UNIVERSITA' DEGLI STUDI DI SIENA

Facoltà di Economia "R. Goodwin" A.A. 2022/23

Quantitative Methods for Economic Applications -Mathematics for Economic Applications Task 18/3/2024

I M 1) Find all the complex numbers z such that their immaginary part are equal 2 and the module of complex number z + i is equal 5. For every complex number z found, calculate its argument.

If the immaginary part of complex number is equal 2, z = a + 2i and z + i = a + 3iwith the module $\rho = \sqrt{a^2 + 9}$. Put $\sqrt{a^2 + 9} = 5$ follow $a^2 + 9 = 25$ and $a^2 = 16$ with $a = \pm 4$; the request complex numbers are $z_1 = 4 + 2i$ and $z_2 = -4 + 2i$. For their arguments remember that if $a \neq 0$, the argument of z can be calculated as

$$\theta = arctg\left(\frac{b}{a}\right)$$
 if a is positive and $\theta = \pi + arctg\left(\frac{b}{a}\right)$ if a is negative, follow that

for
$$z_1$$
 and z_2 we get $\theta_1 = arctg\left(\frac{2}{4}\right) = arctg\left(\frac{1}{2}\right)$ and

$$\theta_2 = \pi + arctg\left(-\frac{2}{4}\right) = \pi - arctg\left(\frac{1}{2}\right); \ \theta_1 \approx 0.46 \ \ \text{radiants}, \ \ \theta_2 \approx 2.68 \ \ \text{radiants}.$$

$$\theta_2 = \pi + arctg\left(-\frac{2}{4}\right) = \pi - arctg\left(\frac{1}{2}\right); \ \theta_1 \approx 0.46 \ \text{ radiants}, \ \theta_2 \approx 2.68 \ \text{ radiants}.$$
 I M 2) Given the matrix $\mathbb{A} = \begin{bmatrix} 2 & 2 & -1 \\ -1 & 2 & 1 \\ 2 & k & -2 \end{bmatrix}$ and knowing that -1 is an eigenvalue

of the matrix; study if the matrix A is diagonalizable or not.

At the first step we calculate the characteristic polynomial of matrix A;

$$P_{\mathbb{A}}(\lambda) = |\lambda \mathbb{I} - \mathbb{A}| = \begin{vmatrix} \lambda - 2 & -2 & 1 \\ 1 & \lambda - 2 & -1 \\ -2 & -k & \lambda + 2 \end{vmatrix} = (\lambda - 2) \cdot \begin{vmatrix} \lambda - 2 & -1 \\ -k & \lambda + 2 \end{vmatrix} +$$

$$+2 \cdot \begin{vmatrix} 1 & -1 \\ -2 & \lambda + 2 \end{vmatrix} + \begin{vmatrix} 1 & \lambda - 2 \\ -2 & \lambda + 2 \end{vmatrix} = (\lambda - 2) \cdot ((\lambda - 2)(\lambda + 2) - k) + (\lambda - 2)(\lambda + 2) \cdot ((\lambda - 2)(\lambda + 2) - k) + (\lambda - 2)(\lambda + 2)(\lambda + 2) \cdot ((\lambda - 2)(\lambda + 2) - k) + (\lambda - 2)(\lambda + 2)(\lambda + 2)(\lambda + 2)(\lambda + 2) \cdot ((\lambda - 2)(\lambda + 2) - k) + (\lambda - 2)(\lambda + 2)(\lambda +$$

$$+ 2 \cdot (\lambda + 2 - 2) + (-k + 2(\lambda - 2)) = (\lambda - 2) \cdot (\lambda^2 - 4\lambda - 4 - k) + 2\lambda + (2\lambda - 4 - k) = \lambda^3 - 6\lambda^2 + (8 - k)\lambda + k + 4$$
. If -1 is an eigenvalue of the

matrix, -1 is a root of the characteristic polynomial thus $P_{\mathbb{A}}(-1)=0$ and

