UNIVERSITA' DEGLI STUDI DI SIENA Scuola di Economia e Management A.A. 2023/24 Quantitative Methods for Economic Applications - Mathematics for Economic Applications Task 3/6/2024 IM 1) Given the complex number $z = \frac{(1-i)^2}{(1+i)^2}$, calculate its square roots.
 $(1-i)^2$ $1-2i+i^2$ $1-2i-1$ $-2i$ Economic Applica

Economic Applica
 $(\frac{3}{6}/2024)$
 $\frac{1-i}{(1+i)^2}$, calculate its squ **Economic Applicat**
 k 3/6/2024
 $\frac{(1-i)^2}{(1+i)^2}$, calculate its squa

ECONOMIC Applica
 $\frac{3}{6/2024}$
 $\frac{1-i}{1+i}$, calculate its squ
 $\frac{1}{1+i} = \frac{-2i}{2i} = -1 = co$ **k** 3/6/2024
 $\frac{(1-i)^2}{(1+i)^2}$, calculate its squa
 $\frac{-1}{-1} = \frac{-2i}{2i} = -1 = \cos \theta$ $\overline{2}$ $_2$, calc

I M 1) Given the complex number $z = \frac{(1-i)^2}{(1+i)^2}$, calculate its square roots.
 $z = \frac{(1-i)^2}{(1+i)^2} = \frac{1-2i+i^2}{1+2i+i^2} = \frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i \sin \pi$. For the square roots we apply the classical formula: **Task 3/6/2024**

Given the complex number $z = \frac{(1-i)^2}{(1+i)^2}$, calculate its square re
 $\frac{1-i}{(1+i)^2} = \frac{1-2i+i^2}{1+2i+i^2} = \frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i$ Given the complex number $z = \frac{(1 - i)^2}{(1 + i)^2}$, calculate its square
 $\frac{1 - i)^2}{(1 + i)^2} = \frac{1 - 2i + i^2}{1 + 2i + i^2} = \frac{1 - 2i - 1}{1 + 2i - 1} = \frac{-2i}{2i} = -1 = \cos \pi$

croots we apply the classical formula:) Given the complex numb
 $\frac{(1-i)^2}{(1+i)^2} = \frac{1-2i+i^2}{1+2i+i^2} =$

e roots we apply the classic) Given the complex numb
 $\frac{(1-i)^2}{(1+i)^2} = \frac{1-2i+i^2}{1+2i+i^2} =$

e roots we apply the classic
 $= \sqrt{\cos \pi + i \sin \pi} = \cos \theta$ 2 $\overline{1}$ $2^{\sim}1$. 2 1 . the state of $\frac{(1-i)^2}{(1+i)^2}$, calculate its square roots.
 $\frac{2}{2} = \frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i \sin \pi$. For the assical formula: square roots we apply the classical formula: $z = \frac{(1-i)^2}{(1+i)^2} = \frac{1-2i+i^2}{1+2i+i^2} = \frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i \sin \pi$. For the
square roots we apply the classical formula:
 $\sqrt{z} = \sqrt{\cos \pi + i \sin \pi} = \cos \left(\frac{\pi}{2} + k\pi\right) + i \sin \left(\frac{\pi}{2} + k\pi\right) k = 0, 1$. The two roots
are $(1+i)^2$
= $\frac{1-2i+i^2}{1+2i+i^2} = \frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i \sin \pi$.
we apply the classical formula:
 $\pi + i \sin \pi = \cos \left(\frac{\pi}{2} + k\pi\right) + i \sin \left(\frac{\pi}{2} + k\pi\right)$ $k = 0, 1$. The two $\text{Tr } z = \frac{z}{(1+i)^2}$, calculate its square roots.
 $\frac{1-2i-1}{1+2i-1} = \frac{-2i}{2i} = -1 = \cos \pi + i \sin \pi$. For the all formula:
 $\frac{\pi}{2} + k\pi + i \sin \left(\frac{\pi}{2} + k\pi\right) k = 0, 1$. The two roots

$$
\sqrt{z} = \sqrt{\cos \pi + i \sin \pi} = \cos \left(\frac{\pi}{2} + k\pi\right) + i \sin \left(\frac{\pi}{2} + k\pi\right) \ k = 0, 1.
$$
 The two roots

are:

$$
z = \frac{z - \overline{(1 + i)^2}}{1 + 2i + i^2} - \frac{1}{1 + 2i - 1} - \frac{1}{2i} - \frac{1}{2i} - \frac{1}{1 + 2i - 1}
$$

