UNIVERSITA' DEGLI STUDI DI SIENA Corsi di Laurea Triennale in Economia

A.A. 2025/26

Prova di Verifica di fine Precorso Matematica 2025 - Versione I

COGNOME e NOME:
NUMERO DI MATRICOLA:
Per rispondere alle domande barrare il quadrato corrispondente alla risposta ritenuta esatta. Una sola delle quattro risposte proposte è esatta. Se volete correggere una risposta già data, che ritenete invece errata, fate un cerchio intorno al quadrato di quella errata e barrate la nuova risposta. E' consentita UNA SOLA correzione: Esempio 1: La risposta fornita è la 60b)
\square 60a) sen $\alpha < \cos \alpha$
$(60b) \operatorname{sen} \alpha < \cos \beta$
\square 60c) $\cos \alpha < \text{sen } \alpha$
\square 60d) sen β < sen α
Esempio 2: E' stata data la risposta 60b), ma volendo correggerla, è stata cerchiata e si fornisce come risposta ufficiale la 60d).
\square 60a) sen $\alpha < \cos \alpha$
(260b) sen $\alpha < \cos \beta$
\square 60c) $\cos \alpha < \text{sen } \alpha$
λ 60d) sen β < sen α

- 1) Se $log_3 x + log_9 x = 6$, il valore di x è pari a:
- □ 1a) 9
- □ 1b) 81
- □ 1c) 3
- □ 1d) 27

- 2) Limitatamente ai valori $0 \le x \le 2\pi$, la disequazione $cos(x) \le \frac{\sqrt{2}}{2}$ ha soluzioni:
- $\square 2a) \frac{1}{4}\pi \le x \le \frac{3}{4}\pi$ $\square 2b) \frac{1}{4}\pi \le x \le \frac{7}{4}\pi$ $\square 2c) \frac{1}{4}\pi \le x \le \pi$
- \square 2d) $\pi \le x \le \frac{7}{4}\pi$

- 3) La circonferenza di centro C(3,5) e raggio r=5 ha equazione:
- □ 3a) x² + y² 6x 10y + 9 = 0 □ 3b) x² + y² 6x 10y + 5 = 0 □ 3c) x² + y² 3x 5y + 5 = 0 □ 3d) x² + y² 5x 3y + 9 = 0

- 4) Nel piano cartesiano, l'equazione $y = x^2 2x$ rappresenta
- \Box 4a) una parabola con il vertice nel punto (1, -1)
- \square 4b) una parabola passante per i punti (0, -2) e (0, 0)
- \Box 4c) una retta passante per i punti(0,0)e $(1,\,-1)$
- \Box 4d) una retta passante per i punti (-1, 3) e (1, -1)

- 5) L'equazione esplicita della retta che passa per i punti A(1, 2) e B(5, 6) è:
- □ 5a) y = x 1
- \Box 5b) y = 2x + 1
- □ 5c) y = x 6
- \square 5d) y = x + 1

- 6) Quale fra le seguenti uguaglianze è corretta?
- \Box 6a) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[3]{2}$
- \Box 6b) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt{2}$
- \square 6c) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[64]{2}$
- \Box 6d) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[12]{2}$

- 7) La disequazione $3 \cdot 2^x > 0$ risulta soddisfatta per
- \square 7a) $2^x > \frac{1}{3}$, ovvero per $x > \sqrt{\frac{1}{3}}$
- \square 7b) ogni valore di x
- \Box 7c) $x > \sqrt{3}$
- \square 7d) $x > \log_2 \frac{1}{3}$

- 8) Si consideri una circonferenza $\mathcal C$ di raggio r e sia AB una corda tracciata su $\mathcal C$ che insiste su un angolo alla circonferenza di ampiezza α . Quale fra le formule seguenti esprime il corretto valore della lunghezza di AB?
- \square 8a) $\overline{AB} = 2r\cos\alpha$
- \square 8b) $\overline{AB} = 2r \operatorname{sen} \alpha \cdot \cos \alpha$
- \square 8c) $\overline{AB} = 2r \operatorname{sen} \alpha$
- \square 8d) $\overline{AB} = 2r tg \alpha$

- 9) Se $\left(\frac{3}{2}\right)^x = \sqrt[5]{\frac{8}{27}}$ allora: \square 9a) $x = -\frac{3}{5}$ \square 9b) $x = \frac{3}{5}$

- $\Box 9c) \ x = -\frac{5}{3}$ $\Box 9d) \ x = \frac{5}{3}$

- 10) L'espressione $\frac{x-1}{x+1} \frac{x+1}{x-1}$ risulta uguale a:

- $\square 10a) 2$ $\square 10b) \frac{2}{x^2 1}$ $\square 10c) \frac{4x}{1 x^2}$ $\square 10d) \frac{x^2 + 2}{1 x^2}$

Risposte Corrette:

