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I M 1) Find all the complex numbers z such that their immaginary part are equal 2 and
the module of complex number z + ¢ isequal 5. For every complex number z found,
calculate its argument.

If the immaginary part of complex numberisequa 2, z =a+2i and z+ ¢ =a + 3i
with themodulep = /a2 + 9. Put /a2 +9 =5 follow a* 4+ 9 = 25 and a* = 16
with ¢ = 4+ 4 ; therequest complex numbersare z; =4+ 2¢ and zo = — 4 + 2i. For
its arguments remember that if a # 0, the argument of = can be calculated by

b 2 1
0= arctg(—) and for z; and z, we get 6,2 = arctg< + 1) = + arctg(i) ;
a
012~ +£0.46 radiant.

2 2 -1
I M 2) Given the matrix A = [ -1 2 1 ] and knowing that 1 is an eigenvalue of
3 kK =2

the matrix; study if the matrix A is diagonalizable or not.
At the first step we calculate the characteristic polynomial of matrix A;
A—2 =2 1

PA(A):‘)\H—.M: 1 A—2 -1 :(A_Q)"A__]f )\;12‘+
-3 -k A+2
1 -1 1 A=2
_2"—3 A+2‘_‘—3 —k‘:“— ) (A =2)A+2) — k) +

2 A 42-3)— (—k+30A—2)=(A—2)- (N2 —4—k)—2-(A—1)+
—(BA=6—Fk) =X\ —2X2 — (9+ k)X + 16 + 3k. If 1 isan eigenvalue of the matrix,
1 isaroot of the characteristic polynomial thus P, (1) = 0 and Py (1) = 6 4 2k; put

2 2 —1
6+ 2k =0easlywefindk = —3.MatrixA=| —1 2 1 | and
3 -3 -2
PaA) =X =222 -6A+T=\X=-1)- (N2 =X-7).
Now we cal cul ate the remaining two eigenvalues putting A> — A — 7 = 0, the equation

. 1+£+/29 .
has solutions — and the three eigenvaluesof A are \; = 1 and

1++/29 L . . .
Aoz = — ; matrix is diagonalizable becouse its three eigenvalues are one to one
distinct.

mxi1 + mxo + mxs = 0
I M 3) Given the linear system ¢ mz; + mxs +2x3 =0 ,wheremisared
mxi + 9 + 3 = 0
parameter. We indicate with .S,,, the set of its solutions, study, varing of m, the
dimention of the set S,,,, and when the dimention is bigger, find abasisfor S,,,.



m m
The matrix associated to the system is [ m 1 ] . We reduce the matrix by elementary
1 1
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operations on its lines:

m m m
m m 1 |-k

RgHRngJ
m 1 1

m m m m m m

0 0 l1-m|RoR| 0 1—m 1—m].

0O I—-m 1—-m 0 0 1—m
m m m

The determinant of the reduced matrixis| 0 1 —m 1 —m|=m(1 —m) anditisdifferent
0 0 1—m

m m m
from zeroif and only if m # 0 and m # 1, rank of matrix [ m m 1 ] isthreeif and only if
m 1 1
m # 0 and m # 1 and thisimply that in this case the dimention of S,,, iszero. If m = 1 the matrix
1 1 1
associated to the system is [1 1 1} , With rank equal at 1 and dimention of S,,, 2; finally if
1 1 1
0 0 0
m = 0 the matrix associated to thesystemis | 0 0 1 |, withrank equal a 2 and dimention of
0 1 1
2 ifm=1
Sy 1. Inconclusion dim(S,,) = ¢ 1 if m =0 . Dimention of S,, isbigger if m = 1, andin this
0 otherwise
case the system is reduced to the unique equazion x1 + o + z3 =00rz3 = — x; — x9,and a

generic element of Sy is (21,2, — 21 — x2) = 21(1,0, — 1) + 22(0,1, — 1), abasisfor S isthe
set of vectors Bg, = {(1,0, — 1), (0,1, — 1)}. To be thorough we consider also the case m = 0,
in this situation the system is reduced to { 23 =0 = {x3 =Y and ageneric element of
) + Iy = 0 Tro =
Sois(x1,0,0) = 21(1,0,0), abasisfor S, isthe set Bs, = {(1,0,0)}.
| M 4) Given alinear map F: R? — R3, we know that:
1. F(1,1,1) = (0,0,0);
2. F(0,0,1) = (0,0, 1);
3. F(1,0,0) = (1,0,0).
Find the dimention of itsimage and the dimention of its kernel; and for both, image and kernel, set
abasis.
For the linear map F' we know that the vector (1, 1, 1) belongs in the kernel of F', thus
the dimention of the kernel is at least one: dim(KerF') > 1. Thetwo linear indipendent
vectors (0,0, 1) and (1, 0,0) belong in theimage of F', thus the dimention of the image
isat least two: dim(ImaF’) > 2. By the dimention Theorem is known that for the linear
map F, dim(KerF) + dim(ImaF) = dim(R?) = 3, an by the two previous
inequalities easily we conclude that dim(KerF') = 1 and dim(ImakF') = 2. Thetwo
basis for the spaces kernel and image can be easily found as Bx.,» = {(1,1,1)} and
BIm(LF = {(07 07 1)7 (17 07 0)}
[I M 1) Theequation f(x,y) = 0 satisfied on point P(zp,yp), defined an implicit
function y = y(x) . We know that the gradient of f onpoint PisV f(P) = (1, — 1)
1 —1
-1 1
function calcul ate the first and second derivatives y'(zp) and 3" (zp).

