UNIVERSITA' DEGLI STUDI DI SIENA Scuola di Economia e Management A.A. 2023/24 Quantitative Methods for Economic Applications - Mathematics for Economic Applications Task 4/7/2024 Economic Applica

k 4/7/2024
 $\frac{1-i}{1+i}$, write the complex

**Mathematics for Economic Applications

Task 4/7/2024**

I M 1) Given the complex number $z = \frac{1-i}{1+i}$, write the complex number in goniometric form and calculate its cubic roots. **ECONOMIC Applies**
 k 4/7/2024
 $\frac{1-i}{1+i}$, write the complex

roots.
 $i^2 = 2i$ goniometric form and calculate its cubic roots. [M 1) Given the complex number $z = \frac{1-i}{1+i}$, write the complex number in
goniometric form and calculate its cubic roots.
 $z = \frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (remember that $i^2 = -1$).) Given the complex number $z = \frac{1-i}{1+i}$, write the complex num
metric form and calculate its cubic roots.
 $\frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (remembe) Given the complex number $z = \frac{1-i}{1+i}$, write the complex num
metric form and calculate its cubic roots.
 $\frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (rememb
niometric form: $z = -i = \cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi$ 2 $-$ 2 $-$ (remember that $i^2 = -1$). I M 1) Given the complex number $z = \frac{1+i}{1+i}$, write the complex number in
goniometric form and calculate its cubic roots.
 $z = \frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (remember that $i^2 = -1$).
In gonio $=\frac{1-i}{1+i}$, write the complex num
ic roots.
 $\frac{i^2}{i^2} = \frac{-2i}{2} = -i$ (remember
 $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic root $1+i$
 $\frac{+i^2}{i^2} = \frac{-2i}{2} = -i$ (remember
 $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic rooting it sin $\frac{3}{2}\pi =$ I M 1) Given the complex number $z = \frac{1}{1+i}$, write the complex number
goniometric form and calculate its cubic roots.
 $z = \frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (remember to
In goniometric form: $z =$ $rac{1-i}{1-i} = \frac{1-2i+i^2}{1-i^2} = \frac{-2i}{2} = -i$ (rememb
 $z = -i = \cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic r
 $z = \sqrt[3]{\cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi} =$
 $\left(\frac{3}{2}\pi + 2k\pi\right) = \sqrt{\pi} - 2$. ts cubic roots.
 $\frac{-2i + i^2}{1 - i^2} = \frac{-2i}{2} = -i$ (remed $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi =$ $\frac{-2i + i}{1 - i^2} = \frac{-2i}{2} = -i \text{ (rema)}$
 $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi$
 $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi =$
 $\frac{3}{2}i\pi + 2i\pi =$
 $\frac{3}{2}i\pi + 2i\pi =$ $\frac{2i + i^2}{1 - i^2} = \frac{-2i}{2} = -i$ (remer
 $\frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubi-
 $\pi + i \sin \frac{3}{2}\pi =$
 $2k\pi$ $\left(\pi - 2, \frac{1}{2}\right)$ If a goniometric form: $z = -i = \cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic roots we apply the

classical formula: $\sqrt[3]{z} = \sqrt[3]{\cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi} =$
 $\cos \left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right) + i \sin \left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right) = \cos \left(\frac{\pi}{2} + \frac{2}{3}$ oniometric form: $z = -i = \cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi$. For the cubic roots we apply the
sical formula: $\sqrt[3]{z} = \sqrt[3]{\cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi} =$
 $\left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right) + i \sin \left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right) = \cos \left(\frac{\pi}{2} + \frac{2}{3}k\pi\right) + i \sin \left(\frac$ the cubic roots we apply the
 π $\left(\frac{\pi}{2} + \frac{2}{3}k\pi\right)$ classical formula: $\sqrt[3]{z} = \sqrt[3]{\cos{\frac{3}{2}\pi}}$
 $\cos{\left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right)} + i \sin{\left(\frac{\frac{3}{2}\pi + 2k\pi}{3}\right)}$
 $k = 0, 1, 2$. The three roots are:
 $k = 0 \rightarrow z_0 = \cos{\left(\frac{\pi}{2}\right)} + i \sin{\left(\frac{\pi}{2}\right)}$ classical formula: $\sqrt[3]{z} = \sqrt[3]{\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}} =$
 $\cos \left(\frac{\frac{3}{2}\pi + 2k\pi}{3} \right) + i \sin \left(\frac{\frac{3}{2}\pi + 2k\pi}{3} \right) = \cos \left(\frac{\pi}{2} + \frac{2}{3}k\pi \right)$
 $k = 0, 1, 2$. The three roots are:
 $k = 0 \rightarrow z_0 = \cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \$ $k = 0 \rightarrow z_0 = cos\left(\frac{\pi}{2}\right) + i sin\left(\frac{\pi}{2}\right) = i;$ $\cos\left(\frac{2^{n+2n}}{3}\right) + i \sin\left(\frac{2^{n+2n}}{3}\right) = \cos\left(\frac{n}{2} + \frac{1}{3}k\pi\right) + i \sin\left(\frac{n}{2} + \frac{1}{3}k\pi\right)$
 $k = 0, 1, 2$. The three roots are:
 $k = 0 \rightarrow z_0 = \cos\left(\frac{\pi}{2}\right) + i \sin\left(\frac{\pi}{2}\right) = i$;
 $k = 1 \rightarrow z_1 = \cos\left(\frac{7}{6}\pi\right) + i \sin\left(\frac{7}{6}\pi\right) = -$ 3 \int $e^{2\pi i/3}$ $\left(\frac{3}{2} \right)^{2}$ $\cos^2(2 + 3^{n})$ $\cos^2(2 + 3^{n})$

2. The three roots are:
 $z_0 = \cos(\frac{\pi}{2}) + i \sin(\frac{\pi}{2}) = i$;
 $z_1 = \cos(\frac{7}{6}\pi) + i \sin(\frac{7}{6}\pi) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$;
 $z_2 = \cos(\frac{11}{2}\pi) + i \sin(\frac{11}{2}\pi) = \frac{\sqrt{3}}{2}$ $k = 0 \rightarrow z_0 = cos(\frac{\pi}{2}) + i sin(\frac{\pi}{2}) = i;$
 $k = 1 \rightarrow z_1 = cos(\frac{7}{6}\pi) + i sin(\frac{7}{6}\pi) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i;$
 $k = 2 \rightarrow z_2 = cos(\frac{11}{6}\pi) + i sin(\frac{11}{6}\pi) = \frac{\sqrt{3}}{2} - \frac{1}{2}i.$

[0 0 0 0 0] $z_0 = cos\left(\frac{\pi}{2}\right) + i sin\left(\frac{\pi}{2}\right) = i ;$
 $z_1 = cos\left(\frac{7}{6}\pi\right) + i sin\left(\frac{7}{6}\pi\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i ;$
 $z_2 = cos\left(\frac{11}{6}\pi\right) + i sin\left(\frac{11}{6}\pi\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i .$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix}$ $k = 1 \rightarrow z_1 = cos\left(\frac{7}{6}\pi\right) + i sin\left(\frac{7}{6}\pi\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i;$
 $k = 2 \rightarrow z_2 = cos\left(\frac{11}{6}\pi\right) + i sin\left(\frac{11}{6}\pi\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i.$

I M 2) Given the matrix $\mathbb{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}$, calcul $\begin{aligned} \sin\left(\frac{1}{6}\pi\right) &= -\frac{1}{2} - \frac{1}{2}i; \\ \sin\left(\frac{11}{6}\pi\right) &= \frac{\sqrt{3}}{2} - \frac{1}{2}i. \\ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ calculate its eigenvector.} \end{aligned}$ $sin\left(\frac{11}{6}\pi\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i$.