$$P_{\mathbb{A}}(-1) = 2k - 11$$
; put $2k - 11 = 0$ easily we find $k = \frac{11}{2}$. Matrix

$$\mathbb{A} = \begin{bmatrix} 2 & 2 & -1 \\ -1 & 2 & 1 \\ 2 & \frac{11}{2} & -2 \end{bmatrix} \text{ and } P_{\mathbb{A}}(\lambda) = \lambda^3 - 6\lambda^2 + \frac{5}{2}\lambda + \frac{19}{2} = (\lambda + 1) \cdot \left(\lambda^2 - 7\lambda + \frac{19}{2}\right).$$

Now we calculate the remaining two eigenvalues putting $\lambda^2 - 7\lambda + \frac{19}{2} = 0$, the

equation has solutions $\frac{7 \pm \sqrt{11}}{2}$ and the three eigenvalues of \mathbb{A} are $\lambda_1 = 1$ and

 $\lambda_{2,3}=\frac{7\pm\sqrt{11}}{2}$; matrix is diagonalizable becouse its three eigenvalues are one to one

I M 3) Given the linear system
$$\begin{cases} mx_1 + mx_2 + mx_3 = 0 \\ mx_1 + mx_2 + x_3 = 0 \\ mx_1 + x_2 + x_3 = 0 \end{cases}$$
, where m is a real $mx_1 + x_2 + x_3 = 0$

parameter. We indicate with S_m the set of its solutions, study, varing m, the dimention of the set S_m , and when the dimention is bigger, find a basis for S_m .

The matrix associated to the system is $\begin{bmatrix} m & m & m \\ m & m & 1 \\ m & 1 & 1 \end{bmatrix}$. We reduce the matrix by elementary

$$egin{bmatrix} m & m & m \ m & m & 1 \ m & 1 & 1 \end{bmatrix} egin{bmatrix} R_2 \mapsto R_2 - R_1 \ R_3 \mapsto R_3 - R_1 \end{bmatrix} egin{bmatrix} m & m & m \ 0 & 0 & 1 - m \ 0 & 1 - m & 1 - m \end{bmatrix} R_2 \circlearrowleft R_3 egin{bmatrix} m & m & m \ 0 & 1 - m & 1 - m \ 0 & 0 & 1 - m \end{bmatrix}.$$

operations on its lines: $\begin{bmatrix} m & m & m \\ m & m & 1 \\ m & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \mapsto R_2 - R_1} \begin{bmatrix} m & m & m \\ 0 & 0 & 1 - m \\ 0 & 1 - m & 1 - m \end{bmatrix} \xrightarrow{R_2 \odot R_3} \begin{bmatrix} m & m & m \\ 0 & 1 - m & 1 - m \\ 0 & 0 & 1 - m \end{bmatrix}.$ The determinant of the reduced matrix is $\begin{vmatrix} m & m & m \\ 0 & 1 - m & 1 - m \\ 0 & 0 & 1 - m \end{vmatrix} = m(1 - m)^2 \text{ and it is different}$ from zero if and only if $m \neq 0$ and $m \neq 1$, rank of matrix $\begin{bmatrix} m & m & m \\ m & m & 1 \\ m & 1 & 1 \end{bmatrix} \text{ is three if and only if } m = 1 \text{ the matri}$

 $m \neq 0$ and $m \neq 1$ and this imply that in this case the dimention of S_m is zero. If m = 1 the matrix associated to the system is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, with rank equal at 1 and dimention of S_m is 2; finally if

m=0 the matrix associated to the system is $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, with rank equal at 2 and dimention of S_m is 1. In conclusion $dim(S_m)=\begin{cases} 2 & \text{if } m=1 \\ 1 & \text{if } m=0 \text{ . Dimention of } S_m \text{ is bigger if } m=1 \text{, and in } 0 & \text{otherwise} \end{cases}$

$$S_m$$
 is 1. In conclusion $dim(S_m) = \begin{cases} 2 & \text{if } m = 1 \\ 1 & \text{if } m = 0 \end{cases}$. Dimention of S_m is bigger if $m = 1$, and in 0 otherwise