\nsquare roots we apply the classical formula:
\n
$$
\sqrt{z} = \sqrt{\cos \pi + i \sin \pi} = \cos \left(\frac{\pi}{2} + k\pi\right) + i \sin \left(\frac{\pi}{2} + k\pi\right) k = 0
$$

\nare:
\n
$$
k = 0 \rightarrow z_0 = \cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right) = i
$$

\n
$$
k = 1 \rightarrow z_1 = \cos \left(\frac{3\pi}{2}\right) + i \sin \left(\frac{3\pi}{2}\right) = -i
$$

\nIM 2) Given the matrix $\mathbb{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$, calculate its eigenvalues

 $\lim_{t \to 0} \left(\frac{3\pi}{2} \right) = -i.$
 $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$, calculate its eigenvalues of the subset of the su $\begin{pmatrix} 2\sin\left(\frac{3\pi}{2}\right) = -i. \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$, calculate its eigenvalues and study if the
not.
he characteristic polynomial of matrix \mathbb{A} . $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$, calculate its eigenval

e or not.

late the characteristic polynomial of ma
 $\begin{bmatrix} -1 & 0 & -2 \\ 0 & \lambda - 1 & 0 \\ 4 & 0 & \lambda - 1 \end{bmatrix} = (\lambda - 1) \begin{bmatrix} \lambda - 1 \\ -4 \end{bmatrix}$ ix $\mathbb{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$, calculate its eigenvalue

zable or not.

lculate the characteristic polynomial of matri
 $\begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 1 & 0 \\ 4 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 1 & 0 \\ -4 & 0 \end{vmatrix$

matrix A is diagonalizable or not.

At the first step we calculate the characteristic polynomial of matrix \mathbb{A} ;

I M 2) Given the matrix
$$
A = \begin{bmatrix} 0 & 1 & 0 \ 4 & 0 & 1 \end{bmatrix}
$$
, calculate its eigenvalues and study if the
matrix A is diagonalizable or not.
At the first step we calculate the characteristic polynomial of matrix A;

$$
P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda - 1 & 0 & -2 \ 0 & \lambda - 1 & 0 \ -4 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \ -4 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \ -4 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \ \lambda - 1 & -2 \end{vmatrix}
$$
 $(\lambda - 1)((\lambda - 1)^2 - 8)$. Putting $P_{\mathbb{A}}(\lambda) = 0$ we find the three eigenvalues of matrix A; if

At the first step we calculate the characteristic polynomial of matrix A;
 $P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 1 & 0 \\ -4 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 1 \end{vmatrix} = (\lambda - 1)((\lambda - 1)^2 - 8)$. Putting P_{\mathbb $(\lambda - 1)((\lambda - 1)^2 - 8)$. Putting $P_{\mathbb{A}}(\lambda) = 0$ we find the three eigenvalues of matrix \mathbb{A} ; if $P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 1 & 0 \\ -4 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} (\lambda - 1)((\lambda - 1)^2 - 8) \end{vmatrix}$. Putting $P_{\mathbb{A}}(\lambda) = 0$ we find the three eigenvalues of matrix A; if $P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} 0 & \lambda - 1 & 0 \\ -4 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 1 \end{vmatrix} = (\lambda - 1)((\lambda - 1)^2 - 8)$. Putting $P_{\mathbb{A}}(\lambda) = 0$ we find the three eigenvalues of n $\lambda - 1 = 0$, we have the first eigenvalue $(\lambda - 1)^2 = 8$ and $\lambda - 1 = \pm 2\sqrt{2}$, thus $\lambda_{2,3} = 1 \pm 2\sqrt{2}$. The three eigenvalues are one to one differents, thus matrix A is a diagonalizable one. $(\lambda - 1)((\lambda - 1)^2 - 8)$. Putting $P_A(\lambda) = 0$ we find the three eigenvalue $\lambda - 1 = 0$, we have the first eigenvalue $\lambda_1 = 1$; if $(\lambda - 1)^2 - 8 = 0$
 $(\lambda - 1)^2 = 8$ and $\lambda - 1 = \pm 2\sqrt{2}$, thus $\lambda_{2,3} = 1 \pm 2\sqrt{2}$. The three one to