0 0 0 0 0

0 1 3 0

0 3 1 0

0 0 0 0

1 $sin\left(\frac{12\pi}{6}\pi\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i.$

0 0 0 0 0

0 1 3 0

0 3 1 0

0 0 0 0 0

ot. $\begin{aligned} i \sin\left(\frac{1}{6}\pi\right) &= -\frac{\sqrt{9}}{2} - \frac{1}{2}i \, ; \\ i \sin\left(\frac{11}{6}\pi\right) &= \frac{\sqrt{3}}{2} - \frac{1}{2}i \, . \\ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \end{bmatrix}, \text{ calculate its eigen} \end{aligned}$ $i \sin\left(\frac{11}{6}\pi\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}i$.
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, calculate its eigen $i \sin \left(\frac{\pi}{6}\pi\right) = \frac{1}{2} - \frac{1}{2}i$.
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, calculate its eigen

not. , calculate its eigenvalues and study if the $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, calculate its eigenconductions.

the characteristic polynomial of man
 $\begin{bmatrix} 0 & 0 & 0 \\ -1 & -3 & 0 \\ 2 & 1 & 0 \end{bmatrix} = \lambda \begin{bmatrix} \lambda - 1 & -1 \\ -3 & \lambda - 1 \end{bmatrix}$ ix $\mathbb{A} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, calculate its eigenvalues and study if the

cable or not.

lculate the characteristic polynomial of matrix A;
 $\begin{vmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda - 1 & -3 & 0 \\ 0 & -3 & \lambda - 1 & 0 \$

matrix A is diagonalizable or not.

At the first step we calculate the characteristic polynomial of matrix \mathbb{A} ;

matrix A is diagonalizable or not.
\nAt the first step we calculate the characteristic polynomial of matrix A;
\n
$$
P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda - 1 & -3 & 0 \\ 0 & -3 & \lambda - 1 & 0 \\ 0 & 0 & 0 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda^2 (\lambda - 1)^2 - 9 = \lambda^2 (\lambda^2 - 2\lambda - 8) = \lambda^2 (\lambda - 4)(\lambda + 2).
$$
\nPutting $P_{\mathbb{A}}(\lambda) = 0$ we find the four eigenvalues of matrix A; if $\lambda^2 = 0$, we have the first two eigenvalues $\lambda_{1,2} = 0$; if $\lambda - 4 = 0$ it follows $\lambda_3 = 4$ and finally if $\lambda + 2 = 0$ it follows $\lambda_4 = -2$. The eigenvalue zero discloses algebraic multiplicity equal two, thus

two eigenvalues ; if it follows and finally if it $\lambda^2 \begin{vmatrix} \lambda - 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} = \lambda^2 ((\lambda - 1)^2 - 9) = \lambda^2 (\lambda^2 - 2\lambda - 8) = \lambda^2 (\lambda - 4)(\lambda + 2)$.
Putting $P_{\mathbb{A}}(\lambda) = 0$ we find the four eigenvalues of matrix \mathbb{A} ; if $\lambda^2 = 0$, we have the first two eigenvalues $\lambda_{1,2} =$ matrix $\mathbb A$ is a diagonalizable one if and only if the geometric multiplicity of the eigenvalue zero is two. To calculate such geometric multiplicity, we calculate the rank

of the matrix $0 \cdot I - A = -A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & - \\ 0 & -3 & - \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}$; easily we can not $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; easily we can not 0 0 0 0 0

0 -1 -3 0

0 -3 -1 0

0 0 0 0

1 1 2 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; easily we can not
the $\begin{vmatrix} -1 & -3 \\ 2 & 1 \end{vmatrix} = -8$ is different 1 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \end{bmatrix}$; easily we can note $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; easily we can note $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; easily we can note
 $\begin{aligned} \text{ax, the} \begin{vmatrix} -1 & -3 \\ -3 & -1 \end{vmatrix} = -8 \text{ is different from } \mathbb{R}^2. \end{aligned}$; easily we can note that only of the matrix $0 \cdot \mathbb{I} - \mathbb{A} = -\mathbb{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; easily we can note that only
one two by two minor of the matrix, the $\begin{vmatrix} -1 & -3 \\ -3 & -1 \end{vmatrix} = -8$ is different from zer

conclude that the geometric multiplicity of the eigenvalue zero is two (the difference one two by two minor of the matrix, the $\begin{vmatrix} -1 & -3 \\ -3 & -1 \end{vmatrix} = -8$ is different from zero, we
conclude that the geometric multiplicity of the eigenvalue zero is two (the difference
between the order of the matrix A, 4, one two by two minor of the matrix, the $\begin{vmatrix} 1 & 0 \\ -3 & -1 \end{vmatrix} = -8$ is d
conclude that the geometric multiplicity of the eigenvalue zero is t
between the order of the matrix A, 4, and the rank of the matrix 0
is a digona conclude that the geometric multiplicity of the eigenvalue zero is two (the difference
between the order of the matrix A, 4, and the rank of the matrix $0 \cdot \mathbb{I} - A$, 2). Matrix A
is a digonalizable one.
I M 3) Given the

is a digonalizable one.
I M 3) Given the linear application $F: \mathbb{R}^3 \to \mathbb{R}^3$, with

$$
F(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_2 + x_3, x_2 + x_3).
$$

kernel and immage of F , and find a basis for the image.

IM 3) Given the linear application $F: \mathbb{R}^3 \to \mathbb{R}^3$, with
 $F(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_2 + x_3, x_2 + x_3)$.