this case the system is reduced to the unique equazion $x_1 + x_2 + x_3 = 0$ or $x_3 = -x_1 - x_2$, and a generic element of S_1 is $(x_1, x_2, -x_1 - x_2) = x_1(1, 0, -1) + x_2(0, 1, -1)$, a basis for S_1 is the set of vectors $\mathcal{B}_{S_1} = \{(1, 0, -1), (0, 1, -1)\}$. To be thorough we consider also the case m = 0,

in this situation the system is reduced to $\begin{cases} x_3 = 0 \\ x_2 + x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_3 = 0 \\ x_2 = 0 \end{cases}$, and a generic element of

 S_0 is $(x_1, 0, 0) = x_1(1, 0, 0)$, a basis for S_0 is the set $\mathcal{B}_{S_0} = \{(1, 0, 0)\}.$

I M 4) Given a linear map $F: \mathbb{R}^3 \to \mathbb{R}^3$, we know that:

- 1. F(1,1,1) = (0,0,0);
- 2. F(0,0,1) = (0,0,1);
- 3. F(1,0,0) = (1,0,0).

Find the dimention of its image and the dimention of its kernel; and for both, image and kernel, set a basis.

For the linear map F we know that the vector (1, 1, 1) belongs in the kernel of F, thus the dimention of the kernel is at least one: dim(KerF) > 1. The two linear indipendent vectors (0,0,1) and (1,0,0) belong in the image of F, thus the dimention of the image is at least two: dim(ImaF) > 2. By the dimention Theorem is known that for the linear map F, $dim(KerF) + dim(ImaF) = dim(\mathbb{R}^3) = 3$, an by the two previous

inequalities easily we conclude that dim(KerF) = 1 and dim(ImaF) = 2. The two basis for the spaces, kernel and image, can be easily found as $\mathcal{B}_{KerF} = \{(1, 1, 1)\}$ and $\mathcal{B}_{ImaF} = \{(0,0,1), (1,0,0)\}.$

II M 1) The equation f(x,y) = 0 satisfied on point $P(x_P, y_P)$, defined an implicit function y = y(x). We know that the gradient of f on point P is $\nabla f(P) = (1, -1)$

and the Hessian matrix of f on point P is $\mathcal{H}f(P) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. For this implicit function calculate the first and second derivatives $y'(x_P)$ and $y''(x_P)$.

By the Dini's Theorem if $f'_y(P) \neq 0$, $y'(x_P) = -\frac{f'_x(P)}{f'_y(P)} = -\frac{1}{-1} = 1$; and

$$y''(x_P) = -\frac{f_{x,x}''(P) + 2 \cdot f_{x,y}''(P) \cdot y'(x_P) + f_{y,y}''(P) \cdot (y'(x_P))^2}{f_y'(P)} = -\frac{f_{x,x}''(P) + 2 \cdot f_{x,y}''(P) + f_{y,y}''(P)}{f_y'(P)} = -\frac{1 + 2 \cdot (-1) + 1}{-1} = 0.$$
II M 2) Solve the problem
$$\begin{cases} \text{Max/min } f(x,y) = x^3 + y^3 \\ \text{u.c.: } x^2 + y^2 \le 8 \end{cases}.$$

The function f is a polynomial, continuos function, the admissible region is the interior region of a circunference, a bounded and closed set; constraint is qualified on circunference, therefore f presents absolute maximum and minimum in the admissible region. The Lagrangian function is

$$\mathcal{L}(x, y, \lambda) = x^3 + y^3 - \lambda(x^2 + y^2 - 8) \text{ with }$$

$$\nabla \mathcal{L} = (3x^2 - 2\lambda x, 3y^2 - 2\lambda y, -(x^2 + y^2 - 8)).$$

 I° CASE (free optimization):

$$\begin{cases} \lambda = 0 \\ 3x^2 = 0 \\ 3y^2 = 0 \\ x^2 + y^2 - 8 \le 0 \end{cases} \Rightarrow \begin{cases} \lambda = 0 \\ x = 0 \\ y = 0 \\ -8 \le 0 \end{cases}; \text{ point } (0,0) \text{ is admissible, } \mathcal{H}f = \begin{bmatrix} 6x & 0 \\ 0 & 6y \end{bmatrix} \text{ and }$$

 $\mathcal{H}f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathcal{H}_2(0,0) = 0$. We haven't any information about the nature of point (0,0).

