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| M 1) Given the complex number z = i'2 + i13; calculate its square roots.
Remember that i* = 1, thus z = i'2 + 13 = 12(1 4+ 4) = (i*)’ (1 +4) = 13(1 +4) =
1+:i= \/i(co.sg +isin%) . For the roots of z we apply the classical formula:

\/;:zk:\"ﬁ(cos<w> —I—isin(@)) k=01
—\/(cos( +k7r)+zsm( +k7r)) kE=0,1.

The two roots are:

k=0— z ﬁ(cos—-l—zsm \[—i_l 2_1

\/\/Jrl ﬁ—l

, 9
k=1— 2z = \/§<605§7T +zsm—

I M 2) Consider the matrix A = . Cdculate its eigenvalues

1

-1 -1
1 0 0

and study if the matrix A isadiagonalizable one.
Thefirst step isthe calculus of the characteristic polynomial of the matrix:

1 1
0 1 1 0
0 0

A-1 0 0 -1
0 A-1 -1 0
Pa)=IAL=Al=1 1 A+1 0 |
10 0 Afl
A—1 -1 0 0 A-1 -1
A=D| 1 A+1 0 [+]0 1 At1|=
0 0 A+l |1 0 0
A=l =1 [A=1 -1, A-1 -1
(A_l)(“rl)‘ 1 )\-1—1‘ ‘ 1 >\+1‘_()‘_1+1) 1 A+1‘_

A2 (A =1)(A+1) +1) = AL Putting Py (\) = 0 we find the unique eigenvalue of
matrix A: A = 0 with algebraic multiplicity equal four. To verify if the matrix is
diagonalizable, we must find the geometric multiplicity of the unique eigenvalue, for
this goal we calculate the rank of matrix
-1 0 0 —
o -1 -1 0
0 1 1 0
1 0 0 1

1

0-I-A=—-A= , it's easy note that from matrix A we



can define a principal minor of order 2, [(1) (1)} with determinant different from 0 and
matrix — A hasthe third raw equal to the opposite of the second raw and the fourth raw
equal to the opposite of thefirst raw, thus Rank(A) = 2 and the geometric multiplicity
of eigenvalue 0 istwo. The matrix A isn't diagonalizable.
Alternative solution: if v = (v, v9, v3,v4) iSan eigenvector associated to the unique
eigenvalue A = 0, v must satisfies the equation

1 0 0 1 U1

0 1 1 0 (%)
Av=0v=0= 0 1 —1 o Vs =

-1 0 0 —1 V3
v1 + v4 = 0 and vy + v3 = 0; from the last two conditions we get that an eigenvector
associated to the unique eigenvalue A = 0 is
(v1,v9, —v9, —wv1) =v1(1,0,0, — 1) + v9(0,1, — 1,0). The eigenspace associated to
A = 0 isgenerated by the two vectors (1,0,0, — 1) and (0,1, — 1,0), thusthe
geometric multiplicity of eigenvalue 0 istwo. The matrix A isn't diagonalizable.
A second alternative solution: matrix — A # O (anull matrix), thisimplies that
Rank( — A) > 1 and the geometric multiplicity of the eigenvalue A = 0 is
mS_, =4 — Rank(— A) < 3 <4 =m{_,. Thematrix A isn't diagondizable.
| M 3) Given alinear map F: R? — R?, we know that:

1. vector (1,0, — 1) belongsto the kernel of F;
2.F(1,1,1) = (1,0) and F'(1, — 1,1) = (0, — 1).

Find the matrix A associated with the linear map and calcul ate the dimention of the
kernel and the dimention of the image of the linear map.

F:R3 — R? and matrix A associated to F isa?2 x 3 matrix, Ay = {

that implies

o O OO

o Box|
6 F €l

vector (1,0, — 1) belongsto the kernel of F,

1
a B x _(a—=x\ _ [0 i o B«
{5 r 6](_01)(66)<O)andea5|lyfollowAF[(S r 6]'

1
Fam (1,1, = 1,0 weget [ g;}@)(;jg)@)mm

f=1—-2candF = —26,Ap = {2‘ 1—_22; ?].Finallyif
1
a 1-2a « da—1 0
F@_LD@_D¢5266](3)<45)<J$
1 1 1 1 17
= andé= - Ar= { 4,2 4| . Remember that the dimention of the
T4 2 4

image of alinear map is equal to the rank of the associated matrix and for the map F’,
1 17

with determinant different from 0,

the matrix Ay has aminor of order 2, { o

=Nl

i 2
matrix A has rank equal two and the dimention of the image of map F' is 2; from the
Rank-Nullity Theorem dim(Ima(F)) + dim(Ker(F)) = dim(R?) = 3, sothe
dimention of the kernel is 1.

Alternative solution: from 1. vector (1,0, — 1) belongsto the kernel of F' and



2.F(1,1,1) = (1,0) and F'(1, — 1,1) = (0, — 1); we havethat dim(Ker(F)) > 1
and dim(Ima(F')) > 2 (because vectors (1,0) and (0, — 1) are linear indipendent);
from Rank-Nullity Theorem dim(Ima(F)) + dim(Ker(F)) = dim(R?) = 3, easily
we conclude that dim(Ima(F)) = 2 and dim(Ker(F)) =

1 0 O
31 0
2 31

| M 4) Given the two matrices A = andB =

1 2 3
0 1 2/|.Cdculatethe
0 0 1

inverse matrix of A7 + B.

