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I M 1) Given the complex number z = 1 + ¢, calculate the square roots of complex
number z3.
Fromz =1+ iwegetz® = (1+ i)’ =14+3i4+3>+=1+3i—3—i=

— 2+ 2, themodule of 23 isp = /( — 2)? + 22 = /8 = 2/2 whileits argument is

2 3
9:7r+arctan<—2) =7+ arctan(—1) =7 —arctanl = 7 — % = Zﬂ;thUS

3 3 .
2= 2\/5 <cosi7r +1 siniﬁ> . For the square roots of 2% we use the classic formula:

\/; = \/2\/§<cos%r—l—ism§7r> =

4

%(COS (37r/4 + 2k7r> = sm(?m/ll + 2k7r)) _

2 2
Y 8(cos<§7r + k7r> +1 sin(gw + lmr)) with k& = 0, 1. The two root are:

E=0— 2= %(COS%W—FiSiTL%W) = \'1/3—2\/54—2'\4/3—1—2\/5;
11 11
E=1— zl_\4/§<cos§7r—l—isin§7r> = —\/3-2V2—-i\/3+2V2= 2.

1 1 1

I M 2) Given the matrix A = [O k 2} with k areal parameter. Study, varing the
0 2 k

parameter k, if the matrix is diagonalizable.

To study the diagonalizability of A we start with the calculus of the characteristic

A—-1 -1 -1
polynomial of the matrix; Py(A\) = [A\I—A|l=| 0 AX—-k =2 |=
0 -2 A=k
A—k =2 2 . ,
()\—1)‘ _9 )\_k‘:()\—l)(()\—k:) — 4). Putting P, (\) = 0 wefind the

three eigenvalues of matrix A: for A — 1 = Owehave \; = 1andfor (A — k)> —4 =0
weget (A — k)* = 4 and from it Xosg=k=x V4 = k £ 2; matrix A presents multiple
eigenvalueif k+2=1(k= —1)ork —2 =1 (k = 3). Matrix A isdiagonaizable if
k# —1landk # 3,thetwocasesk = — 1 or k = 3 must be studied separately; if

0o -2 2
geometric multiplicity of eigenvalue A = 1is1, matrix isn't diagonalizable; if £ = 3 and

0 -1 -1
klandAl,matrix]IA[O 2 —2}hasrankequal2andthe



0o -1 -1
A=1marixI—A= |0 —2 —2| hasrank equal 1 and the geometric

0o -2 =2
multiplicity of eigenvalue A = 1 is 2, matrix is diagonalizable. In conclusion the
proposed matrix isdiagonaizableif and only if k£ # — 1.
| M 3) Given alinear map F: R? — R3, with
F(xy,x9,23) = (x1 + 2 + x3, kx1 + kx9, 22 + kx3), Where k isareal parameter; we
know that the image of vector (1, 1, 1) isthe vector (3,4, 3). Find the value of the
parameter k& and calculate a basis for the image of such linear map.
F(1,1,1) = (3,2k,1 + k), put (3,2k,1 + k) = (3,4, 3) easily wefind k = 2. Tofind
abasis for the image we can note that any element of theimage Y = (y1, 42, y3) isa

1 1 1
linear combination of columns of matrix |2 2 0|,
0 1 2
(y1,y2,y3) = 21(1,2,0) + 29(1,2, 1) + x3(1, 0, 2), and the determinant of the matrix is
1 1 1
2 2 0= 201 129 + 2 2 =4 — 4+ 2 = 2 # 0; thus the columns of
0 1 2 1 2 0 2 0 1

the matrix are linear indipendent vectors and a basis for the image is the set of the three
vectors: Brqr = {(1,2,0), (1,2,1), (1,0,2)}.

Alternative solution to find a basis for image (by the matrix associated to the linear
application): from F(x1, x9, x3) = (21 + ©2 + =3, 221 + 229, x2 + 223) €asily wefind

1 1 1
the matrix associated to the linear application | 2 2 0 |; now we reduce the matrix
01 2
1 1 1
by elementary operationsonitslines: ({2 2 0|R,— R, -2 R,
0 1 2

1 1 1 1 1 1
0 0 —2|rRoR|0 1 2 |.Thematrix associated hasfull rank thusthe
0 1 2 00 -2
image of I isitscodomain, R?; and to find a basis we can take the set of the canonical
vectors: Br,qr) = {(1,0,0),(0,1,0),(0,0,1)}.
| M 4) Study, varing the real parameters k and m, the number of solutions of the linear
Ty + 20+ 13 =1
system: 2z + 3x2 + 223 = 2.
]{3.’1?1 +2o+x3=mM
To solve the exercise we use the Rouché-Capelli Theorem in matrix form; we start

T 2332 I3 | 1
writing the system in matrix form: | 2z; 3z9 2x3 | 2 |, now wereducethe
kry x x3 | m
system by elementary operations on its rows:
i I 2:172 T3 ‘ 1
20 3wy 2wy | 2| 2Tl
| kr1 xp x| m
i T 2332 I3 | 1
0 — T 0 | 0 Ry Ry + (1 —2k)- Ry
| 0 (1-2K)z, (1—Fk)zg | m—k




