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I M 1) Find all the complex numbers z such that their immaginary part are equal 2 and
the module of complex number z + ¢ isequal 5. For every complex number z found,
calculate its argument.

If the immaginary part of complex numberisequa 2, z =a+2i and z+ ¢ =a + 3i
with themodulep = /a2 + 9. Put /a2 +9 =5 follow a* 4+ 9 = 25 and a* = 16
with ¢ = 4+ 4 ; therequest complex numbersare z; =4+ 2¢ and zo = — 4 + 2i. For
their arguments remember that if a # 0, the argument of z can be calculated as

0= arctg(é) if a ispositiveand 0 = w + arctg(é) if a isnegative, follow that
a a
1
for z; and z, weget 6, = arctg(%) = arctg(§> and

2 1 . .
0y =7+ arctg( — 1) =T — arctg(i) . 0 ~ 0.46 radiants, 6, ~ 2.68 radiants.

2 2 -1
IM 2) Giventhematrix A= | —1 2 1 | andknowingthat — 1 isan eigenvalue
2 ko —2

of the matrix; study if the matrix A is diagonalizable or not.
At the first step we calculate the characteristic polynomial of matrix A;
A—2 =2 1

Pa(A)==Af=) 1 A-2 -1 Z(A—2>“A—_k2 >\_+12‘+
-2 -k A+2
1 -1 1 A—=2
+2"—2 A+2‘ ‘—2 _k;‘:(A— ) (A=2)(A+2) = k) +

+2-A+2=-2)+(—k+200=2))=A—=2)- (N2 —4X—4—k)+ 2\ +
+ (2N —4—k) =X -6\ + (8 — k)X + k+4.1f —1isaneigenvalueof the
matrix, — 1 isaroot of the characteristic polynomial thus Py( — 1) = 0 and

. , 11 .
Py(—1) =2k —11; put 2k — 11 = 0 easily wefind k = 5 Matrix

2 2 -1 s 10
A=| -1 2 1 |adPy(\)= N —6\"+ -+ — =
9 U _9 2 2
] 19
A+1)- (A2—7A+5>.

.. . : 19
Now we cal cul ate the remaining two eigenvalues putting A\? — 7\ + 3= 0, the

74+4/11
2

equation has solutions and the three eigenvalues of A are \; = 1 and



; matrix is diagonalizable becouse its three eigenval ues are one to one

74+4/11
2

Aoz =

distinct.
mx, + mxo + mag =0
I M 3) Given thelinear system ¢ mz; + mzy + 23 =0 ,wherem isared
mxy+ Ty +x3 =0
parameter. We indicate with S,,, the set of its solutions, study, varing m, the dimention
of the set S,,,, and when the dimention is bigger, find abasisfor .S,,,.

m m m
The matrix associated to thesystemis | m m 1 |.Wereducethe matrix by elementary
m 1 1

operationson itslines:

m m m
m m 1 |-k

Ry — Ry — Ry
m 1 1

m m m m m m
0 0 l-m|rRoR| 0 1—-m 1—m].
0O 1-m 1—m 0 0 1—m
m m m
The determinant of the reduced matrixis| 0 1 —m 1—m|=m(1 —m)? anditisdifferent
0 0 1—-m
m m m
from zero if and only if m # 0 and m # 1, rank of matrix | m m 1] isthreeif and only if
m 1 1
m # 0 and m # 1 and thisimply that in this case the dimention of S,,, iszero. If m = 1 the matrix
1 1 1
associated to the system is [1 1 1} , with rank equal at 1 and dimention of S, is 2; finaly if
1 1 1

m = 0 the matrix associated to the system is

o O O
_ o O
_ = O

] , with rank equal at 2 and dimention of

2 ifm=1
Sy is1. Inconclusion dim(S,,) =< 1 if m =0 .Dimention of S,, isbigger if m = 1, and in
0 otherwise
this case the system is reduced to the unique equazion x; + zo + 3 = 00r z3 = — x — 9, and a
generic element of S is (z1, 2, — 21 — x2) = 21(1,0, — 1) + 22(0,1, — 1), abasisfor S isthe
set of vectors Bg, = {(1,0, — 1), (0,1, — 1)}. To be thorough we consider also the case m = 0,
in this situation the system is reduced to { 23 =0 = {$3 =Y and ageneric element of
To+ a3 =0 o =10

Sois(z1,0,0) = 21(1,0,0), abasisfor S, isthe set Bs, = {(1,0,0)}.
| M 4) Given alinear map F: R? — R3, we know that:

1. F(1,1,1) = (0,0,0);

2. F(0,0,1) = (0,0,1);

3. F(1,0,0) = (1,0,0).
Find the dimention of itsimage and the dimention of its kernel; and for both, image and kernel, set
abasis.
For the linear map F' we know that the vector (1,1, 1) belongsin the kernel of F', thus
the dimention of the kernel is at least one: dim(KerF') > 1. Thetwo linear indipendent
vectors (0,0, 1) and (1, 0,0) belong in theimage of F, thus the dimention of the image
isat least two: dim(ImaF’) > 2. By the dimention Theorem is known that for the linear
map F, dim(KerF) + dim(ImaF) = dim(R3) = 3, an by the two previous



inequalities easily we conclude that dim(KerF') = 1 and dim(ImaF') = 2. Thetwo
basis for the spaces, kernel and image, can be easily found as Bx.,» = {(1,1,1)} and
BIm(LF = {(07 07 1)7 (17 07 0)}