 $\lambda - 1 = 0$, we have the first eigenvalue $\lambda_1 = 1$; if $(\lambda - 1)^2 - 8 = 0$ it follow $(\lambda - 1)^2 = 8$ and $\lambda - 1 = \pm 2\sqrt{2}$, thus $\lambda_{2,3} = 1 \pm 2\sqrt{2}$. The three eigenvalues are one to one differents, thus matrix $\mathbb A$ is a dia Find the matrix associated with the linear application, calculate the dimentions of both, kernel and immage of F , and find a basis for the kernel and a basis for the image. I M 3) Given the linear application $F: \mathbb{R}^3 \to \mathbb{R}^2$, we know that:
1. $F(1, 0, 0) = (1, 0);$
2. $F(1, 1, 0) = (1, 1);$
3. I the matrix $P: \mathbb{R} \to \mathbb{R}$, we know that.

(0); 2. $F(1, 1, 0) = (1, 1);$ 3. $F(1, 1, 1) = (1, 1).$

ociated with the linear application, calculate the dimentions of both,

of F, and find a basis for the kernel and a basis f

1.
$$
P(1, 0, 0) = (1, 0),
$$

\n2. $P(1, 1, 0) = (1, 1),$
\n3. $P(1, 1, 1) = (1, 1).$
\nFind the matrix associated with the linear application, calculate the dimensions of
\nkernel and immage of *F*, and find a basis for the kernel and a basis for the image.
\nDefine with $A_F = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ the matrix associated to the linear application, by
\nconditions 1., 2. and 3. we know $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} =$
\n $\begin{bmatrix} a & a+b & a+b+c \\ d & d+e & d+e+f \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, thus $a = 1, b = 0, c = 0, d = 0, e = 1$

Find the matrix associated with the linear application, calculate the dimentions of
kernel and immage of F, and find a basis for the kernel and a basis for the image
Define with $A_F = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ the matrix ass

Define with
$$
\mathbb{A}_F = \begin{bmatrix} a & b \\ d & e & f \end{bmatrix}
$$
 the matrix associated to the linear application, by
conditions 1., 2. and 3. we know $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} =$
 $\begin{bmatrix} a & a+b & a+b+c \\ d & d+e & d+e+f \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, thus $a = 1, b = 0, c = 0, d = 0, e = 1$ and
 $f = 0$; $\mathbb{A}_F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Matrix \mathbb{A}_F has rank equal 2 and the dimension of the image
is 2 while the dimension of the kernel is 1; for the basis of the image we can note that
the codomain of F is the set \mathbb{R}^2 and the dimension of the image is 2 thus $\text{Im}a(F) = \mathbb{R}^2$

and a base for it is the set $\mathcal{B}_{Ima(F)} = \{(1,0), (0,1)\}$. For a basis of the kernel we take a generic element of the domain (x, y, z) , its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ x \\ y \end{pm$ and a base for it is the set $\mathcal{B}_{Ima(F)} = \{(1,0), (0,1)\}\)$. For a basis of the kernel we take a
generic element of the domain (x, y, z) , its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, thus
 $(x$ $y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $z \leftarrow \sqrt{z}$ $x\Big\}$ there $y \int$, thus (1, 0), (0, 1)}. For a basis of the kernel we take a

, its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, thus

aly if $x = y = 0$ and we conclude that a generic

and a base for it is the set $B_{Ima(F)} = \{(1,0), (0,1)\}\)$. For a basis of the kernel we take a generic element of the domain (x, y, z) , its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, thus $(x, y, z$ generic element of the domain (x, y, z) , its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$
 (x, y, z) belongs on the kernel if and only if $x = y = 0$ and we conclude that a ge

element of the ker

generic element of the domain (x, y, z) , its image is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$, thus (x, y, z) belongs on the kernel if and only if $x = y = 0$ and we conclude that a generic element o (x, y, z) belongs on the kernel if and only if $x = y = 0$ and we conclude that a generic
element of the kernel is $(0, 0, z) = z(0, 0, 1)$. A basis for the kernel is the set
 $\mathcal{B}_{Ker(F)} = \{(0, 0, 1)\}$.
I M 4) Vector V has coordin (*x*, *y*, *z*) detongs on the kerner in an
element of the kernel is $(0, 0, z) =$
 $\mathcal{B}_{Ker(F)} = \{(0, 0, 1)\}.$
I M 4) Vector *V* has coordinates (1
coordinates $(-1, -1, -1)$ respector (x, y, z) .
If vector *V* has coordinates $(1,$ $B_{Ker(F)} = \{(0,0,1)\}\$.