‘10 0] 1 2 3 1 3 2 1 2 3
AT+B=|3 1 0| +(0 1 2|=1(0 1 3|+|0 1 2|=
2 3 1 0 0 1 0 0 1 0 0 1
2 5 5] 1
0 2 5| =C.Theinversematrix of Cis C™! = — (Adj(C))" , where Adj(C) is
00 2 C|
2 5 5
theadjoint matrix of C. [C| =0 2 5| =8
0 0 2
2 5 0 5 0 2
‘0 2‘ ‘0 2‘ 0 0‘ A 0 0
a0 |- 123 -3 [10 : 0]
15 —10 4
5 5 2 5 2 5
S I I I EE
4 00T14—1o15 ;3 -2 b
(C*lzg -0 4 0| ==(0 4 -—10|=]0 1 -3
15 —-10 4 0 0 4 0O 0 %

Il M 1) Giventheequation f(z,y,2) = e"™V** + 2yz + 2 = 1 satisfied at the point
(0,0,0), verify that with it an implicit function z = z(x, y) can be defined and then
calculate, for thisimplicit function its gradient vector Vz.

£0,0,0)=e"+0+0=1, fl =" +yz, f, =" + 22 and

fl=e"" 4oy +1,with £7(0,0,0) =1, £,(0,0,0) =1 and f1(0,0,0) = 2.
Since f/(0,0,0) # 0, theequation f(z,y) = e"*V** + zyz + 2 = 1 definesafunction

- / , 1(0,0,0)  £1(0,0,0
z = 2(w,y) with Vz = (2}(0,0),2,(0,0)) = (_ }020 0 oi’ - ?Eo 0 0;)
1 1 : ?
(_5’ _5)'

1 M 2) Solve the problem {

Max/min f(z,y) = x — y*

uc: z?+y* <4 '

The function f isapolynomial, continuos function, the admissible region isadisk with
center (0, 0) and radius 2, abounded and closed set, therefore f presents absol ute
maximum and minimum in the admissible region, constraint is qualified in any point in
the circumference z? + y?> = 4. The Lagrangian function is

L(x,y,\) =z —y? — Ma? + y* — 4) with

VL= (1-2\z, — 2y —2\y, — (22 + 9> — 4)).

I° CASE (free optimization):



(A=0
<1:O ; system impossible
_gy—( Ysemimpossble
\x2+y2§4
11° CASFE (constrained optimization):
(A #£0 A#0
1—2\z =0 1-2\z=0 . = 1
{ —2y—2)\y:0:> —2y(1—|—)\):O'|fy_0'$_i2and)‘_j:1’
otherwiseif \ = — 1, z = — 3 and y = + 5\/ 15 . Four critical points

P 5 = (£2,0), P, candidate for maximum (A > 0), P, candidate for minimum

1
(A <0),and P54 = (— 2’ + %\/ 15) , both candidate for minimum (A < 0),.
f(Pi2) = £2, f(Ps4) = — % < — 2, f presents absolute maximum equal 2 on

. . 17 . 1 1
points (2, 0) and absolute minimum equal — 1 on points <— 37 + 5\/ 15> .

To study the nature of point P, we analize the function f along the border > + 3% = 4
withy? =4 — 2% f(z,y) =2 — (4 —2?) =2+ 2 — 4 =g(z); ¢ () = 22 + 1 and

. 1 _ . 1 .
g(x) >0iff 2 > — 5 g(x) isincreasing for — 5 < x < 2, decreasing for

—2<z< — 5 ; point P, isafase minimum. In the following the increasing
behavior of function f aong the border, turquoise arrows, in red the admissible region.

P3

P2 P1

P4

11 M 3) Find the minimum of the function f(z,y, z) = > + 3> + 2* + 62%.
V= (2z,2y,42° + 12z).

FOC:
20 =0 rz=0 x=0
2y =0 =<¢y=0 = ¢ y = 0.0Onecritica point O = (0,0,0).
423 +122 =0 42(2°+3) =0 z2=0

SOC:



2 0 0 2 0 O
Hp= [0 2 0 }wuthﬁf(()) 0 2 0|andH;=2>0,
0 0 1222+12 0 0 12
2 0 2 0 0 .
ch:‘o 2‘—4>0,H§%: 0 2 0|=48>0.0=(0,0,0)isapoint of
0 0 12

minimum and the minimum of the function is f(0,0,0) = 0.
Il M 4) Consider the function f(z,y) = ye”*¥ and the two unit vectors

(5] e (0]
27 2 27 2

derivatives D, f(xo, yo) and D, f(xo, yo) arerespectively equal to — 1 and 1. Find
the point (x, yo) and calculate the second order directional derivative fo?w f(xo,y0) .

Function fisdifferentiablein all points,
Vf(z,y) = (ye™, e + ye®™) = (ye"™, (1 + y)e");

v = Vg = ; a point (zg, yo) the two directiond

[\

2 2
Dy, f(@o,y0) = Vf-v1 = (ye*™, (1 + y)e™™) <—, 7) \2/ L+ 2y)e™™;

)

Dy, f(xo,y0) = Vf - v2 = (ye"™, (1 +y)e"™) -

Dmf(a:(%y()) = ﬁ (1 + 2y) = -1

=
D, f(xo0, y0) = ﬁ et =1

now we solve the system {

1+2y= —1 - 1
V2 = v= Point (zg, y0) = (1 + log\/i, —1).
et =1 z=1+1logy/2

The second order directional derivativeis calculated by the product vl - H (o, yo) - v2;

[ e (e [-v2 o
Hy = {(1+y)erf:+y (2 + y)ety s Hi(o, o) = 0 2l

DR, f(wo, o) = (?@) . [— Oﬁ ﬁi] . ( —{f) _
(5:5) ()=