A T3 | 1
0 —x 0 | 0 . From the last matrix we observe that if £ # 1
0 0 (1-kxz3 | m—k
the complete and the incomplete matrices have the same rank 3, in this case system has
only one solution indipendently from m; if £ = 1 we rewrite the matrix and we

x1 2wy x3 | 1
substitutethe parameter: | 0 —x2 0 | 0 ; in this case the incompl ete
0 0 0 | m-1

matrix has rank 2 while the complete matrix hasrank 2 if and only if m = 1, with
k = m = 1 the system has oo! solutions (one degree of freedom in the choice of the
unknows). At the end we can summarize that the number of solution of the systemis: 1
if k # 1; ool if K =m = 1 and 0 otherwise.
Il M 1) With the equation f(z,y, z) = 2°y*2z — 2y°2> = 0 wecan defineina
neighbourhood of point P(1,1,1) inimplicit form afunction (x,y) — z(z,y).
Calculateitsfirst order derivatives and write the equation of tangent plane at the graphic
of function z(zx, y).
f(P)=1-1=0,conditionis satisfied in point P.
Vf= (3x2y2z —y223 20y z — 2xy2?, 2y? — 3xy2z2) , V(P)= (2,0, —2).
Inpoint P f.(P) # 0, thus the proposed condition defines aimplicit function
(z,y) — z(z,y) with 2/ (1,1) = — f=(P) =1land 2/ (1,1)= — o)

’ ’ o fi(P) o f'2(P)
equation of tangent plane at the graphic of function z(x, y) in point P is
z—2(L,1) = 2(1,1) - (= 1)+ 2,(1,1) - (y = 1) =
z—1=1-(z—1)+0-(y—1)=z2—1=x—1orx—2z=0.

i .2 2
11 M 2) Solve the problem { Ma>.</mQ|nf(;r,y) T
uc: z°+y <1

The function f isapolynomial, continuos function, the admissible region isadisk with
center (0,0) and radius 1, abounded and closed set, therefore f presents absolute
maximum and minimum in the admissible region, constraint is qualified in any point in
the circumference z? + y?> = 1. The Lagrangian function is
L(z,y,\) = 2* — y? — M2? + y* — 1) with
VL = (22 —2\z, — 2y — 2\y, — (22 + 9% —1)).
I° CASE (free optimization):

=0.The

A=0 A=0
2_x2—y0:O = i;g;Hf:[?) _02},|Hf|: — 4 < 0; Point O(0,0) isa
2?4y <1 0<1
saddle point.
11° CASFE (constrained optimization):
A#0 A #0
2 — 2 x =0 2¢(1—X) =0
—oy— 2y =0 ") —2y(1+A\) =0
x2+y2:1 x2~|—y2:1
Ifx=0,y= £1and A\ = — 1, twocritical points, P, » = (0, £ 1) candidates for

minimum (A < 0).

Ify=0,2= £1and A = 1, two critical points, P;, = ( & 1,0) candidates for
maximum (A > 0).

f(Pa)= —(£1)*= —1= Minf.



f(Psy) = (£1)*=1= Mazf.

Il M 3) Given the function f(z,y) = 2° —y® + 2zy , find its critical points and study
their nature.

Vf= (3x2 + 2y, —3y2+2:1:) :

FOC:
322 +2y =0 yz—%xQ {y— §x2
= = =
{—3y2+2x=0 {—3(—§x2)2+2m:o — 2t + 22 =0
3,2
y= —at - e 2T
,if z = 0theny = 0, oth | — 2 =0 th
{x(_273+2) 0|:c 0 then y = 0, otherwise | 4:c+ 0 then
3] 8 2 2 i . 2 2
=4/—=-and y= — =.Twocritica pointsO = (0,0)and P = | =, — = |.
TV T3 NV T T3 P (0,0 <3’ 3>
SOC:
6z 2 693 2 _ B
Hf—[2 —Gy] with |H;| = _6y‘——36xy—4, (O)= —4<0,
O isasaddle point for function f(z, y), |H;(P)|=12>0and f” (P)=4>0, Pisa

point of minimum for function f(z, y).
Il M 4) Given the function f(z,y) = 2° — 3zy + 2y* and the two unit vectors

1 1
= —, —F—= and =
<\/§ \/5) v (f f)
derivativesare D, f(P) = \f and D,,f(P) = 0, find the point P.

Function f isapolynomial, adifferentiable function at any point (z, y),
Vf = (2z — 3y, — 3z + 4y) and the two direction derivatives at point P are:

knowing that at point P the directional

D,f(P)=Vf-v=(2x -3y, — 3z +4y) - (\/ \/,>
Lo+ (CBetdy) = (a4
\/5 Y \/5 Yy —\/5 Y)
Duf(P)=Vf -w= 2z — 3y, —3x+4y) - (\/, \/>
1 1 1
%(Qx—?)y)—%(—iix—i-ély):%(5:&—734).

T~z +y) =2 - - _

V2 Tty T .
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