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I M 1) Given the complex numbers z = \/ i and w= — % + - \/
calcul ate the square roots of the complex number y =212 !0,
The complex numbers z = ? + gz and w= — g + gz have modulus

2 2
respectively p, = J (?) + <§) =1 and
2 2
Puw = J (— ﬁ) + <£> = 1, for the arguments we observe that =z belongs to

2 2
%) — T whilew

the first quarter of the immaginary planeand 6, = tan ™' ( 1

belongs to the second quarter of the immaginary plane and

2/2 3 . . ;

0, =m+tan™" \// =7 — T_°or ; thusin exponential form, z =1 - e+’
— \/5/2 4 4

12 10

and w=1-¢"'.For the complex number y weget y = 2 - w" =

-\ 10 e s 21 21
(1 el )12 (1 611) =3 el = eV = cos<77r) —i—z’sz’n(%) =
cos (g) + 1 s1n (g) . For the roots we apply the classical formula:

242k 242k
ﬁ:yk :cos(%) +isin<%) k=0,1
= cos(g + kw) —|—isin(£ + kw) k=0,1.
The two roots are:

™ .. ™ \/5 \/5
k=0— yo—cos(z)+zsm(z)—7+71—z
R Y s 5r 2 2.
e — = —_ - - L I 5 = __
Y1 = COS 4 781N 4 9 9 7 z
. . 2 2 2 2
Alternative solution: z - w = (7 + 7@) . (— - + %z) =

2 2
2 2 1 1
<£Z> — (l) = — 5 — 5 = — ]_, thus Y = 212 . wlo — 22(2 . w)lo —

2 2

2

(ﬁ ﬁl) (=)0 = iy =
2 2

of the two roots follows as the previous page.



2 2 1

I M 2) Given the matrix A = [0 1 0} . Study if the matrix is diagonalizable and for
1 2 2

eigenvalue A = 1 calculate a basis for the associated eigenspace.

To study the diagonalizability of A we start with the calculus of the characteristic

A—2 =2 -1
polynomial of the matrix; Py(A\) = [AL—A|=] 0 A-—-1 0 |=
—1 -2 A=2
(A—l)‘)\_Q _1‘:(A—l)(()\—2)2—1):()\—1)()\2—4>\+3):
-1 X=-2

A=1A=1)(A=3) = (A—1)*\— 3). Putting P,(\) = 0 wefind the three
eigenvalues of matrix A: \; » = 1, A\3 = 3, the eigenvalue 1 has agebraic multiplicity
equal two. To verify if the matrix is diagonalizable, we must find the geometric
multiplicity of eigenvalue 1, for our goal we calculate the rank of matrix

-1 -2 -1

1-T-A= [ 0 0 0 },it'seasytonotethatmatrixl-]I—Ahasanullrow
-1 -2 -1

and two rows identical, thus Rank(1 -1 — A) = 1 and the geometric multiplicity of

eigenvalue 1 istwo. The matrix is diagonalizable.

To calculate a basis for the associated eigenspace of eigenvalue A\ = 1 we consider the

-1 -2 =1 T 0
0 0 O [ty ]=10]thaimplies —x—2y—z=0o0r
-1 -2 =1 z 0

z = — x — 2y, ageneric vector that belongs to the associated eigenspace of eigenvalue
A=1lis(z,y, —x—2y)=2(1,0, — 1)+ y(0,1, — 2); abasisfor the associated
eigenspace is the set of vectors By—; = {(1,0, — 1), (0,1, —2)}.

| M 3) Given alinear map F: R* — R*, with F(X) = A- X and

equality

1 0 0 k
0 1 k£ 0 . :

A= O m 1 0l Determine the values of the parameters k and m knowing that
m 0 0 1

thevector (1, — 1, — 1, 1) belongsto the Kernel of F' and find the dimension of the