 II° CASE (constrained optimization):

$$\begin{cases} \lambda \neq 0 \\ 3x^2 - 2\lambda x = 0 \\ 3y^2 - 2\lambda y = 0 \\ x^2 + y^2 - 8 = 0 \end{cases} \Rightarrow \begin{cases} \lambda \neq 0 \\ x(3x - 2\lambda) = 0 \\ y(3y - 2\lambda) = 0 \end{cases}$$
; we must evaluate four possibilities:
$$x^2 + y^2 = 8$$
 a: if $x = 0$ and $y = 0$, $0^2 + 0^2 \neq 8$; point $(0, 0)$ isn't admissible;

a: if x = 0 and y = 0, $0^2 + 0^2 \neq 8$; point (0, 0) isn't admissible;

b: if
$$x = 0$$
 and $y = \frac{2}{3}\lambda$, we get $\frac{4}{9}\lambda^2 = 8 \Rightarrow \lambda^2 = 18 \Rightarrow \lambda = \pm 3\sqrt{2}$, with

 $y = \pm 2\sqrt{2}$; point $P_1(0, 2\sqrt{2})$ is a candidate to maximum $(\lambda > 0)$, while point

 $P_2(0, -2\sqrt{2})$ is a candidate to minimum $(\lambda < 0)$;

c: if y = 0 and $x = \frac{2}{3}\lambda$, we get again $\frac{4}{9}\lambda^2 = 8 \Rightarrow \lambda = \pm 3\sqrt{2}$, with $x = \pm 2\sqrt{2}$; point $P_3(2\sqrt{2},0)$ is a candidate to maximum $(\lambda > 0)$, while point $P_4(-2\sqrt{2},0)$ is a

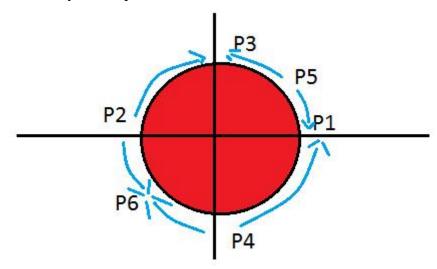
candidate to minimum ($\lambda < 0$):

 $d: \text{if } x = \frac{2}{3}\lambda \text{ and } y = \frac{2}{3}\lambda \text{ , we get } \frac{8}{9}\lambda^2 = 8 \Rightarrow \lambda^2 = 9 \Rightarrow \lambda = \pm 3 \text{ , with } x = \pm 2 \text{ and } y = \pm 2 \text{ ; point } P_5(2,2) \text{ is a candidate to maximum } (\lambda > 0) \text{, while point } P_6(-2,-2) \text{ is a candidate to minimum } (\lambda < 0). \ f(P_{1,3}) = 16\sqrt{2}, \\ f(P_5) = 16 < 16\sqrt{2}, f \text{ presents absolute maximum equal } 16\sqrt{2} \text{ in points } \left(0,2\sqrt{2}\right) \text{ and } \left(2\sqrt{2},0\right); \ f(P_{2,4}) = -16\sqrt{2}, \ f(P_6) = -16 > -16\sqrt{2}, \ f \text{ presents absolute minimum equal } -16\sqrt{2} \text{ in points } \left(0,-2\sqrt{2}\right) \text{ and } \left(-2\sqrt{2},0\right).$

To analize the nature of point P_5 and P_6 we study the function f along the upper and the lower border of the admissible region. Rewrite the circunference's equation as $y^2 = 8 - x^2$, the upper and the lower borders of the admissible region are respectively $y = +\sqrt{8-x^2}$ and $y = -\sqrt{8-x^2}$.