Find the matrix associated with the linear application, calculate the dimentions of both,

kernel and immage Find the matrix associated with the linear application, calculate the dimentions of k

Find the matrix associated with the linear application, calculate the dimentions of k

kernel and immage of F, and find a basis for th $x_2, x_1 + x_2 + x_3, x_2 + x_3$.

ated with the linear application, calculate the dimentions of both,

F, and find a basis for the image.
 $+ x_2, x_1 + x_2 + x_3, x_2 + x_3$, the matrix associated to the linear
 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 &$ $x_2, x_1 + x_2 + x_3, x_2 + x_3$.

ated with the linear application, calculate the dimentions of both,

F, and find a basis for the image.
 $+ x_2, x_1 + x_2 + x_3, x_2 + x_3$, the matrix associated to the linear
 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 &$ F, and find a basis for the image.
 $+x_2, x_1 + x_2 + x_3, x_2 + x_3$), the matrix associated to the linear
 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. The determinant of matrix \mathbb{A}_F is $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ + x_2 , x_1 + x_2 + x_3 , x_2 + x_3).
ciated with the linear application
of *F*, and find a basis for the ima
 $x_1 + x_2$, $x_1 + x_2 + x_3$, $x_2 + x_3$).
 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. The determinant c of F, and find a basis for the image.
 $x_1 + x_2, x_1 + x_2 + x_3, x_2 + x_3$, the matrix associated
 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. The determinant of matrix \mathbb{A}_F is $\begin{vmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{vmatrix}$
 $0 - 1 = -1 \neq 0$ dimentions of both,

pociated to the linear
 $\begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} =$ If $F(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_2 + x_3, x_2 + x_3)$, the matrix associated to the linear
application is $\mathbb{A}_F = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. The determinant of matrix \mathbb{A}_F is $\begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 &$ application is $\mathbb{A}_F = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. The determinant of matrix \mathbb{A}_F is $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 0 - 1 = -1 \neq 0$. Matrix \mathbb{A}_F has rank three $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ = 0 - 1 = -1 \neq 0. Matrix \mathbb{A}_F has rank that the dimention of the Image of *F* is 3, while the dimention dim(\mathbb{R}^3) - $dim(Ima(F))$ $dim(\mathbb{R}^3) - dim(Ima(F)) = 3 - 3 = 0$. Because the codomain of the linear application is \mathbb{R}^3 and dimention of the Image is again 3, easily follows that $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ - $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ = 0 - 1 =
that the dimention of the Imag
 $dim(\mathbb{R}^3) - dim(Ima(F))$ =
application is \mathbb{R}^3 and dimentic
 $Ima(F) = \mathbb{R}^3$ and a basis for
 $B_{Ima(F)} = B_{\mathbb{R}^3} = \{(1,0,0), (0,1)\$ $Ima(F) = \mathbb{R}^3$ and a basis for the Image is the set ¹ ¹ ¹ ¹ ⁰ ¹ ¹ ¹ ⁰ ¹ ¹ ¹ that the dimention of the Image of *F* is 3, while the dimention of the Kernel is $dim(\mathbb{R}^3) - dim(Ima(F)) = 3 - 3 = 0$. Because the codomain of the linear application is \mathbb{R}^3 and $Im(a|X) = 0$ and \overline{X} and dimention of the Image is again 3, easily follows that
 $Im(a(F) = \mathbb{R}^3$ and a basis for the Image is the set
 $\mathcal{B}_{Ima(F)} = \mathcal{B}_{\mathbb{R}^3} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

I M 4) Vector V has coord approached is as and dimension of the lingte is again 5, easily follows that $Ima(F) = \mathbb{R}^3$ and a basis for the Image is the set $\mathcal{B}_{Ima(F)} = \mathcal{B}_{\mathbb{R}^3} = \{(1,0,0), (0,1,0), (0,0,1)\}\$.

IM 4) Vector V has coordinates $(1,1$ $B_{Ima(F)} = B_{\mathbb{R}^3} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

I M 4) Vector *V* has coordinates $(1, 1, 1)$ respect the basis $B = \{(0, 0, 1), (0, 1, 1), (1, 1, 1)\}$; find

the coordinates of vector *V* respect the basis $B' = \{(1, 1, 1), (1$ respect the basis $\mathcal{B}', V = 1 \cdot (0, 0, 1) + 1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 1) =$ as coordinates $(1, 1, 1)$ respect the basis $B = \{(0, 0, 1), (0, 1, 1), (1, 0), (1), (0, 1, 0)\}$. Is the
0, 1), $(0, 1, 0)$ a basis for the vector space \mathbb{R}^3 ?
ordinates $(1, 1, 1)$ respect the basis B and coordinates $(\alpha, \beta$ FM 4) Vector V has coolumates $(1, 1, 1)$ respect the basis $B = \{(0, 0, 1), (0, 1, 1), (1, 1, 1)\}$, the
the coordinates of vector V respect the basis $B' = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$. Is the set
 $C = \{(1, 1, 1), (1, 0, 1), (0, 1,$ the coordinates of vector V respect the basis $B = \{(1, 1, 1, 1), (1, 1, 0), (1, 0, 0)\}$. Is the set $C = \{(1, 1, 1), (1, 0, 1), (0, 1, 0)\}$ a basis for the vector space \mathbb{R}^3 ?
If vector V has coordinates $(1, 1, 1)$ respect Let α the second part of the exercise, note that
 α respect the basis β' , $V = 1 \cdot (0, 0, 1) + 1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 1) =$
 $(1, 2, 3)$ and at the same time $V = \alpha \cdot (1, 1, 1) + \beta \cdot (1, 1, 0) + \chi \cdot (1, 0, 0)$
 $(\alpha + \beta + \chi,$ If vector V has coordinates $(1, 1, 1)$ respect the basis B and coordinates (α, β, χ)
respect the basis B' , $V = 1 \cdot (0, 0, 1) + 1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 1) =$
 $(1, 2, 3)$ and at the same time $V = \alpha \cdot (1, 1, 1) + \beta \cdot (1,$ (1, 2, 3) and at the same time $V = \alpha \cdot (1, 1, 1) + \beta \cdot (1, 1, 0) + \chi \cdot (1, 0, 0) =$

($\alpha + \beta + \chi, \alpha + \beta, \alpha$). Putting $(1, 2, 3) = (\alpha + \beta + \chi, \alpha + \beta, \alpha)$ it easily follows $\alpha = 3$ and $\beta = \chi = -1$. For the second part of the exercise, n $(1, 2, 3)$ and at the same time $V = \alpha \cdot (1, 1, 1) + \beta \cdot (1, 1, 0) + \chi \cdot (1, 0, 0) =$
 $(\alpha + \beta + \chi, \alpha + \beta, \alpha)$. Putting $(1, 2, 3) = (\alpha + \beta + \chi, \alpha + \beta, \alpha)$ it easily follows $\alpha = 3$ and $\beta = \chi = -1$. For the second part of the exercise, $(a - b \tan \beta - \lambda - 1)$. Then the second part of the exercuse, note that
 $(1, 0, 1) + (0, 1, 0) = (1, 1, 1)$, thus the set C is a set of three linear dependent vectors

belonging to \mathbb{R}^3 and easily we conclude that C isn't a belonging to \mathbb{R}^3 and easily we conclude that C isn't a basis for the vector space \mathbb{R}^3 .

II M 1) Given the equation $x \cdot e^{x+y-z^2} - z^2 \cdot e^{x+y+z} = 0$ satisfied at the point $P(1,0,-1)$; verify that with it an impli $P(1,0,-1)$; verify that with it an implicit function $(x, y) \mapsto z(x, y)$ can b
and then calculate, for this implicit function, the partial derivatives z'_x and z
Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ with $f(x, y, z) = x \cdot e^{x$ nd then calculate, for this implicit function, the partial derivatives z'_x and z'_y .

Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ with $f(x, y, z) = x \cdot e^{x+y-z^2} - z^2 \cdot e^{x+y+z}$.
 $f'(P) = 1 \cdot e^0 - 1 \cdot e^0 = 0$, the partial derivativ Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ with $f(x, y, z) = x \cdot e^{x+y-z} - z^2 \cdot e^{x+y+z}$.
 $f(P) = 1 \cdot e^0 - 1 \cdot e^0 = 0$, the partial derivative of f respect the variable z is
 $f'_z = x \cdot e^{x+y-z^2} \cdot (-2z) - 2z \cdot e^{x+y+z} - z^2 \cdot e^{x+y+z} =$
 $-z(2x \cdot e$ $f(P) = 1 \cdot e^0 - 1 \cdot e^0 = 0$, the partial derivative of f respect the variable z is
 $f'_z = x \cdot e^{x+y-z^2} \cdot (-2z) - 2z \cdot e^{x+y+z} - z^2 \cdot e^{x+y+z} =$
 $-z \left(2x \cdot e^{x+y-z^2} + (2+z)e^{x+y+z}\right)$; on point $P(1,0,-1)$ the partial derivative has

value f'_z $f'_z = x \cdot e^{x+y-z^2} \cdot (-2z) - 2z \cdot e^{x+y+z} - z^2 \cdot e^{x+y+z} =$
 $- z \left(2x \cdot e^{x+y-z^2} + (2+z)e^{x+y+z} \right)$; on point $P(1,0,-1)$ the partial derivative has

value $f'_z(P) = 1 \cdot (2 \cdot e^0 + 1 \cdot e^0) = 3 \neq 0$; the proposed equation defines in a

neighbou $\frac{1}{w}$: value $f'_z(P) = 1 \cdot (2 \cdot e^0 + 1 \cdot e^0) = 3 \neq 0$; the proposed equation defines in a
neighbourhood of point *P* an implicit function $(x, y) \mapsto z(x, y)$. To calculate the
partial derivatives z'_x and z'_y we must firstly calculate neighbourhood of point *P* an implicit function $(x, y) \mapsto z(x, y)$
partial derivatives z'_x and z'_y we must firstly calculate the two pa
 f'_y :
 $f'_x = 1 \cdot e^{x+y-z^2} + x \cdot e^{x+y-z^2} - z^2 \cdot e^{x+y+z} = (1+x) \cdot e^{x+y-z}$
 $f'_y = x \cdot e^{x+y-z^2} - z^2 \cdot$

with $f'_x(P) = 2 \cdot e^0 - 1 \cdot e^0 = 1$ and $f'_y(P) = f(P) = 0$. The two partial derivatives of $f'_x(P) = 2 \cdot e^0 - 1 \cdot e^0 = 1$ and $f'_y(P) = f(P) = 0$. The two partial
on z are $z'_x(1,0) = -\frac{f'_x(P)}{f'(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'(P)}$ with $f'_x(P) = 2 \cdot e^0 - 1 \cdot e^0 = 1$ and $f'_y(P) = f(P) = 0$. The two partial derivatives of
function z are $z'_x(1,0) = -\frac{f'_x(P)}{f'_z(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} = -\frac{0}{3} = 0$.
HM2) Salso the partition $\int \text{Max/min } f(x,y) = x + y$ = 1 and $f'_y(P) = f(P) = 0$. The two partial derivatives of
 $\frac{f'_x(P)}{f'_z(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} = -\frac{0}{3} = 0$. = 1 and $f'_y(P) = f(P) = 0$. The two partial derivatives of
 $\frac{f'_x(P)}{f'_z(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} = -\frac{0}{3} = 0$.

Max/min $f(x,y) = x + y$ $e^{0} - 1 \cdot e^{0} = 1$ and $f'_{y}(P) = f(P) = 0$. The two partial derivatives of
 $f'_{x}(1,0) = -\frac{f'_{x}(P)}{f'_{z}(P)} = -\frac{1}{3}$ and $z'_{y}(1,0) = -\frac{f'_{y}(P)}{f'_{z}(P)} = -\frac{0}{3} = 0$.

(Max/min $f(x, y) = x + y$ 1 and $f'_y(P) = f(P) = 0$. The two partial derivat
 $\frac{f'_x(P)}{f'_z(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} = -\frac{0}{3}$

(ax/min $f(x, y) = x + y$ $e^{0} - 1 \cdot e^{0} = 1$ and $f'_{y}(P) = f(P) = 0$. The two partial deri
 $(1, 0) = -\frac{f'_{x}(P)}{f'_{z}(P)} = -\frac{1}{3}$ and $z'_{y}(1, 0) = -\frac{f'_{y}(P)}{f'_{z}(P)} = -$

problem $\begin{cases} \text{Max/min } f(x, y) = x + y \\ 0 < 0 \end{cases}$. and $f'_y(P) = f(P) = 0$. The two partial derivatives of
 $\frac{(P)}{(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} = -\frac{0}{3} = 0$.
 $x/\min f(x, y) = x + y$
 $\therefore 4x^2 + y^2 \le 4$. partial derivatives of
 $\frac{(P)}{(P)} = -\frac{0}{3} = 0$. II M 2) Solve the problem $\begin{cases} \text{Max/min } f(x, y) = x + y \\ \text{u.c.: } 4x^2 + y^2 \le 4 \end{cases}.$ $f'_y(P) = f(P) = 0$. The two partial c
 $-\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y(P)}{f'_z(P)} =$
 $f(x,y) = x + y$
 $+y^2 \le 4$

to function, the admissible region is and $f'_y(P) = f(P) = 0$. The two
 $\left(\frac{P}{P}\right)^2 = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{f'_y}{f'_z}$
 $\left(\begin{array}{c}\text{min } f(x,y) = x+y\\4x^2 + y^2 \le 4\end{array}\right)$
 $4x^2 + y^2 \le 4$

antinuos function, the admissible is

The function f is a polynomial, continuos function, the admissible region is an ellipse function z are $z'_x(1,0) = -\frac{3x}{f'_z(P)} = -\frac{1}{3}$ and $z'_y(1,0) = -\frac{3x+3}{f'_z(P)} = -\frac{1}{3} = 0$.

II M 2) Solve the problem $\begin{cases} \text{Max/min } f(x,y) = x+y \\ \text{u.c.: } 4x^2 + y^2 \le 4 \end{cases}$.