Image and the dimension of the Kernel of F'.
If vector (1, — 1, — 1, 1) belongsto the Kernel of F', F'(1, — 1, — 1,1) = O with

1 0 0 k 1 1+ k&
0 1 k 0 -1 —1-k |
F(1, -1, -1,1) = o om 1 ol 11| 2y ; put
m 0 0 1 1 m+ 1
1+ k 0
—1—k 0 . . .
= easily wefind K = m = — 1 and matrix
—-—m-—1 0
m+ 1 0
1 0 0 -1
0 1 -1 0 . . }
A= 0 1 1 0 . To find the dimension of the Image and the
-1 0 0 1

dimension of the Kernel of F' we calculate, by elementary operations on the lines, the



1 0 0 -1 1 0 0 -1
o 0 1 -1 0 |Ry—RmRs+mr |0 1 —=1 0 |,
rank of matrix A: 0 1 1 0 |mer+rlo 0 o0 0 :the
-1 0 0 1 0 0 O 0

reduced matrix has two null rows and atwo by two sub-matrix with determinant equal
one, thus Rank(A) = 2 and from the Rank-Nullity Theorem we conclude that the
dimension of the Image and the dimension of the Kernel of £ are both equal two.

| M 4) Vector V' € R? has coordinates (3, — 2, 1) respect the basis
B=1{(1,1,1),(0,1,0),(0,0,1)}. Find the coordinates of vector 1 respect the new
baS-SB/ - (17070>7 (07 ]-a 0)7 ( - 17 - ]-7 - 1)}

If vector V' has coordinates (3, — 2, 1) respect the basis 13,

V =3(1,1,1) — 2(0,1,0) + 1(0,0,1) = (3,1, 4); if (o, 8, x) arethe coordinates of V'
respect thebasis B, V = a(1,0,0) + 3(0,1,0) + x(—-1, =1, — 1) =

(O'/_X7ﬁ_ X, — X) PUttIng (a_Xaﬁ_Xa _X) = (37174) Wegeta = —1,

= —3,andxy = — 4.

Alternative solution: if (3, — 2, 1) arethe coordinates of vector V' respect the basis 3
and («, 3, x) arethose respect the basis 5/,

1 0 0 3 1 0 -1 o

11 0f- =2 0 1 -1 G | equivaent to
m]( i 0

(1 0 -1 « 3

0 1 - 1 16} 1 ], and from the inverse matrix

[0 0 X 4

a 3 —1 o 01”7 /3
3 1 -1 0| -[1]=
X 4 1 1 4

e

1M 1) Theequatlon f(z,y) = 2 + 2%y + ¥ = 2 definesat point P(1,0) an

implicity function y = y(z) . Calculateitsfirst derivative /(1) and second derivative
i

y (1),

f(P)=1+0+¢"=2, f; =42° 4+ 2zy and [, = 2° + ¥, with f;(P) =4 and

fi(P)=2.Since f|(P) # 0, theequation f(z,y) = =* + 2’y + ¢/ = 2 definesa

Y

function y = y(x) with y'(1) = — f’:g; — — 2. For the second order derivative we
Yy
" . o " (a2 2
have /(1) = — Tz 2 Fry(P) ! ](31))+fy,y(P) () _
" (P)—4-f (P)+4-f1 (P)

5 because y'(1) = —2 and f,(P) =2.The

hessian matrix of function f isHf = [123:2; 2y 237] with Hf(P) = {122 ﬂ and
12—-4. 4-1
the second order derivativeis 3" (1) = — 2 22 + = —4.

Max/min f(z,y) =x —y
Il M 2) Solve the problem _ {x2 +y2 <1
u.c.:
1<z+y



The function f isapolynomial, continuos function, the admissible region, in red in the
figure below, is abounded and closed set, therefore f presents absol ute maximum and
minimum in the admissible region, constraints are qualified on any point in the border

of the admissible region, the two constraints can be written as 2> + 32> — 1 < 0 and

1 —x —y < 0. The Lagrangian function is

L(z,y,\) =z —y—ANa*+y*—1) — u(l — 2 —y) with

VL=(1-2 Xz +p, —1 -2 y+p, — (@*+y*—4), — (1 —z—y)).