and the Hessian matrix of f onpoint PisHf(P) = { ] For thisimplicit



By the Dini's Theorem if f}(P) # 0, ¢/'(xp) = — ‘J%g; = — —Ll =1;and
Ji(ap) = _ PV T2 a’c’,y(P)'y’@ﬁP);r R CACI)
(£5(P))
L) 2 1, (P) + F1,(P)
(13(P))’

142 (—1)+1
— 5 :0
(—=1)
1 M 2) Solve the problem {

Max/min f(z,y) = 3 + 1°

uc:az?+y* <8 '

The function f isapolynomial, continuos function, the admissible region is the interior
region of a circunference, abounded and closed set; constraint is qualified on
circunference, therefore f presents absolute maximum and minimum in the admissible
region. The Lagrangian function is

L(z,y,\) = 2° + > — X\2? + y* — 8) with

VL = (32% — 2)z, 3y> — 2\y, — (22 + 9% —8)).

I° CASE (free optimization):

A=0 A=0
322 =0 z=0 . . . - 6 O
3% = 0 = y—0 point (0,0) isadmissible, Hf = { 0 6y] and
> +y?—8<0 —8<0
Hf(0,0) = [8 8} , H2(0,0) = 0. We haven't any information about the nature of
point (0, 0).
11° CASE (constrained optimization):
A#£0 A#0
327 — 2 z =0 x(3x —2X) =0 e
3y — 2y = 0 = y(By—2)\) =0’ we must evaluate four possibilities:
2 +9y?—-8=0 ?+y* =38

a:ifr =0andy = 0, 0% + 0% # 8; point (0,0) isn't admissible;

biifr=0and y = g)\,weget %)\2:8 = A =18 = A= +£3/2; point

P (0, 2\/§)is a candidate to maximum, while point P, (0, - 2\/§)is acandidate to
minimum;

cify=0and z = %A,wegetagain gAQ =8 = A= £32; pointP3(2\/§,0)is
a candidate to maximum, while point P4( — 2\/5, O) is acandidate to minimum;

d:if z = g)\ and y = %)\,Weget SAQ =8 = A =9 = A= +3;point P;(2,2)is

acandidate to maximum, while point Ps( — 2, — 2)is acandidate to minimum.
f(P13) = 164/2, f(Ps) =16 < 16+/2, f presents absolute maximum equal 16+/2 on

points (0,2\/5) and (2\/5, 0); F(Pot) = —16v/2, f(P) = — 16 > — 161/2, f
presents absoluteminimum equal — 161/2 on points (0, — 2\/5) and ( —2/2, 0).

To analize the nature of point P; and F; we study the function f aong the upper and the
lower border of the admissible region. Rewrite the circunference's equation as



y?> = 8 — % , the upper and the lower borders of the admissible region are respectively
y=+V8—zandy= — 8 —z2.

In the upper border consider the function f (x, + V8- :u?) =

z° + (\/8—3:2)3 =g(z), ¢ (z) = 3.202—%3(\/8—.%2)2-#\/% =

3x(w—\/8—x2);g'(x)>0ifand0n|yif —2/2<z<00r2<z< 22 Along

the upper border, function f isincreasingfor —2\/2 < z < 0and2 < z < 2/2,
decreasing for 0 < x < 2, P; isafase maximum (minimum point aong the border).
By the exchangeability on variablesin function f (f(z,y) = f(y, x)), Similar results
can be achaived in the lower border.

In the graphic below, the admissible region, in red, and the behaviour of f along the
border rappresented by the turquoise arrows.

Max/min f(z,y) = z* + 3>
uc.x—y==4 '
The Lagrangian function of the problemis

L(z,y,\) =2+ 9> — ANz —y—4) with
VL=Q2x—N2y+ A\, —(z—y—4)).

1 M 3) Solve the problem {

FocC:
20— A =0 r=A/2 T =\/2 T =2
2+ A=0 = S y= —\/2 = y=—A/2 =< y= —2;0ne
xT—y= A2+ A/2=4 A=4 A=4
constraint critical points P = (2, — 2).
SOC:
0 -1 1 0 -1 1
H=|-1 2 O0f,with|Hl=[-1 2 0 :"11 g‘ “11 g‘—
1 0 2 1 0 2
—2—-2= —4.|H(P)| <0, P point of minimum with f(P) = 8.
Il M 4) Given the function f(z,y) = " — " ¥ and the unit vector v = %, ?) ;

calculate on point (0, 0) the directional derivatives D, f(0,0) and Dﬁ), £(0,0).



Vf(x,y) — (6x+y _ exfy, etty + et~ y)
1
D,f(0,0) = V(0,0)-v = (0,2)- | 5,
e:r;-i—y — ey 61+J+811 Y
Hf(x7y> [ Tty 4 Ty ety _
1

L9 ()

V£(0,0) = (0,2),

} d 1
%) [2 0}(