The function f is a polynomial, continuos function, th therefore f presents absolute maximum and minimum in the admissible region. The Lagrangian function is The function f is a polynomial, continuos function, the adr
with center (0, 0) and axises of lengths equal to 2 and 4, a b
therefore f presents absolute maximum and minimum in th
Lagrangian function is
 $\mathcal{L}(x, y, \lambda) = x + y -$

The function *f* is a polynomial, continuos function, the admissible
with center (0, 0) and axises of lengths equal to 2 and 4, a bounded
therefore *f* presents absolute maximum and minimum in the admis-
Lagrangian functi with center (0, 0) and axises of lengths equal to 2 are
therefore f presents absolute maximum and minimu
Lagrangian function is
 $\mathcal{L}(x, y, \lambda) = x + y - \lambda(4x^2 + y^2 - 4)$ with
 $\nabla \mathcal{L} = (1 - 8\lambda x, 1 - 2\lambda y, -(4x^2 + y^2 - 4)).$
 $I^{\circ} CASE$ $\bigwedge \lambda = 0$ $\begin{cases} 1 & \text{if } \\ 1 & \text{if } \end{cases}$ $1 = 0$ Lagrangian function is
 $\mathcal{L}(x, y, \lambda) = x + y - \lambda(4x^2)$
 $\nabla \mathcal{L} = (1 - 8\lambda x, 1 - 2\lambda y,$
 $I^{\circ} \ CASE$ (free optimizal)
 $\begin{cases} \lambda = 0 \\ 1 = 0 \\ 1 = 0 \end{cases}$. System in
 $\begin{cases} 1 = 0 \\ 4x^2 + y^2 \le 4 \end{cases}$ grangian function is
 x, y, λ = $x + y - \lambda(4x^2)$
 $\mathcal{L} = (1 - 8\lambda x, 1 - 2\lambda y,$
 $CASE$ (free optimizat
 $\lambda = 0$
 $1 = 0$ System im x, y, λ = $x + y = \lambda$ (4x
 $\mathcal{L} = (1 - 8\lambda x, 1 - 2\lambda y,$
 $CASE$ (free optimizar
 $\lambda = 0$
 $1 = 0$ System in
 $4x^2 + y^2 \le 4$ CASE (free optimization):
 $\lambda = 0$
 $1 = 0$ System impossible
 $4x^2 + y^2 \le 4$
 α CASE (constrained optimize) . System impossible. $\begin{cases}\n\lambda = 0 \\
1 = 0 \\
1 = 0\n\end{cases}$. System impossible.
 $\begin{cases}\n\lambda = 0 \\
1 = 0 \\
4x^2 + y^2 \le 4 \\
II^{\circ} \ \ \text{CASE} \ \text{(constrained optimization)} \\
\begin{cases}\n\lambda \neq 0 \\
\lambda \neq 0\n\end{cases}$ $\begin{cases}\n1 = 0 & . \text{ System impossible.} \\
1 = 0 & . \text{System impossible.} \\
4x^2 + y^2 \le 4 & \text{If } 0 & . \text{} \\
1^{\circ} \text{ CASE} \text{ (constrained optimization):} \\
\begin{cases}\n\lambda \neq 0 \\
1 - 8\lambda x = 0 \\
1 - 2\lambda y = 0\n\end{cases} \Rightarrow\n\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\n\end{cases} \Rightarrow\n\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\n\end{cases} \Rightarrow \begin{cases$ $\begin{cases} 4x^2 + y^2 \le 4 \\ II^{\circ} \ \text{CASE} \ \text{(constrained optimization)}: \\ \begin{cases} \lambda \neq 0 \\ 1 - 8\lambda x = 0 \\ 1 - 2\lambda y = 0 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4x^2 + y^2 = 4 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 4 \end{cases} \Rightarrow \frac{$ $(4x^2 + y^2 \le 4)$

II° CASE (constrained optimization):
 $\begin{cases} \lambda \neq 0 \\ 1 - 8\lambda x = 0 \\ 1 - 2\lambda y = 0 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4(x^2 + y^2 = 4 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4$ $4x^2 + y^2 = 4$ stem impossible.

ained optimization):
 $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{8\lambda} \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{8\lambda} \end{cases} \Rightarrow$ ained optimization):
 $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 4 \\ \neq 0 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \end{cases} \Rightarrow$ dified optimization).
 $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 4 \\ \neq 0 \\ -\frac{1}{2\lambda} \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \end{cases} \Rightarrow$ $\lambda \neq 0$ $\lambda x = 0$ = 0

= 0
 $x^2 + y^2 \le 4$
 $CASE (constrained optimization):$
 $\neq 0$
 $- 8\lambda x = 0$
 $- 2\lambda y = 0$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$ $1 = 0$ System impossion
 $4x^2 + y^2 \le 4$
 \circ CASE (constrained optimix
 $\lambda \neq 0$
 $1 - 8\lambda x = 0$
 $1 - 2\lambda y = 0$
 \Rightarrow
 $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$ $4x^2 + y^2 \le 4$

° CASE (constrained optimi.
 $\lambda \ne 0$
 $1 - 8\lambda x = 0$
 $1 - 2\lambda y = 0$ \Rightarrow $\begin{cases} \lambda \ne 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4(x^2 + y^2 = 4 \end{cases}$ $^{\circ}$ CASE (constrained optimiz
 $\lambda \neq 0$
 $1 - 8\lambda x = 0$
 $1 - 2\lambda y = 0$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4(x^2 + y^2 = 4) \\ \lambda \neq 0 \end{cases}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ 4(\frac{1}{8\lambda})^2 + (\frac{1}{2}) \\ \lambda \neq 0 \end{cases}$ impossible.
 d optimization):
 $\neq 0$
 $=\frac{1}{8\lambda}$ $\Rightarrow \infty$ m impossible.
 $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$ = red optimization):
 $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4$ ned optimization):
 $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4$
 $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 0 \end{cases}$ $\neq 0$
= $\frac{1}{8\lambda}$ \Rightarrow $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$ \Rightarrow $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $\frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4$ CASE (constrained optimization):
 $\neq 0$
 $- 8\lambda x = 0$
 $- 2\lambda y = 0$ \Rightarrow $\begin{cases} x = \frac{1}{8\lambda} \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4 \end{cases}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ y = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \$ $\frac{1}{2}$ and $\frac{1}{2}$ 8λ $\frac{1}{2}$ and $\frac{1}{2}$ 2λ $\begin{cases}\n\frac{1}{8\lambda} \\
\frac{1}{8\lambda} \\
\frac{1}{2\lambda}\n\end{cases} \Rightarrow \begin{cases}\n\frac{1}{8\lambda} \\
\frac{1}{8\lambda}\lambda^2 + \left(\frac{1}{2\lambda}\right)^2 = 4 \\
\lambda + 0\n\end{cases}$ $=\frac{1}{8\lambda}$
 $=\frac{1}{2\lambda}$
 $=\frac{1}{2\lambda}$
 $\left(\lambda \neq 0\right)$
 $\left(\lambda \neq 0\right)$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{2} + \left(\frac{1}{2\lambda}\right)^2 = 4$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ 8λ $\frac{1}{\sqrt{2}}$ 2λ $\neq 0$
 $= \frac{1}{8\lambda}$
 $= \frac{1}{2\lambda}$
 \Rightarrow
 $\frac{1}{3\lambda^2} + \frac{1}{4\lambda^2} = 4$ $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $\frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4$ strained optimization):
 $\Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ 4\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 4 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \end{cases} \Rightarrow$ λ λ $\begin{cases}\n\frac{1}{8\lambda} \\
\frac{1}{2\lambda} \\
\frac{1}{\lambda}\n\end{cases}$ $\Rightarrow \begin{cases}\n\frac{1}{8\lambda} \\
\frac{1}{2\lambda} \\
\frac{1}{\lambda}\n\end{cases}$ λ and λ λ $\begin{cases}\n\lambda \neq 0 \\
1 - 8\lambda x = 0 \\
1 - 2\lambda y = 0\n\end{cases} \Rightarrow \begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
4x^2 + y^2 = 4\n\end{cases} \Rightarrow \begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4\n\end{cases} \Rightarrow \begin{cases}\n\lambda \neq 0 \\
y = \frac{1}{2\lambda} \\
\frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4\n\end{cases}$ $\begin{cases} 1 - 2\lambda y = 0 \\ 4x^2 + y^2 = 4 \end{cases}$ $\begin{cases} y = \frac{1}{2\lambda} \\ 4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 4 \end{cases}$ $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{5}{16\lambda^2} = 4 \end{cases}$ $\Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \lambda^2 = \frac{5}{64} \end{cases}$ $\Rightarrow \begin{cases} \lambda \$ $\begin{cases} 4x^2 + y^2 = 4 \\ \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{5}{16\lambda^2} = 4 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \lambda^2 = \frac{5}{64} \\ \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x = \pm \frac{1}{5}\sqrt{5} \\ y = \pm \frac{4}{5}\sqrt{5} \\ y = \pm \frac{4}{5}\sqrt{5} \end{cases}$; two $\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\frac{5}{16\lambda^2} = 4\n\end{cases} \Rightarrow \begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\lambda^2 = \frac{5}{64} \\
\end{cases} \Rightarrow \begin{cases}\n\lambda \neq 0 \\
x = \pm \frac{1}{5}\sqrt{5} \\
y = \pm \frac{4}{5}\sqrt{5} \\
\lambda = \pm \frac{1}{8}\sqrt{5}\n\end{cases};$ two
 $P_1\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{$ $\lambda^2 = \frac{5}{64}$ $\lambda \neq 0$ 1-2 $\lambda y = 0$