2) B

4) A 9) A

1) B 6) D

7) B

3) A 8) C

5) D 10) C

UNIVERSITA' DEGLI STUDI DI SIENA Corsi di Laurea Triennale in Economia

A.A. 2025/26

Prova di Verifica di fine Precorso Matematica 2025 - Versione II

COGNOME e NOME:
NUMERO DI MATRICOLA:
Per rispondere alle domande barrare il quadrato corrispondente alla risposta ritenuta esatta. Una sola delle quattro risposte proposte è esatta. Se volete correggere una risposta già data, che ritenete invece errata, fate un cerchio intorno al quadrato di quella errata e barrate la nuova risposta. E' consentita UNA SOLA correzione: Esempio 1: La risposta fornita è la 60b)
\square 60a) sen $\alpha < \cos \alpha$
$(60b) \operatorname{sen} \alpha < \cos \beta$
\square 60c) $\cos \alpha < \text{sen } \alpha$
\square 60d) sen β < sen α
Esempio 2: E' stata data la risposta 60b), ma volendo correggerla, è stata cerchiata e si fornisce come risposta ufficiale la 60d).
\square 60a) sen $\alpha < \cos \alpha$
(260b) sen $\alpha < \cos \beta$
\square 60c) $\cos \alpha < \text{sen } \alpha$
(60d) sen $\beta < \text{sen } \alpha$

- 1) L'espressione $\frac{x-1}{x+1} \frac{x+1}{x-1}$ risulta uguale a:

- 2) La disequazione $3 \cdot 2^x > 0$ risulta soddisfatta per
- \square 2a) ogni valore di x
- \square 2b) $x > \sqrt{3}$
- \square 2c) $2^x > \frac{1}{3}$, ovvero per $x > \sqrt{\frac{1}{3}}$
- \square 2d) $x > \log_2 \frac{1}{3}$

- 3) Si consideri una circonferenza \mathcal{C} di raggio r e sia AB una corda tracciata su \mathcal{C} che insiste su un angolo alla circonferenza di ampiezza α . Quale fra le formule seguenti esprime il corretto valore della lunghezza di AB?
- \square 3a) $AB = 2r tg \alpha$
- \square 3b) $\overline{AB} = 2r \operatorname{sen} \alpha$
- \Box 3c) $\overline{AB} = 2r \operatorname{sen} \alpha \cdot \cos \alpha$
- \square 3d) $\overline{AB} = 2r \cos \alpha$

- 4) Quale fra le seguenti uguaglianze è corretta?
- \Box 4a) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[3]{2}$
- \Box 4b) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt{2}$
- \Box 4c) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[12]{2}$
- \square 4d) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} = \sqrt[64]{2}$

- 5) La circonferenza di centro C(3,5) e raggio r=5 ha equazione:
- $\Box 5a) x^2 + y^2 6x 10y + 9 = 0$ $\Box 5b) x^2 + y^2 3x 5y + 5 = 0$
- $\Box 5c) x^{2} + y^{2} 5x 3y + 9 = 0$ $\Box 5d) x^{2} + y^{2} 6x 10y + 5 = 0$

- 6) Nel piano cartesiano, l'equazione $y = x^2 2x$ rappresenta
- \Box 6a) una retta passante per i punti (0, 0) e (1, -1)
- \Box 6b) una parabola con il vertice nel punto (1, -1)
- \Box 6c) una parabola passante per i punti (0, -2) e (0, 0)
- \square 6d) una retta passante per i punti (-1, 3) e (1, -1)

- 7) Limitatamente ai valori $0 \le x \le 2\pi$, la disequazione $cos(x) \le \frac{\sqrt{2}}{2}$ ha soluzioni:
- $\Box 7a) \quad \pi \le x \le \frac{7}{4}\pi$ $\Box 7b) \quad \frac{1}{4}\pi \le x \le \frac{3}{4}\pi$ $\Box 7c) \quad \frac{1}{4}\pi \le x \le \pi$ $\Box 7d) \quad \frac{1}{4}\pi \le x \le \frac{7}{4}\pi$

- 8) Se $\left(\frac{3}{2}\right)^x = \sqrt[5]{\frac{8}{27}}$ allora:
- □ 8a) $x = \frac{5}{3}$
- \Box 8b) $x = -\frac{5}{3}$
- $\square \ 8c) \ x = \frac{3}{5}$
- \Box 8d) $x = -\frac{3}{5}$
- 9) L'equazione esplicita della retta che passa per i punti A(1, 2) e B(5, 6) è:
- □ 9a) y = x + 1
- □ 9b) y = x 6
- \Box 9c) y = 2x + 1
- □ 9d) y = x 1

- 10) Se $log_3 x + log_9 x = 6$, il valore di x è pari a:
- □ 10a) 9
- □ 10b) 27
- □ 10c) 3
- □ 10d) 81

Risposte Corrette:

1) D 6) B

2) A

4) C

7) **D**

3) B 8) C

9) A

5) A 10) D