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I M 1) Find the complex number 2z such that it's satisfied the following equality:

(2_i>2_(2+i)2+2¢=o.
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I M 2) Giventhematrix A = |0 —2 0 |.Study if the matrix is diagonalizable and
2 0 1
for eigenvalue A = — 2 calculate abasis for the associated eigenspace.
To study the diagonalizability of A we start with the calculus of the characteristic
A—1 0 0
polynomia of the matrix; Py(A\) = [A\I—A|=| 0 AX+2 0 |=

-2 0 A—1
(A —1)*(\ +2). Putting Py (\) = 0 wefind the three eigenval ues of matrix A:
A2 =1, 3 = — 2, theeigenvalue 1 has algebraic multiplicity equal two. To verify if
the matrix is diagonalizable, we must find the geometric multiplicity of eigenvalue 1,
0O 0 0
0 3 0],it'seasynotethat
-2 0 0

for our goal we calculate the rank of matrix I — A =

from matrix A we can define a principal minor of order 2, [ _02 g

different from 0 and matrix I — A hasthefirst raw null, thus Rank (I — A) = 2 and the
geometric multiplicity of eigenvalue 1 isone. The matrix isn't diagonalizable. For a

} with determinant

basis for the elgenspace associated at the eigenvalue A = — 2 we consider the matrix
-3 0 O

—2-A=| 0 0 0 |;agenericvector that belongsto thisegenspaceisa
-2 0 -3

vector (z,y, z) such that

-3 0 0 x — 3z 0
0 0 0 Ny | = 0 =10l =
-2 0 -3 z —2x — 3z 0

x = z = 0. Thus ageneric vector that belongs to the eigenspace is a vector

(0,v,0) = (0, 1,0), and abasis for the eigenspaceisthe set Brg, , = {(0,1,0)}.
| M 3) Given alinear map F: R? — R*, with

F(.Tl, x9, 1‘3) = (331 + X2, Lo+ X3, 1 + T2+ T3, —XT] — T — .’133). Find the matrix



associated with the linear map, calculate the dimentions of both, kernel and immage of
F, and find abasis for the image.
A generic element of theimage of linear map is the vector:

xr1 + T2 1 1 0 x
To + T3 . 0 1 1 1 .
21+ T + 23 =1 4 1 1 ig and easily we get that the
— 1 — L9 — T3 —1 —1 —1 3
1 1 0
. . . . . 1 1
matrix associated with the linear map is 1 1 e Now we reduce the
-1 -1 -1
matrix by elementary operations on its lines:
1 1 0 1 1 O
0 1 1 |Ry—Rs—pr, |0 1 1], .
1 1 L lrememlo o 110 the matrix shows full rank, thus the
-1 -1 =1 0 0 O

dimention of theimage is 3 and by the Rank-Nullity Theorem

dim(Ker(F)) = dim(R?) — dim(Ima(F)) = 3 — 3 = 0. For abasis of theimage
note that a generic vector that belongsin the image

(z1 + x9, Ty + 3,21 + 29 + 3, — 21 — T2 — x3) hasthe fourth component equal the
opposite of the third component and we can conclude that all the vectors in the image
have form (y1,y2,y3, —y3) = 1(1,0,0,0) + y2(0,1,0,0) + y3(0,0,1, — 1); abasis
for theimageisthe set B;,,,,(r) = {(1,0,0,0),(0,1,0,0),(0,0,1, — 1)}.

E 0 1
0 1 0
1 0 k
matrix, calculate the value of k£ and find the eigenvalues of matrix U.

Remember that amatrix U is a horthogonal matrix if and only if U-U? = UT - U =1,
an identity matrix. Also matrix U is symmetrical, so U7 = U and
U.-UT=0"-U=0-0.

| M 4) Consider the matrix U = . Knowing that the matrix U is an horthogonal

E o0 1 E 0 1 1+k* 0 2k 1 00
u-U=(0 1 0|-{0 1 Of=( O 1 0 |=1]0 1 ofifand
1 0 k 1 0 k 2k 0 1+K? 0 0 1
0 0 1
onlyifk=0;U= [0 1 0].Tofindtheegenvauesof matrix U we calculate the
1 0 0
A 0 -1
characteristic polynomia of thematrix: Py(A\) =[AI-U|=| 0 A—-1 0 |=
—1 0 A
()\—1)‘ _>‘1 _)\1‘ =(A=1)(A2=1) = (A—1)*’(A+1). Putting Py(\) = 0 we
find the three eigenvalues of matrix U: Aj o =1, A3 = — 1.