4 $x^2 + y^2 = 4$
 $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $y = \frac{1}{64}$
 $\lambda^2 = \frac{5}{64}$
 $\lambda = \pm \frac{1}{8}\sqrt{2}$ $1 - 8\lambda x = 0$
 $1 - 2\lambda y = 0$ \Rightarrow $\begin{cases} x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$
 $4x^2 + y^2 = 4$ $\begin{cases} 4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 0 \\ 4(\frac{1}{8\lambda})^2 + (\frac{1}{2\lambda})^2 = 0 \end{cases}$
 $x = \frac{1}{8\lambda}$ $x = \frac{1}{8\lambda}$ $y = \frac{1}{2\lambda}$ \Rightarrow $\begin{cases} x = \pm \\ y = \frac{1}{2\$ $y^2 = 4$ $\left(4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 0$
 0 $\frac{1}{8\lambda}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \pm \frac{1}{5} \\ y = \pm \frac{4}{5} \\ \lambda = \pm \frac{1}{5} \end{cases}$
 $= 4$ $\sqrt{5}, -\sqrt{5}$ $\Big)$, $P_2\Big(-\frac{1}{2\lambda}\Big$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $= \pm \frac{1}{5}\sqrt{5}$ $= \pm \frac{1}{5}\sqrt{5}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $= \pm \frac{1}{5}\sqrt{5}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda}$ $\frac{1$ $\Rightarrow \begin{cases} x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \\ x = \pm \frac{1}{5}\sqrt{5} \\ y = \pm \frac{4}{5}\sqrt{5} \text{ ; two constrained } c \end{cases}$ $\left(\frac{1}{2\lambda}\right)^2 = 4$ $\left(\frac{1}{2\lambda}\right)^2 = 4$ $\frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4$
 $x = \pm \frac{1}{5}\sqrt{5}$
 $y = \pm \frac{4}{5}\sqrt{5}$; two constrained c
 $\lambda = \pm \frac{1}{8}\sqrt{5}$ $\begin{array}{ll} \frac{1}{\lambda} & = 4 & \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \\ \neq 0 & \pm \frac{1}{5}\sqrt{5} \\ &= \pm \frac{4}{5}\sqrt{5} \\ &= \pm \frac{1}{8}\sqrt{5} \\ &= \pm \frac{1}{8}\sqrt{5} \\ -\frac{4}{5}\sqrt{5} \end{array}$. The first point pre $\lambda y = 0$
 $y^2 = 4$
 $\lambda y = \frac{1}{2\lambda}$
 $\lambda \neq 0$
 $\lambda \neq 0$
 $x = \frac{1}{8\lambda}$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$
 $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$ $+y^2 = 4$ $\left(4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2\right)$
 0 $\frac{1}{8\lambda}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \end{cases}$ \Rightarrow $\begin{cases} \lambda \neq 0 \\ x = 0 \\ y = 1 \end{cases}$ $\begin{cases}\n-y = 4 \\
y = \frac{1}{2\lambda}\n\end{cases}\n\Rightarrow\n\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\n\end{cases}\n\Rightarrow\n\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\n\end{cases}$ $\begin{cases}\n0 \\
\frac{1}{8\lambda} \\
\frac{1}{2\lambda} \\
=4\n\end{cases}$ \Rightarrow $\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\lambda^2 = \frac{5}{64}\n\end{cases}$ \Rightarrow $\begin{cases}\n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\lambda = \frac{1}{64}\n\end{cases}$ $\neq 0$ $= \frac{1}{8\lambda}$ $= \frac{1}{2\lambda}$ $y = z$ $y = z$ $y = z$ $y = z$ $y = z$ $x = \frac{1}{8\lambda}$
 $y = \frac{1}{2\lambda}$ \Rightarrow $\begin{cases} x = \frac{1}{8\lambda} \\ y = \frac{1}{2\lambda} \\ \lambda^2 = \frac{5}{64} \end{cases}$ \Rightarrow $\begin{cases} x = 1 \\ y = 1 \\ \lambda = 1 \end{cases}$
 $\begin{cases} 1, \sqrt{5} \\ 4, \sqrt{5} \end{cases}$ \Rightarrow $\begin{cases} 1, \sqrt{5} \\ 2, \sqrt{5} \end{cases}$ $^{2} - \frac{5}{6}$ 1.75 $5V^{\circ}$. $\frac{4}{5}$, $\sqrt{5}$, $\frac{1}{5}$ $5 \vee$ $\frac{1}{2}$, $\sqrt{5}$ $8V^{\circ}$ $y^2 = 4$ $\left(4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2\right)$
 $\frac{1}{\lambda}$ \Rightarrow $\left\{\begin{array}{l}\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\end{array}\right\}$ \Rightarrow $\left\{\begin{array}{l}\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda}\end{array}\right\}$ $-2\lambda y = 0 \Rightarrow \begin{cases} y = \frac{1}{2\lambda} \\ 4\left(\frac{1}{8\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 4 \end{cases}$
 $\neq 0$
 $= \frac{1}{8\lambda}$
 $= \frac{1}{2\lambda}$
 $y = \frac{1}{2\lambda}$
 $y = \frac{1}{2\lambda}$
 $\lambda^2 = \frac{5}{64}$
 $\lambda = \pm \frac{1}{5}\sqrt{5}$
 $y = \pm \frac{4}{5}\sqrt{5}$
 $y = \pm \frac{4}{5}\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$, two consumed \Rightarrow $\begin{cases} \frac{3}{y} = \frac{1}{2\lambda} \\ \frac{1}{16\lambda^2} + \frac{1}{4\lambda^2} = 4 \end{cases}$
 $\sqrt{\frac{5}{5}}$; two constrained critical points $\begin{cases} \n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\frac{5}{16\lambda^2} = 4\n\end{cases} \Rightarrow \begin{cases} \n\lambda \neq 0 \\
x = \frac{1}{8\lambda} \\
y = \frac{1}{2\lambda} \\
\lambda^2 = \frac{5}{64}\n\end{cases} \Rightarrow \begin{cases} \n\lambda \neq 0 \\
x = \pm \frac{1}{5}\sqrt{5} \\
y = \pm \frac{4}{5}\sqrt{5}\n\end{cases}$; two constrained critical points
 $P_1\left(\frac{1$ $y = \frac{1}{2\lambda}$ $y = \frac{1}{2\lambda}$ $y = \frac{1}{2\lambda}$ $\lambda^2 = \frac{5}{64}$ $\lambda^2 = \frac{5}{64}$ $\lambda = \pm \frac{1}{8}\sqrt{5}$
 $P_1\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{5}\right)$, $P_2\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right)$. The first point presents $\lambda > 0$, point of maximum, the sec $\left(\frac{5}{16\lambda^2} - 4\right)\left(\lambda^2 - \frac{5}{64}\right)\left(\lambda = \pm \frac{1}{8}\sqrt{5}\right)$
 $P_1\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{5}\right), P_2\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right)$. The first point presents $\lambda > 0$, point of maximum, the second presents $\lambda < 0$, point of minimum. $\frac{1}{16\lambda^2} = 4$ $\lambda^2 = \frac{2}{64}$ $\lambda = \pm \frac{1}{8}\sqrt{5}$
 $\lambda_1\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{5}\right)$, $P_2\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right)$. The first point presents $\lambda > 0$, point of aximum, the second presents $\lambda < 0$, point of mimimum. II $\left(\frac{1}{5}\sqrt{3}, \frac{4}{5}\sqrt{5}\right)$, $12\left(-\frac{1}{5}\sqrt{3}, -\frac{1}{5}\sqrt{3}\right)$. The first point presents $\lambda > 0$, point of
maximum, the second presents $\lambda < 0$, point of mimimum. We get the maximum
 $f\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{5}\right) = \sqrt{5}$ $\lambda < 0$, point of mimimum. We get the maximum
he minimum $f\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right) = -\sqrt{5}$.
 $(x, y) = \begin{cases} \frac{(xy)^3}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ is differentiable at t of mimimum. We get the maximum
 $\int_{1}^{1} f\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right) = -\sqrt{5}.$
 $\int_{\frac{(xy)^3}{x^2+y^2}}^{(\frac{(xy)^3}{x^2+y^2}}$ if $(x, y) \neq (0, 0)$ is differentiable at
 $\int_{0}^{(\frac{h \cdot 0)^3}{x^2-y^2}}$ = 0 $3 \quad \blacksquare$ $\begin{aligned} f\Big(&-\frac{\overline{1}}{5}\sqrt{5},\ \frac{xy)^3}{x^2+y^2} \quad \text{if}\ (x,y) \ \text{if}\ (x,y) \end{aligned}$ $\neq (0,0)$ is different $=(0,0)$ $f\left(\frac{1}{5}\sqrt{5}, \frac{4}{5}\sqrt{5}\right) = \sqrt{5}$ and the minimum $f\left(-\frac{1}{5}\sqrt{5}, -\frac{4}{5}\sqrt{5}\right) = -\sqrt{5}$.