XA2+yA2=1

x+y=1
I° CASE (free optimization):
(A=p=0
1=0
¢ —1=0 ;systemimpossible.
> +9y? <1
(1 <z+y
11° CASFE (constrained optimization - first constraint active):
(A#0,0=0 A#0,p=0
1—2\z =0 T =5
§ —1-2\y=0=4qy= -4 ;systemimpossible.
vyt =1 2yt =1
(1<z+y 140
111° CASE (constrained optimization - second constraint active):
(A=0,u#0 A=0,0#0
1+p=0 = —1
¢ —14+p=0=< pn=1 ; System impossible.
24y’ <1 22 4y? <1
(1l=2+y l=z+y
II11° CASFE (constrained optimization - both constraints active):
(AN#£0,0#0 AN#0, 10 #0 AN#£0, 1 #0
1-2X+p=0 1-2X\+p=0 1-2X\+p=0
 —1-22y+pu=0=<¢ - 1-22y+pu=0=¢ —1-2y+p=0 =
?+yt=1 x2+(1—:r)2:1 2 —2=0
(1l=2+y y=1—=x y=1—=x



AF 0, #0
1-2X\x+p=0

—1-2X\y+p=0;ifz=0,y=1and\ == —1,cotherwiseifx =1,y =0
z(x—1)=0
y=1—=x
and A\ = = 1. Point P;(0, 1) is point of minimum for f (A and n both negative), with
absolute minimum f(P;) = — 1; point P,(1,0) is point of maximum for f (A and p

both positive), with absolute maximum f(P2) = 1.

II M 3) Given thefunction f(z,y) = |z|y — x|y| . Study if the function f is

differentiable at point O(0, 0).

Function f isdifferentiable at point O(0, 0) if exist real numbers a and b such that
f(x,y) — f(0,0) — (ax + by)

(z,y) — (0,0) Va2 +y?

lim |pcost| psin® —pcost|psind| — (apcosd+bpsind)

p=0 \/(pcos 0)> + (psin 6)
lim p? (|cos 0] sin @ — cos 0 |sin6]) — p(acosO+bsind)

p—0 p
limop(|cos 0] sin 0 — cos 0 |sin 0]) — (a cos @ + b sin 0) . From the last limit we can
p—

= 0. Using polar coordinates we have

observe that a necessary condition such that the limitis zeroisa = b = 0 and so our
limit can be written as: lz'mop(\cos 0| sin @ — cos 0 |sin ]) = 0. To conclude the
p—

exercise we can prove that the convergence is uniformly respect 6; for this goal note that
|p(|cos 0] sin @ — cos 0 |sin 0])| = p||cos 0] sin§ — cos 0|sin 0]| < p, convergenceis
uniformly.

[I M 4) Given thefunction f(z,y) = ze’ + ye” and the unit vector

v = (cos a, sin «) ; knowing that at point (0, 0) the directional derivative

D, f(0,0) = 0, find the two feasible values of o and compute for both these values the
second order directional derivative D2 £(0, 0).

Vi(x,y) = (e¥ +ye*,ze? +¢e%), Vf(0,0) = (1,1);

D, f(0,0) =V f(0,0)-v=(1,1) - (cos a, sin a) = cos a + sin «. Putting

cosa+ sina = 0 weget sina = — cos « and the two feasible values of « are ?ZTW
7 p@ : e _ | oy et
and T DEF(0.0) = Hf0.0) - ving = [ VL O,

[ } anle(fz))f(0,0) = (cos a, sin a) - [(2) (2)} : (cgsa) =

sin o
4 sin o cos o = 2 sin 2a; for both values of « Dl(fl))f(o, 0)= —2.



