Sia data la matrice
$$\mathbb{A} = \begin{bmatrix} 3 & h & 0 \\ h & k & 1 \end{bmatrix}$$
, il vettore $\mathbb{X} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}$ e il vettore $\mathbb{Y} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$. Per quali valori dei parametri h e k risulta verificata l'uguaglianza

7)
$$\mathbb{A} \cdot \mathbb{X} = \begin{bmatrix} 3 & h & 0 \\ h & k & 1 \end{bmatrix} \cdot \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 - 3h \\ 3h - 3k \end{pmatrix}; \operatorname{con} \begin{pmatrix} 9 - 3h \\ 3h - 3k \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \text{ risulta}$$

$$h = 2 e k = 1.$$

- 8) (8 punti) Determinare l'espressione del piano tangente alla superficie di equazione z = y + arctg(3x + y) nel punto di coordinate P(0,0).
- 8) Il piano tangente alla superficie ha equazione $z z(P) = \nabla z(P) \cdot \begin{pmatrix} x \\ y \end{pmatrix}$.

$$z(P) = 0, \ \nabla z = \left(\frac{1}{1 + (3x + y)^2} \cdot 3, 1 + \frac{1}{1 + (3x + y)^2}\right), \ \nabla z(P) = (3, 2).$$

Equazione del piano tangente: z = 3x + 2y, oppure 3x + 2y - z = 0.

Compito $\mathbb{F}4$

- 1) (6 punti) Siano dati gli intervalli $\mathcal{I}_1 = [-e, 3]$ e $\mathcal{I}_2 = [-4, 0]$. Determinare l'intervallo \mathcal{I}_3 tale per cui $\mathcal{I}_1 \cup \mathcal{I}_3 = [-2e, 3]$ e $\mathcal{I}_2 \cup \mathcal{I}_3 =]-2e, 2[$. Dopo aver determinato l'intervallo \mathcal{I}_3 , calcolare l'insieme $\mathcal{C}(\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3)$. (Con $\mathcal{C}(X)$ indichiamo l'insieme complementare dell'insieme X).
- 1) Da $\mathcal{I}_1 \cup \mathcal{I}_3 = [-2e, 3]$ si ottiene $Inf(\mathcal{I}_3) = -2e, -2e \in \mathcal{I}_3$ e $-e \leq Sup(\mathcal{I}_3) \leq 3$; $\mathcal{I}_2 \cup \mathcal{I}_3 =]-2e, 2[$ si ottiene $Sup(\mathcal{I}_3) = 2$ e $2 \notin \mathcal{I}_3$, quindi $\mathcal{I}_3 = [-2e, 2[$. $\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3 = [-e, 3] \cap [-4, 0] \cap [-2e, 2[=[-e, 0];$ $\mathcal{C}(\mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3) = \mathcal{C}([-e, 0]) =]-\infty, -e[\cup]0, +\infty[$.
- 2) (7 punti) Sia data la funzione $f(x) = e^{1-5x}$, sia inoltre f(g(x)) = 3x + 5. Determinare le espressioni delle funzioni: g(x) e g(f(x)).
- 2) Da $f(x) = e^{1-5x}$ si ottiene $f(g(x)) = e^{1-5g(x)}$, posto $e^{1-5g(x)} = 3x + 5$ si ha $1 5g(x) = \log(3x + 5)$, da cui $g(x) = \frac{1 \log(3x + 5)}{5}$. $g(f(x)) = g(e^{1-5x}) = \frac{1 \log(3e^{1-5x} + 5)}{5}$.
- 3) (7 punti) Siano dati gli insiemi $A = \left\{x \in \mathbb{R} : x \leq 1\right\}$ e $B = \left\{x \in \mathbb{R} : 1 \leq 4^{2x} \leq 64\right\}$. Determinare l'insieme derivato dell'intersezione fra A e B, $\overline{(A \cap B)}$; e l'insieme interno dell'unione fra A e B, $\overline{(A \cup B)}$. Gli insiemi $A \cup B$ e $A \cap B$ sono aperti, chiusi o né aperti né chiusi?
- 3) $B = \left\{ x \in \mathbb{R} : 1 \le 4^{2x} \le 64 \right\} = \left\{ x \in \mathbb{R} : 4^0 \le 4^{2x} \le 4^3 \right\} = \left\{ x \in \mathbb{R} : 0 \le 2x \le 3 \right\} = \left\{ x \in \mathbb{R} : 0 \le x \le \frac{3}{2} \right\}.$ $A \cap B = \left\{ x \in \mathbb{R} : x \le 1 \right\} \cap \left\{ x \in \mathbb{R} : 0 \le x \le \frac{3}{2} \right\} = \left\{ x \in \mathbb{R} : 0 \le x \le 1 \right\},$ insieme chiuso; $\mathcal{D}(A \cap B) = A \cap B$, in quanto $A \cap B$ è un insieme chiuso. $A \cup B = \left\{ x \in \mathbb{R} : x \le 1 \right\} \cup \left\{ x \in \mathbb{R} : 0 \le x \le \frac{3}{2} \right\} = \left\{ x \in \mathbb{R} : x \le \frac{3}{2} \right\},$ insieme chiuso; $\overline{(A \cup B)} = \left\{ x \in \mathbb{R} : x < \frac{3}{2} \right\}.$

4) (8 punti) Calcolare i seguenti limiti:
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x}$$
;

$$\lim_{x \to +\infty} \left(1 + \frac{2}{8+x}\right)^{8+x}.$$

4)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x} = \lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2} \cdot x = \left(\to \frac{1}{3} \right) \cdot (\to 0) = 0.$$

