Università degli Studi di Siena

Facoltà di Economia
Prova scritta di Matematica Generale (A.A. 11-12)
4 settembre 2012

Compito **A**✓

- 1) (7 punti) Siano dati tre insiemi A, B e C. Sapendo che $(A \cap B) \subset C$ e $(A \cup C) \subset B$, possiamo concludere con certezza che $(A \cup B) \subset C$? (Giustificare la risposta)
- 2) (7 punti) Sia \mathcal{R} una relazione definita sull'insieme dei numeri reali \mathbb{R} nel seguente modo: $x \mathcal{R} y \Leftrightarrow x^2 y^2 \geq 1$. Studiare le proprietà soddisfatte da \mathcal{R} .
- 3) (7 punti) Si consideri la funzione $f(x) = \frac{x^2 + x 6}{x^2 4}$. Dopo aver determinato il suo campo di esistenza, studiare la natura dei suoi eventuali punti di discontinuità.
- 4) (7 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{\log(1 + sen^2x)}{1 \cos x + x^2}$; $\lim_{x \to +\infty} \frac{3^x 6^x}{x^6 x^3}$.
- 5) (11 punti) Determinare l'andamento grafico della curva di equazione $y=2-\frac{1}{x}-\frac{3}{x^2}\,.$
- 6) (7 punti) Indicare l'equazione della retta passante per il punto (-1;1) e parallela alla retta tangente alla funzione $y=2^x+4^x$ nel punto di ascissa $x_0=0$.
- 7) (7 punti) Calcolare $\int_0^1 \frac{1}{\sqrt[4]{x^3 + 3x^2 + 3x + 1}} dx$.
- 8) (7 punti) Indicare le derivate parziali della funzione $f(x,y,z) = \sqrt{\frac{\log(xy^2)}{xz}}$.

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.

Università degli Studi di Siena

Facoltà di Economia
Prova scritta di Matematica Generale (A.A. 11-12)
4 settembre 2012

Compito **B**✓

- 1) (7 punti) Siano dati tre insiemi A, B e C. Sapendo che $(A \cup B) \subset C$ e $(A \cap C) \subset B$, possiamo concludere con certezza che $A \subset B$? (Giustificare la risposta)
- 2) (7 punti) Sia \mathcal{R} una relazione definita sull'insieme dei numeri reali \mathbb{R} nel seguente modo: $x \mathcal{R} y \Leftrightarrow x^2 + y^2 \geq 1$. Studiare le proprietà soddisfatte da \mathcal{R} .
- 3) (7 punti) Si consideri la funzione $f(x)=\frac{x^2-x-6}{x^2-4}$. Dopo aver determinato il suo campo di esistenza, studiare la natura dei suoi eventuali punti di discontinuità.
- 4) (7 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{1 \cos x}{3^x 2 + \cos x}$; $\lim_{x \to 0} \frac{3^x 6^{-x}}{x^6 x^3}$.
- 5) (11 punti) Determinare l'andamento grafico della curva di equazione $y=rac{1}{x}+rac{2}{x^2}-3$.
- 6) (7 punti) Indicare l'equazione della retta passante per il punto (1; -1) e parallela alla retta tangente alla funzione $y = -2^x + 4^{-x}$ nel punto di ascissa $x_0 = 0$.
- 7) (7 punti) Calcolare $\int_{2}^{4} \frac{1}{\sqrt[4]{x^3 3x^2 + 3x 1}} dx$.
- 8) (7 punti) Indicare le derivate parziali della funzione $f(x,y,z)=\sqrt{\frac{2^{xy^2}}{xz}}$.

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.

Università degli Studi di Siena

Facoltà di Economia

Prova scritta di Matematica Generale (A.A. 11-12) 4 settembre 2012

Compito **C**✓

- 1) (7 punti) Siano dati tre insiemi A, B e C. Sapendo che $(A \cap B) \subset C$ e $(B \cup C) \subset A$, possiamo concludere con certezza che $B \subset (A \cap C)$? (Giustificare la risposta)
- 2) (7 punti) Sia \mathcal{R} una relazione definita sull'insieme dei numeri reali \mathbb{R} nel seguente modo: $x \mathcal{R} y \Leftrightarrow x^2 y^2 \geq -1$. Studiare le proprietà soddisfatte da \mathcal{R} .
- 3) (7 punti) Si consideri la funzione $f(x)=\frac{x+2}{x^2-x-6}$. Dopo aver determinato il suo campo di esistenza, studiare la natura dei suoi eventuali punti di discontinuità.
- 4) (7 punti) Calcolare i seguenti limiti: $\lim_{x \to 0} \frac{2 \cos x \cos^2 x}{sen^2 x + sen x^2}$; $\lim_{x \to +\infty} \frac{3^x x^6}{x^3 6^{-x}}$.
- 5) (11 punti) Determinare l'andamento grafico della curva di equazione $y=1-\frac{4}{x}+\frac{1}{x^2}\,.$
- 6) (7 punti) Indicare l'equazione della retta passante per il punto (0;0) e parallela alla retta tangente alla funzione $y=2^x-3^x$ nel punto di ascissa $x_0=1$.
- 7) (7 punti) Calcolare $\int_0^2 \frac{1}{\sqrt{x^3 + 3x^2 + 3x + 1}} dx$.
- 8) (7 punti) Indicare le derivate parziali della funzione $f(x,y,z) = \frac{\log(xyz^2)}{\sqrt{y^3}}$.

[✓] Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.