II M 3) Check if the function $f(x, y) = \begin{cases} \frac{(xy)^3}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ is differentiable at poi he function $f(x, y) = \begin{cases} \frac{(xy)^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ is differentiable as
 $\frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{(h \cdot 0)^3}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0;$

$$
(0,0)
$$
.

II M 3) Check if the function
$$
f(x, y) = \begin{cases} \frac{x-y}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}
$$

\n(0,0).
\n
$$
f'_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{(h \cdot 0)^3}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0;
$$
\n
$$
f'_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{(0 \cdot h)^3}{0^2 + h^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0.
$$
\nFunction *f* is differentiable at point (0,0) if
\n
$$
\lim_{(x,y) \to (0,0)} \frac{f(x,y) - f(0,0) - (f'_x(0,0) \cdot x + f'_y(0,0) \cdot y)}{\sqrt{x^2 + y^2}} = 0, \text{ but}
$$
\n
$$
f(x,y) = f(0,0) - (f'_x(0,0) \cdot x + f'_y(0,0) \cdot y)
$$

Function f is differentiable at point $(0, 0)$ if

$$
f'_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{\partial^2 h^2}{\partial x^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0.
$$

Function f is differentiable at point (0,0) if

$$
\lim_{(x,y) \to (0,0)} \frac{f(x,y) - f(0,0) - (f'_x(0,0) \cdot x + f'_y(0,0) \cdot y)}{\sqrt{x^2 + y^2}} = 0, \text{ but}
$$

$$
\lim_{(x,y) \to (0,0)} \frac{f(x,y) - f(0,0) - (f'_x(0,0) \cdot x + f'_y(0,0) \cdot y)}{\sqrt{x^2 + y^2}} =
$$

$$
\lim_{(x,y)\to(0,0)}\frac{f(x,y)}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{\frac{(xy)^3}{x^2+y^2}}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\left(\frac{xy}{\sqrt{x^2+y^2}}\right)^3,
$$
\nwriting the limit in polar coordinates, it can be rewritten as:

writing the limit in polar coordinates, it can be rewritten as:

$$
\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{\frac{1}{x^2+y^2}}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \left(\frac{xy}{\sqrt{x^2+y^2}}\right) ,
$$
\n
$$
\text{writing the limit in polar coordinates, it can be rewritten as:}
$$
\n
$$
\lim_{\rho \to 0} \left(\frac{\rho \cdot \cos \theta \cdot \rho \cdot \sin \theta}{\sqrt{(\rho \cdot \cos \theta)^2 + (\rho \cdot \sin \theta)^2}} \right)^3 = \lim_{\rho \to 0} \left(\frac{\rho^2 \cdot \cos \theta \cdot \sin \theta}{\rho \sqrt{\cos^2 \theta + \sin^2 \theta}} \right)^3 =
$$
\n
$$
\lim_{\rho \to 0} \rho^3 (\cos \theta \cdot \sin \theta)^3 = 0. \text{ The convergence is uniformly because}
$$
\n
$$
|\rho^3 (\cos \theta \cdot \sin \theta)^3| = \rho^3 |\cos \theta \cdot \sin \theta|^3 \le \rho^3 (1/2)^3 = \rho^3 / 8; \text{ put}
$$