Il limite proposto può essere risolto anche tramite l'utilizzo del Teorema di De

L'Hôpital, infatti
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x} = \frac{(\to 0)}{(\to 0)}$$
 FI. Applichiamo il Teorema:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2} - 1}{x} \stackrel{H}{\Rightarrow} \lim_{x \to 0} \frac{\frac{1}{3 \cdot \sqrt[3]{(1+x^2)^2}} \cdot 2x}{1} = \frac{(\to 0)}{1} = 0.$$

$$\lim_{x \to +\infty} \left(1 + \frac{2}{8+x}\right)^{8+x} = e^2.$$

- 5) (10 punti) Determinare l'andamento del grafico della funzione di equazione $y=\frac{2\,x}{1+x^2}\,.$ (Non sono richiesti il calcolo e lo studio della derivata seconda, la funzione presenta tre punti di flesso)
- 5) $C.E.: 1 + x^2 \neq 0$, vera $\forall x \in \mathbb{R}. C.E. = \mathbb{R}.$

Eventuali simmetrie:
$$y(-x) = \frac{2(-x)}{1+(-x)^2} = -\frac{2x}{1+x^2} = -y(x)$$
. Funzione

dispari (simmetrica rispetto all'origine degli assi) la studiamo solo per $x \in [0, +\infty[$ ed operiamo per simmetria.

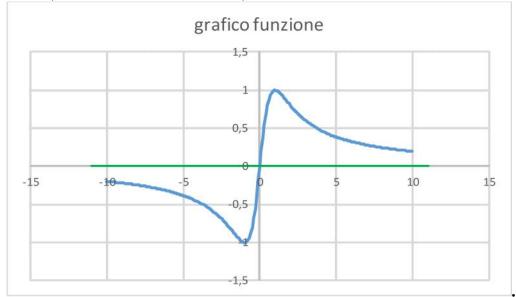
Segno ed intersezioni con gli assi: se x>0, y>0, $\forall x>0$. Funzione positiva in $]0, +\infty[$; y(0)=0, unica intersezione con gli assi cartesiani in O(0,0). Limiti agli estremi del C.E.:

$$\lim_{x \to +\infty} \frac{2x}{1+x^2} = \lim_{x \to +\infty} \frac{2x}{x(\frac{1}{x}+x)} = \frac{2}{(-\infty)} = 0; AsOrDx \text{ disequazione } y = 0.$$

Crescenza e decrescenza:
$$y' = \frac{2 \cdot (1 + x^2) - 2x \cdot 2x}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2}$$
. $y' > 0$ se $1 - x^2 > 0 \Rightarrow x^2 < 1 \Rightarrow x < 1$. Funzione strettamente crescente in $[0, 1[$,

 $1-x^2>0\Rightarrow x^2<1\Rightarrow x<1$. Funzione strettamente crescente in [0,1[, strettamente decrescente in $]1,+\infty[$. Punto di massimo assoluto in M(1,1). Concavità e convessità: la presenza dell'asintoto, insieme al punto di massimo ed ai tre di punti di flesso, implicano che la funzione è strettamente concava in $]0,\alpha[$ e strettamente convessa in $]\alpha,+\infty[$, dove $\alpha>1$ è l'ascissa di un punto di flesso, per la simmetria della funzione, O(0,0) è punto di flesso.

Grafico (in verde l'asintoto orizzontale):



- 6) (8 punti) Determinare il valore del parametro positivo k per il quale risulta verificata la seguente uguaglianza: $\int_{0}^{k} x^{2} dx = \int_{0}^{3k} x dx$.
- 6) $\int_0^k x^2 dx = \left(\frac{1}{3}x^3\right)_0^k = \frac{1}{3}k^3$; $\int_0^{3k} x dx = \left(\frac{1}{2}x^2\right)_0^{3k} = \frac{9}{2}k^2$. Posto $\frac{1}{3}k^3 = \frac{9}{2}k^2$ si ottiene come unica soluzione positiva $k = \frac{27}{2}$.
- 7) (6 punti) Sia data la matrice $\mathbb{A} = \begin{bmatrix} h & 0 & -1 \\ -3 & 0 & k \\ h & k & -1 \end{bmatrix}$, il vettore $\mathbb{X} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$ e il

vettore $\mathbb{Y} = \begin{pmatrix} 6 \\ -10 \\ -6 \end{pmatrix}$. Per quali valori dei parametri h e k risulta verificata

l'uguaglianza
$$\mathbb{A}^T \cdot \mathbb{X} = \mathbb{Y}$$
?

7) $\mathbb{A}^T \cdot \mathbb{X} = \begin{bmatrix} h & -3 & h \\ 0 & 0 & k \\ -1 & k & -1 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 6h \\ 5k \\ -6 \end{pmatrix}; \operatorname{con} \begin{pmatrix} 6h \\ 5k \\ -6 \end{pmatrix} = \begin{pmatrix} 6 \\ -10 \\ -6 \end{pmatrix}$
risulta $h = 1$ e $k = -2$.

- 8) (8 punti) Determinare l'espressione del piano tangente alla superficie di equazione z = 3y + tg(x - 2y) nel punto di coordinate P(0,0).
- 8) Il piano tangente alla superficie ha equazione $z z(P) = \nabla z(P) \cdot \begin{pmatrix} x \\ y \end{pmatrix}$.

$$\begin{split} z(P) &= 0, \ \nabla z = \left(1 + tg^2(x-2y), 3 + \left(1 + tg^2(x-2y)\right) \cdot (-2)\right), \\ \nabla z(P) &= (1,1). \ \text{Equazione del piano tangente:} \ z = x+y, \ \text{oppure} \ x+y-z = 0. \end{split}$$