[I M 1) Theequation f(x,y) = 0 satisfied on point P(zp,yp), defined an implicit
function y = y(x) . We know that the gradient of f onpoint PisV f(P) = (1, — 1)

and the Hessian matrix of f onpoint PisHf(P) = { _11 _11 . For thisimplicit
function calcul ate the first and second derivatives y'(zp) and 3" (zp).
I : fo(P) 1
By the D Th ff/(P ! = — == = ——=1;
y the Dini's Theorem if £, (P) # 0, y'(zp) 71(P) T ; and
" ! 2
y"(xp) _ JIEII(P) +2- Ly(P) ) y/(xP) + z;/y(P) (¥ (zp)) _
5(P)
5(P)
1+2-(=1)+1 _0
-1 o

Max/min f(z,y) = 3 + 1°

uc:az?+y* <8 '

The function f isapolynomial, continuos function, the admissible region is the interior
region of a circunference, abounded and closed set; constraint is qualified on
circunference, therefore f presents absolute maximum and minimum in the admissible
region. The Lagrangian function is

L(z,y,\) = 2° + > — X\2? + y* — 8) with

VL = (32% — 2)z, 3y> — 2\y, — (22 + 9% —8)).

I° CASE (free optimization):

1 M 2) Solve the problem {

A=0 A=0
322 =0 z=0 . . . . 6 O
342 = 0 = y—0 point (0,0) isadmissible, Hf = { 0 6y] and
> +y?—8<0 —8<0
Hf(0,0) = [8 8} , H2(0,0) = 0. We haven't any information about the nature of
point (0, 0).
11° CASE (constrained optimization):
A#£0 A#0
327 — 22z =0 x(3x —2X) =0 e
3y — 2y = 0 =\ y(By—2)\) =0’ we must evaluate four possibilities:
2 +9y?—-8=0 ?+y* =38

a:ifr =0andy = 0, 0% + 0% # 8; point (0,0) isn't admissible;

. 2 4 .
brifr=0and y = -\, weget —\2=8 = A2 =18 = A= =£31/2,with

3 9

y= =+ 2\/5; point P, (0, 2\/§)isacandidateto maximum (A > 0), while point
P, (0, — 2\/§)isacandidateto minimum (A < 0);

. 2 .4 .
cify=0and z = gA,wegetagaln §>\2 =8 = A= i3ﬁ,W|th x = 12\/5;

point Ps (2\/5, O)isacandidateto maximum (A > 0), while point P4< — 2\/5, O)isa
candidate to minimum (A < 0);



. 2 2 :
d: if ngA andyzg)\,weget g)\2:8 = MN=9= )= 4+3,withz= £2
and y = + 2; point P5(2,2)isacandidate to maximum (A > 0), while point
Py( — 2, — 2) isacandidate to minimum (A < 0). f(Py3) = 161/2,
f(Ps) =16 < 16\/5, f presents absolute maximum equal 16ﬁ in points (0,2\/5)

and (2\/5, O); f(Poy) = — 161/2, f(P5) = — 16 > — 164/2, f presents absolute

minimum equal — 16\/5 in points (O, — 2\@) and ( — 2\/5, 0).

To analize the nature of point P; and P; we study the function f aong the upper and the
lower border of the admissible region. Rewrite the circunference's equation as

y?> = 8 — %, the upper and the lower borders of the admissible region are respectively

y=+V8—zx?andy= —8—a2.

In the upper border consider the function f (x, + V8- x2) =

z® + (\/8—3:2)3 =g(x), ¢ (z) = 3.262—%3(\/8—.%2)2-#\/% =

3x(w—\/8—x2);g’(x)>0ifand0n|yif —2/2<z<00r2<z< 22 Along

the upper border, function f isincreasingfor —2\/2 < z < 0and2 < z < 2/2,
decreasing for 0 < x < 2, P; isafase maximum (minimum point aong the border).
By the exchangeability on variablesin function f (f(z,y) = f(y, x)), Similar results
can be achaived in the lower border.

In the graphic below, the admissible region, in red, and the behaviour of f along the
border rappresented by the turquoise arrows.

Max/min f(z,y) = z* + 3>
uc.x—y==4 '
The Lagrangian function of the problemis

L(z,y,\) =2+ 9> = ANz —y —4) with
VL=Q2x—N2y+ A\, —(z—y—4)).

FOC:

1 M 3) Solve the problem {



20—\ = x=A/2 r=2A/2 x =2
2+ A=0 = y=—\/2 = y=—A/2 =< y= —2;0ne
A A

r—y= A2+ X/2=4 =4 =4
constraint critical points P = (2, — 2).
SOcC:
0 -1 1 0 -1 1
H=|-1 2 o|with|[H=|-1 2 o :‘—11 g‘ ‘—11 2
1 0 2 1 0 2

—2—-2= —4.|H(P)| <0, P point of minimum with f(P) = 8.

Il M 4) Given the function f(z,y) = e"*¥ — " ¥ and the unit vector v =

calculate on point (0, 0) the directional derivatives D, f(0,0) and Dﬁ)) £(0,0).

Vf(z,y) = (e — e, eV 4+ e"Y), Vf(0,0) = (0,2),

1 3
D,f(0,0) = V£(0,0) - v = (0,2) - ?%;>:\@,
e:f;-l-y — ety 1+J + 87 Y 0 2 )
Hf(a;‘?y) - |:el‘+y+e$y -T+1/ :| H - {2 O:| Wlth

1 /3 !
DR F(0,0) =" - Hf(0,0) - v :<§3J L0}<§>:
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