I M 4) Vector V has coordinates $(1,1,1)$ respect the basis $B = \{(0,0,1), (0,1)\}$.

coordinates $(-1,-1,-1)$ respect the basis $B' = \{(1,0,0), (1,1,0), (x, y, z)\}$

vector (x, y, z) .

If vector V has coordinates $(1$

I M 4) Vector *V* has coordinates $(1, 1, 1)$ respect the basis $B = \{(0, 0, 1), (0, 1, 1), (1, 1, 1)\}$, and
coordinates $(-1, -1, -1)$ respect the basis $B' = \{(1, 0, 0), (1, 1, 0), (x, y, z)\}$. Determine the
vector (x, y, z) .
If vector TM 4) Vector V has coordinates $(1,1,1)$ respect the basis $B' = \{(0,0,1), (0,1,1), (1,1,1)\}$, and
coordinates $(-1, -1, -1)$ respect the basis $B' = \{(1,0,0), (1,1,0), (x, y, z)\}$. Determine the
vector (x, y, z) .
If vector V has coordinat coordinates $(-1, -1, -1)$ respect the basis $B = \{(1, 0, 0), (1, 1, 0), (x, y, z)\}$. Determinive
vector (x, y, z) .
If vector V has coordinates $(1, 1, 1)$ respect the basis B and coordinates
 $(-1, -1, -1)$ respect the basis $B', V = 1 \cdot (0$ If vector (x, y, z) .

If vector V has coordinates $(1, 1, 1)$ respect the basis B and coordinates
 $(-1, -1, -1)$ respect the basis $B', V = 1 \cdot (0, 0, 1) + 1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 1) =$
 $(1, 2, 3)$ and at the same time $V = -1 \$ $= 1 \cdot (0, 0, 1) + 1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 0) - 1 \cdot (x, y, z)$
 $= (-2 - x, -1 - y, -z)$ it easily
 $e^{x+y} - e^{y+z} = 0$ satisfied at the po
 $x - z + xyz = 0$ $(1,0,0)-1\cdot(1,1,0)-1\cdot(x,y,z)$
 $e^{x+y}-e^{y+z}=0$
 $x-z+xyz=0$ satisfied at the point

(1, 2, 3) and at the same time $v = -1$ (1, 0, 0) -1 (1, 1, 0) -1 (x, y, z) $-$
 $(-2-x, -1-y, -z)$. Put $(1, 2, 3) = (-2-x, -1-y, -z)$ it easily follows
 $x = y = z = -3$.

II M 1) Given the system of equations $\begin{cases} e^{x+y} - e^{y+z} = 0 \\ x - z +$ $x = y = z = -3.$

II M 1) Given the system of equations $\begin{cases} e^{x+y} - e^{y+z} = 0 \\ x - z + xyz = 0 \end{cases}$ satisfied at the point $P(1,0,1)$; verify that with it an implicit function $z \mapsto (x(z), y(z))$ can be defined and then calculate, for this If M 1) Given the system of equations $\begin{cases} e^{x+y}-e^{y+z}=0 \\ x-z+xyz=0 \end{cases}$ satisfied at the point $P(1,0,1)$; verify that with it an implicit function $z \mapsto (x(z), y(z))$ can be defined and then calculate, for this implicit function, II M 1) Given the system of equations $\begin{cases} c & -b & -b \\ x - z + xyz = 0 & \text{satisfied at the point} \end{cases}$
 $P(1,0,1)$; verify that with it an implicit function $z \mapsto (x(z), y(z))$ can be defined and then calculate, for this implicit function, the derivativ $P(1,0,1)$ is is a contract the function $F: \mathbb{R}^3 \to \mathbb{R}^2$ with $F(x, y, z) = (e^{x+y} - e^{y+z}, x - z + xyz)$ and

e jacobian matrix $\mathbb{J} = \begin{bmatrix} e^{x+y} & e^{x+y} - e^{y+z} & -e^{y+z} & -z + xyz \ 1 + yz & xz & -1 + xy \end{bmatrix}$. Matrix \mathbb{J} at point