In the upper border consider the function $f\left(x,+\sqrt{8-x^2}\right)=x^3+\left(\sqrt{8-x^2}\right)^3=g(x),$ $g'(x)=3x^2+3\left(\sqrt{8-x^2}\right)^2\cdot\frac{-2x}{2\sqrt{8-x^2}}=3x\left(x-\sqrt{8-x^2}\right);$ g'(x)>0 if and only if $-2\sqrt{2}< x<0$ or $2< x<2\sqrt{2}$. Along the upper border, function f is increasing for $-2\sqrt{2}< x<0$ and $2< x<2\sqrt{2}$, decreasing for 0< x<2, P_5 is a false maximum (minimum point along the border). By the exchangeability on variables in function f(f(x,y)=f(y,x)), similar results can be achaived in the lower border.

In the graphic below, the admissible region, in red, and the behaviour of f along the border rappresented by the turquoise arrows.



II M 3) Solve the problem
$$\left\{ \begin{aligned} &\operatorname{Max/min} \ f(x,y) = x^2 + y^2 \\ &\operatorname{u.c.:} \ x - y = 4 \end{aligned} \right..$$

The Lagrangian function of the problem is $\mathcal{L}(x,y,\lambda) = x^2 + y^2 - \lambda(x-y-4)$ with $\nabla \mathcal{L} = (2x-\lambda,2y+\lambda,-(x-y-4))$. FOC:

$$\begin{cases} 2x - \lambda = 0 \\ 2y + \lambda = 0 \\ x - y = 4 \end{cases} \Rightarrow \begin{cases} x = \lambda/2 \\ y = -\lambda/2 \\ \lambda/2 + \lambda/2 = 4 \end{cases} \Rightarrow \begin{cases} x = \lambda/2 \\ y = -\lambda/2 \\ \lambda = 4 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = -2 \text{; one } \lambda = 4 \end{cases}$$

constraint critical points P = (2, -1)

$$\overline{\mathcal{H}} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \text{ with } |\overline{\mathcal{H}}| = \begin{vmatrix} 0 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 0 \\ 1 & 0 \end{vmatrix}$$

$$-2-2=-4$$
. $|\overline{\mathcal{H}}(P)|<0$, P point of minimum with $f(P)=8$.

II M 4) Given the function
$$f(x,y) = e^{x+y} - e^{x-y}$$
 and the unit vector $v = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$;

calculate on point (0,0) the directional derivatives $\mathcal{D}_v f(0,0)$ and $\mathcal{D}_{v,v}^{(2)} f(0,0)$.

$$\nabla f(x,y) = (e^{x+y} - e^{x-y}, e^{x+y} + e^{x-y}), \nabla f(0,0) = (0,2),$$

$$\mathcal{D}_v f(0,0) = \nabla f(0,0) \cdot v = (0,2) \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \sqrt{3}.$$

$$\mathcal{D}_{v}f(0,0) = \nabla f(0,0) \cdot v = (0,2) \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \sqrt{3}.$$

$$\mathcal{H}f(x,y) = \begin{bmatrix} e^{x+y} - e^{x-y} & e^{x+y} + e^{x-y} \\ e^{x+y} + e^{x-y} & e^{x+y} - e^{x-y} \end{bmatrix} \text{ and } \mathcal{H}f(0,0) = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \text{ with }$$

$$\mathcal{D}_{v,v}^{(2)}f(0,0) = v^T \cdot \mathcal{H}f(0,0) \cdot v = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \cdot \begin{bmatrix}0 & 2\\2 & 0\end{bmatrix} \cdot \begin{pmatrix}\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{pmatrix} = 0$$

$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \cdot \left(\frac{\sqrt{3}}{1}\right) = \sqrt{3}.$$