Il M 1) With the equation f(z,y, z) = zyz + 2zy* + 222% + 3yz = 0 we can defined
in aneighbourhood of point P(1, — 1,1) afunction inimplicit form. Which type of
implicit function can we define? Calculate itsfirst order derivatives.

f(P)= —1+2+2—-3=0, condition is satisfied in point P.

Vf= (yz+2y2 +222,:Ez+4xy+3z,a:y+4a:z+Sy) , Vf(P)=(3,0,0).



In point P only f/(P) # 0, thus the proposed condition defines aimplicit function
y(P) fi(P)

— — =0.

JL(P) JL(P)
(—1,1)isacritical point for function z(y, z).

Max/min f(z,y) =3y — z

[I M 2) Solve the problem { uc: 22+ 4% < 4 .
The function f isapolynomial, continuos function, the admissible region isadisk with
center (0, 0) and radius 2, abounded and closed set, therefore f presents absol ute
maximum and minimum in the admissible region, constraint is qualified on any point in
the circumference z? + y?> = 4. The Lagrangian function is
L(x,y,\) = 3y —x — A\(a? + y* — 4) with
VL= (—-1-2\z,3—2)\y, — (2> +y> —4)).
I° CASE (free optimization):

=0and z(—1,1) =

(A=0
—1=0 . .
<3:0 ; System impossible.
|22+ y? <4
11° CASFE (constrained optimization):
(A #0 A#0 A#0 A#£0
) 1-2aw=0 T=—n I Rt SN et S
— 10 __ 2 _ 10
SOl CENSCIETINE EL N CEE
(A#£0
1
x::nglO .. . 1 3 .
X P g\/TO . Two critical points, P, = (— =10, + g\/lO) the unique
A= +1/10

candidate for maximum (A > 0), and P, = (+ %\/1 , — % 10),theunique
candidate for minimum (\ < 0). Maxzf = f(P) = 3(2\/10) — (— : 10) =

2/10, Minf = f(P,) = 3(—% 10) . (%\/10) — —2/10 = — Maz/.

[I M 3) Given thefunction f(z,y) = |2zy|. Study if the function f isdifferentiable at

point O(0, 0).

Function f isdifferentiable at point O(0, 0) if exist real numbers a and b such that
f(z,y) — f(0,0) — (az + by)

lim
(z,y) — (0,0) V4 y?

12pcosO - psinf| — (apcosb+ bpsin)

= 0. Using polar coordinates we have

limo =
p \/(p cos0)” + (psin )

. 2p%|cos - sinb| — p(acos®+ bsinb)
lzmo =
p—

p
lz'm02p lcos 0 - sin @] — (acos @+ bsin@). Fromthelast limit we can observe that a

necessary condition such that the limitiszeroisa = b = 0 and so our limit can be
written as: limOQp |cos 0 - sin 8] = 0. To conclude the exercise we can prove that the
p—

convergence is uniformly respect 6; for this goal notethat |2 [cos 8 - sin §|| =
p|2-sin 0-cosb| = plsin260| < p, convergenceisuniformly.



Il M 4) Given thefunction f(z,y, z) = 2® —y® — 2° — 3z + 12y, find its critical
points and study their nature.
Vf= (32" -3, —3y* + 12z, — 32> + 12y) .

FOC:
322 —3=0 322 =3 7 =1
324122 =0 = { 122 = 32 = 2=y =
— 322412y =0 ~ 322412y =0 —3(12)° +12y =0
r=+1 r=+1 r=+1
Z:in - z:in = z:iy2 ;ify =0thenz =0,
— 3ty 12y =0 o2=st _ 3y(64 —y°) =0

otherwiseif 64 — y* = 0 weget y = 4 and z = 4. Four critical points:
Po=(£1,0,0)and P54 = (£ 1,4,4).

SOcC:
6x 0 0 6 0
Hi;= 1|0 —6y 12 |,withHL =06z, H3= = — 36zy and
f f 0 —6y
0 12 — 62
6z 0 0 6 12
H?c =0 -6y 12 |= 637‘ Y ‘ = 6x(36yz — 144) = 216x(yz — 4).
12 — 6z
0 12 — 62

For the sign sequence in the four points we get:

Hy(P1) = 6> 0, H7(P) =0, H}(P1) = — 864 < 0; P, saddle point, because
H}(P1) and H3(P1) have opposite sign;
Hy(P2) = — 6 <0, H3(Py) =0, H}(P,) = 864 > 0; P, saddle point;

1

Hy(P3) = 6 >0, H7(P;) = — 144 < 0, H}(P3) = 2592 > 0; P; saddle point,
because H7 (P;) is negative;

Hy(P) = —6 <0, H3(Py) = 144 > 0, H}(Py) = — 2592 < 0; P, point of
maximum, because the odd principal minors are negative and the unique even principal
minor is positive.