(1, 0, 1) is $\begin{bmatrix} e &$ the jacobian matrix $\mathbb{J} = \begin{bmatrix} e^{x+y} & e^{x+y} - e^{y+z} & -e^{y+z} \\ 1+yz & xz & -1+xy \end{bmatrix}$. Matrix \mathbb{J} at point
 $P(1,0,1)$ is $\begin{bmatrix} e & 0 & -e \\ 1 & 1 & -1 \end{bmatrix}$ and the minor of its restriction respect variables x and y is
 $|\mathbb{J}($ $P(1,0,1)$ is $\begin{bmatrix} e & 0 & -e \\ 1 & 1 & -1 \end{bmatrix}$ and the minor of its restriction respect variables x and y is
 $|\mathbb{J}(P)|_{x,y}| = \begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix} = e \neq 0$, the proposed system of equations define an implicit

function $z \mapsto$ $|\mathbb{J}(P)|_{x,y}| = \begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix} = e \neq 0$, the proposed system of equations define
function $z \mapsto (x(z), y(z))$ on a neighborhood of the point P. For the de
have $x'(1) = -\frac{\begin{vmatrix} -e & 0 \\ -1 & 1 \end{vmatrix}}{\begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix}} = 1$ and - 1 and the minor of its restriction respect variables x a

= $e \neq 0$, the proposed system of equations define an imp
 $y(z)$ on a neighborhood of the point P. For the derivative
 $\begin{vmatrix} e & -e \\ 1 & 1 \end{vmatrix} = 1$ and $y'(1) = -\frac$ $e = e \neq 0$, the proposed system of equations define an imp
 $y(z)$ on a neighborhood of the point *P*. For the derivative
 $\begin{vmatrix} e & 0 \\ 1 & 1 \\ 0 & 0 \end{vmatrix} = 1$ and $y'(1) = -\frac{1}{e} \begin{vmatrix} e & -e \\ 1 & -1 \\ e & 0 \end{vmatrix} = 0$. $e = e \neq 0$, the proposed system of equations define an in
 $e, y(z)$ on a neighborhood of the point *P*. For the derivativ
 $\begin{vmatrix} -e & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1$ and $y'(1) = -\frac{e^{z} - e^{z}}{e^{z} - e^{z}} = 0$. $\begin{vmatrix} 1 & y(z) & \text{on a neighborhood of the point } P. \text{ For the derivative } 0 - e & 0 \\ \frac{-1 & 1}{e & 0} & = 1 \text{ and } y'(1) = -\frac{\begin{vmatrix} e & -e \\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix}} = 0.$

bblem $\begin{cases} \text{Max/min } f(x, y) = x \cdot y \\ 0 & \text{otherwise} \end{cases}$ $\begin{aligned}\n\mathcal{L}_{x,y}|&= \begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix} = e \neq 0, \text{ the proposed system of equations define an implicit}\n\mathbf{n} \quad z \mapsto (x(z), y(z)) \text{ on a neighborhood of the point } P. \text{ For the derivatives we} \\
\begin{vmatrix} -e & 0 \\ -1 & 1 \end{vmatrix} &= 1 \text{ and } y'(1) = -\frac{\begin{vmatrix} e & -e \\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix}} = 0.\n\end{aligned}$ $\begin{vmatrix} 0 \\ 1 \\ z \end{vmatrix} = e \neq 0$, the proposed system of equations define an implies z , $y(z)$ on a neighborhood of the point *P*. For the derivatives $\begin{vmatrix} -e & 0 \\ -1 & 1 \\ e & 0 \end{vmatrix} = 1$ and $y'(1) = -\frac{\begin{vmatrix} e & -e \\ 1 & -1 \\ e & 0 \end{vmatrix$ $(y, y(z))$ on a neighborhood of the point *P*. For the derivative
 $\begin{array}{c|c} -e & 0 \\ -1 & 1 \end{array}$
 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline e & 0 & e & e \\ 1 & -1 & -1 & e \\ 1 & 1 & 1 & 1 \end{array}$
 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 \end{array}$
 \hline $y'(1) = -\frac{\begin{vmatrix} e & -e \\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} e & 0 \\ 1 & 1 \end{vmatrix}} = 0.$
 $f(x, y) = x \cdot y$
 $y^2 \le 4$

to the admissible region and $y'(1) = -\frac{|1 - 1|}{|e| \cdot 0|} = 0$
 $\left| \begin{array}{cc} \tan f(x, y) = x \cdot y \\ 1 & 1 \end{array} \right|$
 $x^2 + y^2 \le 4$

ontinuos function, the admissible

II M 2) Solve the problem $\begin{cases} \text{Max/min } f(x, y) = x \cdot y \\ u.c. : x^2 + y^2 \leq 4 \end{cases}.$

