### Università degli Studi di Siena

Facoltà di Economia
Prova scritta di Matematica Generale (A.A. 11-12)
19 settembre 2012

## Compito **A**✓

- 1) (7 punti) Siano dati tre proposizioni semplici p, q e r. Costruire la tavola di verità della proposizione composta:  $((p \Leftrightarrow q) \Rightarrow (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$ ; ed indica se si tratta di una tautologia o una contraddizione.
- 2) (7 punti) Siano date le funzioni  $f(x) = \sqrt{(x-3)\cdot(1+x)}$  e  $g(x) = \log(4-x^2)$  ed indichiamo con A e B gli insiemi campo di esistenza rispettivamente di f e g; dopo aver determinato la loro intersezione  $(A\cap B)$  e la loro unione  $(A\cup B)$ , indicare per questi ultimi due insiemi il loro interno:  $(A\cap B)$  e  $(A\cup B)$ .
- 3) (7 punti) Si considerino le funzioni  $f(x) = \frac{1}{1+3^x}$  e  $g(x) = \frac{1-2\sqrt{x}}{1+3\sqrt{x}}$

Determinare le espressioni della funzione composta g(f(x)) e della sua inversa.

4) (7 punti) Calcolare i seguenti limiti:  $\lim_{x \to +\infty} \frac{\log^2 x + \log^4 x}{x}$ ;

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{\log x - x}.$$

- 5) (11 punti) Determinare l'andamento grafico della curva di equazione  $y = \frac{1}{x} + \frac{3}{x^3}$ .
- 6) (7 punti) Indicare l'equazione della retta tangente alla funzione  $y = \frac{1}{\sqrt{x-2}}$  nel punto di ascissa  $x_0 = 6$ .
- 7) (7 punti) Calcolare  $\int_0^2 6^x \cdot 2^{-x} dx.$
- 8) (7 punti) Determinare, se esistono, il massimo e il minimo della funzione a due variabili  $f(x,y)=x^2+4x^2y+y^2$ .

<sup>✓</sup> Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.

### Università degli Studi di Siena

# Facoltà di Economia Prova scritta di Matematica Generale (A.A. 11-12) 19 settembre 2012

## Compito **B**✓

- 1) (7 punti) Siano dati tre proposizioni semplici p, q e r. Costruire la tavola di verità della proposizione composta:  $((p \Rightarrow q) \Leftrightarrow (q \Rightarrow r)) \Leftrightarrow (p \Rightarrow r)$ ; ed indica se si tratta di una tautologia o una contraddizione.
- 2) (7 punti) Siano date le funzioni  $f(x) = \sqrt{(x-3)\cdot(x+2)}$  e  $g(x) = \log(9-x^2)$  ed indichiamo con A e B gli insiemi campo di esistenza rispettivamente di f e g; dopo aver determinato la loro intersezione  $(A\cap B)$  e la loro unione  $(A\cup B)$ , indicare per questi ultimi due insiemi il loro interno:  $(A\overset{\circ}{\cap} B)$  e  $(A\overset{\circ}{\cup} B)$ .
- 3) (7 punti) Si considerino le funzioni  $f(x)=\frac{1-2^x}{1+2^x}$  e  $g(x)=1-5\sqrt{x}$ . Determinare le espressioni della funzione composta g(f(x)) e della sua inversa.
- 4) (7 punti) Calcolare i seguenti limiti:  $\lim_{x \to +\infty} \frac{1}{x} \frac{2^x + 4^x}{x}$ ;  $\lim_{x \to +\infty} \left(1 \frac{1}{x}\right)^{x \log x}$ .
- 5) (11 punti) Determinare l'andamento grafico della curva di equazione  $y = \frac{3}{x} + \frac{1}{x^3}$ .
- 6) (7 punti) Indicare l'equazione della retta tangente alla funzione  $y = \frac{1}{\sqrt[3]{x-2}}$  nel punto di ascissa  $x_0 = 29$ .
- 7) (7 punti) Calcolare  $\int_{0}^{2} 4^{x} \cdot 2^{-x} dx$ .
- 8) (7 punti) Determinare, se esistono, il massimo e il minimo della funzione a due variabili  $f(x,y)=-x^2+x^2y-y^2$ .

<sup>✓</sup> Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.

### Università degli Studi di Siena

Facoltà di Economia

Prova scritta di Matematica Generale (A.A. 11-12) 19 settembre 2012

### Compito **C**✓

- 1) (7 punti) Siano dati tre proposizioni semplici p, q e r. Costruire la tavola di verità della proposizione composta:  $((p \Rightarrow r) \Leftrightarrow (q \Rightarrow r)) \Rightarrow (p \Leftrightarrow q)$ ; ed indica se si tratta di una tautologia o una contraddizione.
- 2) (7 punti) Siano date le funzioni  $f(x) = \sqrt{(x^2 9) \cdot (2 x)}$  e  $g(x) = \log(5 x)$ ed indichiamo con A e B gli insiemi campo di esistenza rispettivamente di f e g; dopo aver determinato la loro intersezione  $(A \cap B)$  e la loro unione  $(A \cup B)$ , indicare per questi ultimi due insiemi il loro interno:  $(A \overset{\circ}{\cap} B)$  e  $(A \overset{\circ}{\cup} B)$ .
- 3) (7 punti) Si considerino le funzioni  $f(x) = \frac{1}{1+4^x} e \ g(x) = \sqrt{\frac{1-x}{1+x}}$ . Determinare le espressioni della funzione composta g(f(x)) e della sua inversa.

4) (7 punti) Calcolare i seguenti limiti:  $\lim_{x \to -\infty} \frac{2^x + 4^x}{x}$ ;  $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{3x - \log x}$ .

5) (11 punti) Determinare l'andamento grafico della curva di equazione

 $y = -\frac{2}{x} - \frac{2}{x^3}$ .

6) (7 punti) Indicare l'equazione della retta tangente alla funzione  $y = \frac{1}{\log_4(8+x)}$ nel punto di ascissa  $x_0 = 8$ .

7) (7 punti) Calcolare  $\int_{0}^{1} 8^{x} \cdot 2^{-x} dx$ .

8) (7 punti) Determinare, se esistono, il massimo e il minimo della funzione a due variabili  $f(x, y) = x^2 - 2x^2y + y^2$ .

<sup>✓</sup> Il compito è diviso in 8 esercizi che presentano valutazioni diverse, il massimo punteggio raggiungibile è pari a 60; gli studenti che ottengono in questa prova una votazione non inferiore a 24 sono ammessi alla prova orale.