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Compito CL- Riccarelli
1) Cacolareil seguente limite e tramite la definizione in forma metrica verificare il
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parametro ¢ che rende la funzione continua su tutto I'insieme dei numeri reali.

Lafunzione e palesemente continua per tutte le x # 0; per verificare la continuita della
funzione nel punto x = 0 calcoliamo il limite destro e quello sinistro:

lim_f(x) = lim_x+sen(2x) =0; lim f(z) = lim x4+ q = q.Pertantola
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funzione e continua su tutto I'insieme dei numeri reali seesolo se ¢ = 0.

3) Siano f1(z), f2(x), g1(x) e g2 (x) quattro funzioni infinitesime per z — 0 con
. o . fi(@) + fo(2)
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Se fo = o(f1) eg1 = o(g2) conxz — 0, per il limite proposto risulta
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2) Siadatalafunzione f(z) = { . Si determini il valore del
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4) Selafunzione f(g(x)) = /4 + senz elafunzione g(f(z)) = 4 + sen/z. Quali

sono le espressioni delle funzioni f(z) e g(x)?
Se f(z) = /z eg(z) = 4 + senx abbiamo f(g(x)) = f(4+ senz) = \/4+ senz e

g(f(x)) = g(y/x) = 4+ seny/x. Lefunzioni richieste sono f(z) = \/z e
g(r) =4+ senz.
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5) Calcolarei seguenti limiti: lim M; lim (:C 5).
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parametro ¢ che rende la funzione continua su tutto I'insieme dei numeri reali.
Lafunzione e palesemente continua per tutte le = # 0; per verificare la continuita della
funzione nel punto x = 0 calcoliamo il limite destro e quello sinistro:

lim_f(z) = lim x+3cosx =3; lim f(zr) = lim x4+ q = q.Pertantola
r—0 z—0 r— 0" x— 0"
funzione e continua su tutto I'insieme dei numeri reali seesolo se g = 3.

3) Siano fi(x), fa(z), g1(x) e go(x) quattro funzioni infinitesime per = — 0 con
. L Ji(@) + fe(@)
= , go = = 2¢;. Cacolareil te limite:  lim ——F—————.
fa=o0(f1), g2 =o(g1) e f1 X 2¢ colare 1l seguente limite x@ogl(x)+92(x)
(conil smbolo = s indical'equivalenza asintoticafra due funzioni)
Se fo = o(f1) €92 = o(g1) conx — 0, per il limite proposto risulta
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4) Selafunzione f(g(z)) = 1 + tgz? elafunzione g(f(x)) = (1 + tgz)*. Quali sono
le espressioni delle funzioni f(z) e g(z)?

Se f(z) =1+tgx eg(x) = x? abbiamo f(g(z)) = f(z?) =1 +tgaz’e

g(f(x)) = g(1 +tgz) = (1 +tgx)®. Lefunzioni richiestesono f(z) = 1 + tgx e

g(z) = 22
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