The function f is a polynomial, continuos function, the admissible region is a disk with If $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$
II M 2) Solve the problem $\begin{cases} \text{Max/min } f(x, y) = x \cdot y \\ \text{u.c.: } x^2 + y^2 \le 4 \end{cases}$.
The function f is a polynomial, continuos function, the admissible region is a disk with center (0, 0) and radius 2, maximum and minimum in the admissible region. The Lagrangian function is II M 2) Solve the problem $\begin{cases} \text{max/min } f(x, y) = x & y \\ \text{u.c.: } x^2 + y^2 \le 4 \end{cases}$.
The function f is a polynomial, continuos function, the a center (0, 0) and radius 2, a bounded and closed set, ther maximum and minimum in the adm

The function *f* is a polynomial, continuous function, the admissible region is a disk with center (0, 0) and radius 2, a bounded and closed set, therefore *f* presents absolute maximum and minimum in the admissible region. The Lagrangian function is\n
$$
\mathcal{L}(x, y, \lambda) = x \cdot y - \lambda(x^2 + y^2 - 4)
$$
\nwith\n
$$
\nabla \mathcal{L} = (y - 2\lambda x, x - 2\lambda y, -(x^2 + y^2 - 4)).
$$
\n
$$
\Gamma^{\circ} \mathcal{C} \mathcal{A} \mathcal{S} \mathcal{E} \text{ (free optimization):}
$$
\n
$$
\begin{cases}\n\lambda = 0 \\
y = 0 \\
x = 0\n\end{cases}\n\Rightarrow\n\begin{cases}\n\lambda = 0 \\
y = 0 \\
x = 0\n\end{cases}\n\Rightarrow\n\begin{cases}\n\lambda = 0 \\
y = 0 \\
x = 0\n\end{cases}; \mathcal{H}f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ with determinant } |\mathcal{H}f| = -1 < 0, (0, 0) \\
x^2 + y^2 \le 4 \\
0 \le 4\n\end{cases}
$$
\nis a saddle point.\n
$$
II^{\circ} \mathcal{C} \mathcal{A} \mathcal{S} \mathcal{E} \text{ (constrained optimization):}
$$

is a saddle point.

$$
\begin{cases}\n\lambda \neq 0 & \text{if } y = 2\lambda x \\
y - 2\lambda y = 0 \Rightarrow \begin{cases}\n\lambda \neq 0 \\
x - 4\lambda^2 x = 0 \\
x^2 + y^2 \neq 4 \\
x^2 + y^2 \neq 4\n\end{cases} \text{ otherwise if } 1 - 4\lambda^2 = 0, \lambda = \pm 1/2, y = \pm x \text{ and by the condition } x^2 + y^2 = 4 \text{ otherwise if } 1 - 4\lambda^2 = 0, \lambda = \pm 1/2, y = \pm x \text{ and by the condition } x^2 + y^2 = 4 \text{ we get } x = \pm \sqrt{2}; \text{ four constrained critical points } P_1(\sqrt{2}, \sqrt{2}), P_2(-\sqrt{2}, -\sqrt{2}), P_3(\sqrt{2}, -\sqrt{2}), P_4(-\sqrt{2}, \sqrt{2}). \text{ Two of these } (\pm \sqrt{2}, \pm \sqrt{2}) \text{ have } \lambda > 0, \text{ candidate for maximum, the others } (\pm \sqrt{2}, \mp \sqrt{2}) \text{ have } \lambda > 0, \text{ candidate for maximum, the others } (\pm \sqrt{2}, \mp \sqrt{2}) \text{ have } \lambda > 0, \text{ candidate for maximum, the other } (\pm \sqrt{2}, \mp \sqrt{2}) \text{ have } \lambda > 0, \text{ remainder of the maximum, } \lambda > 0 \text{ for } \lambda > 0 \text{ if } \lambda
$$

Remember that
$$
\mathcal{D}_{v,w}^{(2)} f(x_P, y_P) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \mathcal{H} f(x_P, y_P) \cdot \left(\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}\right)
$$
 and
\n
$$
\mathcal{H} f(x_P, y_P) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}; \text{ we get}
$$
\n
$$
\mathcal{D}_{v,w}^{(2)} f(x_P, y_P) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \cdot \left(\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}\right) =
$$
\n
$$
\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \left(-\sqrt{2}, -\sqrt{2}\right) = -2.
$$