 $\lim_{\rho \to 0} \left(\frac{\rho \cdot \cos \theta \cdot \rho \cdot \sin \theta}{\sqrt{(\rho \cdot \cos \theta)^2 + (\rho \cdot \sin \theta)^2}} \right) = \lim_{\rho \to 0} \left(\frac{\rho \cdot \cos \theta \cdot \sin \theta}{\rho \sqrt{\cos^2 \theta + \sin^2 \theta}} \right) =$
 $\lim_{\rho \to 0} \rho^3 (\cos \theta \cdot \sin \theta)^3 = 0.$ The convergence is uniformly because
 $|\rho^3 (\cos \theta \cdot \sin \theta)^3| = \rho^3 |\cos \theta \cdot \sin$ $\left(\sqrt{(\rho \cdot \cos \theta)^2 + (\rho \cdot \sin \theta)^2}\right)$ $\rho \to 0$ $\rho \to 0$
 $\lim_{\rho \to 0} \rho^3 (\cos \theta \cdot \sin \theta)^3 = 0$. The convergence is uniform $|\rho^3 (\cos \theta \cdot \sin \theta)^3| = \rho^3 |\cos \theta \cdot \sin \theta|^3 \le \rho^3 (1/2)^3 =$
 $\rho^3/8 < \epsilon \Leftrightarrow \rho^3 < 8\epsilon \Leftrightarrow \rho < 2 \sqrt[3]{\epsilon}$.

II M 4) Funct

 $\lim_{\rho \to 0} \rho^3 (\cos \theta \cdot \sin \theta)^3 = 0$. The convergence is uniformly because
 $|\rho^3 (\cos \theta \cdot \sin \theta)^3| = \rho^3 |\cos \theta \cdot \sin \theta|^3 \le \rho^3 (1/2)^3 = \rho^3/8$; put
 $\rho^3/8 < \epsilon \Leftrightarrow \rho^3 < 8\epsilon \Leftrightarrow \rho < 2\sqrt[3]{\epsilon}$.

II M 4) Function $f(x, y) = x^2 - y^2$ has direc $\left[\rho^3(\cos\theta \cdot \sin\theta)^3\right] = \rho^3|\cos\theta \cdot \sin\theta|^3 \le \rho^3(1/2)^3 = \rho^3/8$; put
 $\sigma^3/8 < \epsilon \Leftrightarrow \rho^3 < 8\epsilon \Leftrightarrow \rho < 2\sqrt[3]{\epsilon}$.

II M 4) Function $f(x, y) = x^2 - y^2$ has directional derivatives $\mathcal{D}_v f(x_P, y_P) = 0$ and
 $\mathcal{D}_w f(x_P, y_P) = 0$, wh $\begin{aligned} &\langle \cos \theta \cdot \sin \theta \rangle^3 \Big| = \rho^3 |\cos \theta \cdot \sin \theta|^3 \le \rho^3 (1/2)^3 = \rho^3/8; \text{ put } \\ &\langle \epsilon \Leftrightarrow \rho^3 \langle \delta \epsilon \Leftrightarrow \rho \langle \epsilon \rangle^3 \langle \epsilon \rangle^3 \Big| \le \rho^3 (1/2)^3 = \rho^3/8; \text{ put } \\ &\text{4) Function } f(x, y) = x^2 - y^2 \text{ has directional derivatives } \mathcal{D}_v f(x_P, y_P) = 0 \text{ and } \\ &\langle (x_P, y_P) = 0 \text{, where } v \text{ is the unit vector } \$ II M 4) Function $f(x, y) = x^2 - y^2$
 $\mathcal{D}_w f(x_P, y_P) = 0$, where v is the un
 $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Find the point (x, y)
 $\mathcal{D}_{v,w}^{(2)} f(x_P, y_P)$. Function $f(x, y) = x^2 - y^2$ has directional derivatives $\mathcal{D}_v f(x_P, y_P) = 0$ and $x_P, y_P) = 0$, where v is the unit vector $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and w is the unit vector $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Find the point (x_P, y_P) $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$
 $\left(\frac{2}{v,w}f(x_P, y_P)\right)$

unction f is different $D_w f(x_P, y_P) = 0$, where v is there v is the $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Find the point $\left(\begin{array}{c} \frac{(2)}{2} & \frac{\sqrt{2}}{2} \\ \frac{(2)}{2} & \frac{\sqrt{2}}{2} \\ \frac{2}{2} & \frac{\sqrt{2}}{2} \end{array}\right)$. Find the point $\frac{(2)}{2}$ with $f(x_P, y_P)$. $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Find the point (x_P, y_P) and calculate the directional derivative
 $\mathcal{D}_{v,w}^{(2)} f(x_P, y_P)$.

Function f is differentiable for any point (x, y) with gradient $\nabla f(x, y) = (2x, -2y)$,
 $\mathcal{D}_v f(x_P, y_P)$

 $\mathcal{D}_{v,w}^{(2)} f(x_P, y_P)$.
Function f is differentiable for any point (x, y) with gradient $\nabla f(x, y) = (2x, -2y)$. $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Find the point (x_P, y_P) and calculate the directional derivative
 $D_{v,w}^{(2)} f(x_P, y_P)$.

Function f is differentiable for any point (x, y) with gradient $\nabla f(x, y) = (2x, -2y)$,
 $\mathcal{D}_v f(x_P, y_P) = (2x$ $\left(\frac{Z}{2}, -\frac{\sqrt{2}}{2}\right)$. Find the point (x_P, y_P) and calculate the directional derivative
 $f(x_P, y_P)$.

tion f is differentiable for any point (x, y) with gradient $\nabla f(x, y) = (2x, -2y)$,
 $(x_P, y_P) = (2x_P, -2y_P) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\$ and Function f is differentiable for any point (x, y) with gradient $\forall f(x, y) = (2x, -2y)$,
 $\mathcal{D}_v f(x_P, y_P) = (2x_P, -2y_P) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \sqrt{2}x_P - \sqrt{2}y_P = (x_P - y_P)\sqrt{2}$

and
 $\mathcal{D}_w f(x_P, y_P) = (2x_P, -2y_P) \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}$

Function *f* is an
relation *f* is an
equation *f* is an

$$
\mathcal{D}_v f(x_P, y_P) = (2x_P, -2y_P) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \sqrt{2}x_P - \sqrt{2}y_P = (x_P - y_P)\sqrt{2}
$$

and

$$
\mathcal{D}_w f(x_P, y_P) = (2x_P, -2y_P) \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \sqrt{2}x_P + \sqrt{2}y_P = (x_P + y_P)\sqrt{2}.
$$

Putting $(x_P - y_P)\sqrt{2} = 0$ and $(x_P + y_P)\sqrt{2} = 0$ it easily follows $x_P = y_P = 0$.
Remember that
$$
\mathcal{D}_{v,w}^{(2)} f(x_P, y_P) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \mathcal{H} f(x_P, y_P) \cdot \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{array}\right)
$$
 and

$$
\mathcal{H} f(x_P, y_P) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}
$$
; we get

$$
\mathcal{D}_{v,w}^{(2)} f(x_P, y_P) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \cdot \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{array}\right) =
$$

$$
\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot (\sqrt{2}, \sqrt{2}) = 2.
$$